Can Satellite Images Predict Treatment Effect Heterogeneity? A Robust Inference Approach Restricted; Files Only
Park, Jin Seok (Spring 2025)
Abstract
Randomized controlled trials (RCTs) are widely used in the social sciences to study the effect of policy interventions. When participants reside across separate geographic areas, it might be reasonable to expect the effects of interventions to differ because of factors such as local infrastructure, topography, and neighborhood amenities. Satellite images present an exciting low cost source of geographic information to study heterogeneity. We use experimental data from the Youth Opportunities Program in Uganda, and apply convolutional neural networks to map participant geo-referenced satellite images to predictions of hours worked for treated and control individuals, respectively. We use the model to estimate Conditional Average Treatment Effects (CATEs). Our key contribution is to propose a robust inference approach that can be used to (i) test whether CATEs differ by geography, (ii) compare the variance of image-based CATEs against those obtained from pre-randomization survey data. Our testing approach has conservative coverage guarantees, even under misspecification, which means that researchers can obtain valid tests of homogeneity (if slightly underpowered) when the neural network model is tuned incorrectly.
Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . 7
2.2.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Estimating Debiased Average Effects . . . . . . . . . . . . . . . 8
2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Regression on YOP Study . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 VCATE Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.2.1 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Palavra-chave | |
Committee Chair / Thesis Advisor | |
Committee Members |

Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
![]() |
File download under embargo until 22 May 2027 | 2025-04-08 22:59:56 -0400 | File download under embargo until 22 May 2027 |
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|