A local-global principle for adjoint groups over function fields of p-adic curves Open Access
Barlow, Jack (Spring 2023)
Abstract
Let k be a number field and G a semisimple simply connected linear algebraic group
over k. The Kneser conjecture states that the Hasse principle holds for principal
homogeneous spaces under G. Kneser’s conjecture is a theorem due to Kneser for all
classical groups, Harder for exceptional groups other than E8, and Chernousov for
E8. It has also been proved by Sansuc that if G is an adjoint linear algebraic group
over k, then the Hasse principle holds for principal homogeneous spaces under G.
Now let p ∈ N be a prime with p ̸= 2, and let K be a p-adic field. Let F be the function
field of a curve over K. Let ΩF be the set of all divisorial discrete valuations of F.
It is a conjecture of Colliot-Th´el`ene, Parimala and Suresh that if G is a semisimple
simply connected linear algebraic group over F, then the Hasse principle holds for
principal homogeneous spaces under G. This conjecture has been proved for all groups
of classical type. In this thesis, we ask whether the Hasse principle holds for adjoint
groups over F, motivated by the number field case. We give a positive answer to this
question for a class of adjoint classical groups.
Table of Contents
1 Introduction 1
1.1 The Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Central Simple Algebras, Involutions and Hermitian Forms 3
2.1 Central Simple Algebras . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 The Brauer Group . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Quaternion Algebras . . . . . . . . . . . . . . . . . . . 6
2.1.3 Ramifications of Central Simple Algebras . . . . . . . 6
2.2 Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Similitudes of Algebras with Involution . . . . . . . . 9
2.3 Hermitian Forms . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Hermitian Forms over Division Algebras and
Quadratic Forms . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Quadratic Forms over Complete Discretely Valuated
Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Galois Cohomology 18
3.1 Profinite Groups and Galois Groups . . . . . . . . . . . . . . 18
3.2 Cohomology of Profinite Groups . . . . . . . . . . . . . . . . 19
3.3 Principal Homogeneous Spaces . . . . . . . . . . . . . . . . . 20
4 Linear Algebraic Groups and Patching Techniques 22
4.1 First Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Classification of Absolutely Simple, Adjoint, Classical Linear
Algebraic Groups . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Semi-Global Fields and Patching . . . . . . . . . . . . . . . . 27
4.4 Local-Global Principles for Linear Algebraic Groups . . . . . 28
5 Main Theorems 30
5.1 Quadratic Forms Over Two Dimensional
Complete Fields . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Semi-Global Fields - Quadratic Forms Case . . . . . . . . . . 35
5.3 Quaternion Division Algebras Over Two
Dimensional Complete Fields . . . . . . . . . . . . . . . . . . 39
5.4 Semi-Global Fields - Symplectic Involution
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 The Main Theorems . . . . . . . . . . . . . . . . . . . . . . . 42
About this Dissertation
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
A local-global principle for adjoint groups over function fields of p-adic curves () | 2023-03-29 17:09:22 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|