Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Jack Barlow
Date

A local-global principle for adjoint groups over function fields of p-adic curves By

Jack Barlow
Doctor of Philosophy

Mathematics

R. Parimala
Advisor
Committee Member

David Zureick-Brown
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D, MPH
Dean of the James T. Laney School of Graduate Studies

Date

A local-global principle for adjoint groups over function fields of p-adic curves

By

Jack Barlow
MMath, University of Warwick, 2018
M.S., Emory University, 2022

Advisor: R. Parimala, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Mathematics
2023

Abstract

A local-global principle for adjoint groups over function fields of p-adic curves By Jack Barlow

Let k be a number field and G a semisimple simply connected linear algebraic group over k. The Kneser conjecture states that the Hasse principle holds for principal homogeneous spaces under G. Kneser's conjecture is a theorem due to Kneser for all classical groups, Harder for exceptional groups other than E_{8}, and Chernousov for E_{8}. It has also been proved by Sansuc that if G is an adjoint linear algebraic group over k, then the Hasse principle holds for principal homogeneous spaces under G.

Now let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let F be the function field of a curve over K. Let Ω_{F} be the set of all divisorial discrete valuations of F. It is a conjecture of Colliot-Thélène, Parimala and Suresh that if G is a semisimple simply connected linear algebraic group over F, then the Hasse principle holds for principal homogeneous spaces under G. This conjecture has been proved for all groups of classical type. In this thesis, we ask whether the Hasse principle holds for adjoint groups over F, motivated by the number field case. We give a positive answer to this question for a class of adjoint classical groups.

A local-global principle for adjoint groups over function fields of p-adic curves

By

Jack Barlow
MMath, University of Warwick, 2018
M.S., Emory University, 2022

Advisor: R. Parimala, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Mathematics
2023

Acknowledgements

I thank my advisor, Prof. Raman Parimala, for all of her help and encouragement and for being so patient with me. I thank Prof. Suresh Venapally for his support, guidance and patience. I thank my teacher and committee member, Dr. David Zureick-Brown.

I thank my teachers, Prof. David Borthwick, Dr. David Zureick-Brown, Prof. Raman Parimala, Dr. Hao Huang, Prof. Suresh Venapally and Dr. Brooke Ullery. I thank my teaching mentors, Dr. Bree Ettinger, Dr. Michael Carr, Dr. Juan Villeta-Garcia, Prof. Vojtech Rodl, Prof. James Nagy, Prof. Dwight Duffus, Dr. Elizabeth Newman and Dr. Andrii Arman. I thank the office staff Kristen Schroeder, Nailejilej Laicer, Terry Ingram, Taylr Tuggle and Nicole Hart. I thank the technical staff Edgar Leon and Timothy Yim.

I thank my friends and colleagues, Yazan Alamoudi, Sreejani Chaudhury, Davide Evangelista, Xiangxi Gao, Jayanth Guhan, Kelvin Kan, Christopher Keyes, Guangqiu Liang, Shilpi Mandal, Irving Martinez, Sumit Mishra, Zitong Pei, Marcelo Sales, Jennifer Wang, Samy Wu Fung, Haozhe Yu and many others.

Finally, I thank my parents for their love and support.

Contents

1 Introduction 1
1.1 The Plan 2
2 Central Simple Algebras, Involutions and Hermitian Forms 3
2.1 Central Simple Algebras 3
2.1.1 The Brauer Group 4
2.1.2 Quaternion Algebras 6
2.1.3 Ramifications of Central Simple Algebras 6
2.2 Involutions 7
2.2.1 Similitudes of Algebras with Involution 9
2.3 Hermitian Forms 12
2.3.1 Hermitian Forms over Division Algebras and Quadratic Forms 14
2.3.2 Quadratic Forms over Complete Discretely Valuated Fields 16
3 Galois Cohomology 18
3.1 Profinite Groups and Galois Groups 18
3.2 Cohomology of Profinite Groups 19
3.3 Principal Homogeneous Spaces 20
4 Linear Algebraic Groups and Patching Techniques 22
4.1 First Definitions 22
4.2 Classification of Absolutely Simple, Adjoint, Classical Linear Algebraic Groups 25
4.3 Semi-Global Fields and Patching 27
4.4 Local-Global Principles for Linear Algebraic Groups 28
5 Main Theorems 30
5.1 Quadratic Forms Over Two Dimensional Complete Fields 30
5.2 Semi-Global Fields - Quadratic Forms Case 35
5.3 Quaternion Division Algebras Over Two Dimensional Complete Fields 39
5.4 Semi-Global Fields - Symplectic Involution Case 40
5.5 The Main Theorems 42

Chapter 1

Introduction

Let k be a number field and G a semisimple simply connected linear algebraic group over k. The Kneser conjecture states that the Hasse principle holds for principal homogeneous spaces under $G([13])$. Kneser's conjecture is a theorem due to Kneser for all classical groups ([14]), Harder for exceptional groups other than $E_{8}([10],[11],[12])$ and Chernousov for $E_{8}([4])$. It has also been proved that if G is an adjoint linear algebraic group over k, then the Hasse principle holds for principal homogeneous spaces under G ([20, Corollary 5.4]).

Now let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let F be the function field of a curve over K. Let Ω be the set of all divisorial discrete valuations of F. It is a conjecture of Colliot-Thélène, Parimala and Suresh that if G is a semisimple simply connected linear algebraic group over F, then the Hasse principle holds for principal homogeneous spaces under $G([5])$. This conjecture has been proved for all groups of classical type ([19]). In this thesis we prove the following:

Theorem 1.0.1. Let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let F be a function field of a curve over K. Let q be a quadratic form over F. Then the Hasse principle holds for principal homogeneous spaces under $\operatorname{PSO}(q)$.

A by-product of Theorem 1.0.1 is the following:
Theorem 1.0.2. Let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let F be a function field of a curve over K. Let L / F be a quadratic field extension, and let τ be the nontrivial automorphism of L / F. Then the Hasse principle holds for principal homogeneous spaces under $\operatorname{PGU}(L, \tau)$.

We have the following theorem for the symplectic case:

Theorem 1.0.3. Let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let F be a function field of a curve over K. Let G be an absolutely simple adjoint linear algebraic group over F of classical type C_{n}. Then the Hasse principle holds for principal homogeneous spaces under G.

Absolutely simple adjoint linear algebraic groups over F of classical type C_{n} are described by the group of similitudes of central simple algebras with symplectic involution. To prove Theorem 1.0.3, a main step is to prove the following:

Theorem 1.0.4. Let A and B be central simple algebras over F with $\operatorname{deg}(A)=\operatorname{deg}(B)$. Let σ be a symplectic involution on A and let τ be a symplectic involution on B. If $(A, \sigma) \simeq(B, \tau)$ locally over all divisorial discrete valuations of F, then $(A, \sigma) \simeq(B, \tau)$ over F.

The proofs of Theorems 1.0.1, 1.0.2, 1.0.3 and 1.0.4 reduce to a Hasse principle for similarity of hermitian forms.

1.1 The Plan

Here we give a brief description of the contents of the thesis:
Chapters 2-4 consist of preliminaries. In chapter 2 , we give an overview of the foundations of the theory of central simple algebras, involutions and hermitian forms. In Chapter 3, we study a few elementary notions in group cohomology and look at profinite groups and Galois cohomology. In Chapter 4, we introduce linear algebraic groups and give a classification of absolutely simple, adjoint, classical linear algebraic groups. We go on to review some of the patching techniques of Harbater, Hartmann and Krashen.

Chapter 5 consists of the proofs of our main theorems. In Section 5.1, we analyze similarities of quadratic forms over two dimensional complete fields and approximate similarity factors along branches. In Section 5.2, we use the results of Section 5.1 to prove a Hasse principle for similarity of quadratic forms over semi-global fields and deduce as a corollary a Hasse principle for similarity of hermitian forms over quadratic extensions of semi-global fields. In Section 5.3 , we look at the case of a quaternion division algebra D over a two dimensional complete field with canonical involution τ. We use the results of Section 5.1 to approximate similarity factors of hermitian forms over (D, τ) along branches. In Section 5.4, we use the results of Section 5.3 to prove a Hasse principle for similarity of hermitian forms over central simple algebras over semi-global fields with symplectic involution. We combine all of the results of Sections 5.1-5.4 to prove our main theorems in Section 5.5.

Chapter 2

Central Simple Algebras, Involutions and Hermitian Forms

2.1 Central Simple Algebras

Definition. A central simple algebra over a field F is a finite dimensional algebra $A \neq\{0\}$ with center $F=F \cdot 1$ which has no two-sided ideals except $\{0\}$ and A.

Theorem 2.1.1. (Wedderburn Structure Theorem). Let A be a central simple algebra over a field F. Then there exists an integer $n \geq 1$ and a central division algebra D over F such that $A \simeq M_{n}(D)$. Moreover, D is uniquely determined up to isomorphism.

Proof. See for instance [6, p. 22].
Notation. For any algebra A over a field F and any field extension K / F, we write A_{K} for the K-algebra obtained from A by extending scalars to K :

$$
A_{K}=A \otimes_{F} K
$$

Theorem 2.1.2. (Wedderburn). Let A be an algebra over a field F. Then A is central simple if and only if there is a field K containing F such that $A_{K} \simeq M_{n}(K)$ for some n.

Proof. See for instance Scharlau [21, Chapter 8].
Definition. The fields K containing F such that $A_{K} \simeq M_{n}(K)$ for some n are called splitting fields of A. If K is a splitting field of A, we also say that A splits over K or K splits A.

Definition. Let A be a central simple algebra over a field F and let K be a splitting field of A. Let $\phi: A_{K} \xrightarrow{\sim} M_{n}(K)$ be an isomorphism and let $a \in A$. We define the reduced norm of a, denoted $\operatorname{Nrd}_{A}(a)$, to be

$$
\operatorname{Nrd}_{A}(a):=\operatorname{det}(\phi(a \otimes 1)) \in F .
$$

Remark. The reduced norm $\operatorname{Nrd}_{A}(a) \in F$ is independent of the choices of the splitting field K and isomorphism $\phi: A_{K} \xrightarrow{\sim} M_{n}(K)$.

Theorem 2.1.3. If A is a central simple F-algebra, its dimension over F is a square.

Proof. See for instance [6, p. 24].
Definition. Let A be a central simple algebra over a field F. We define the degree of A, denoted $\operatorname{deg}_{F}(A)$ or simply $\operatorname{deg}(A)$, to be the integer $\operatorname{deg}(A):=\sqrt{\operatorname{dim}_{F} A}$.

2.1.1 The Brauer Group

It turns out that to gain an understanding of the finite dimensional central division algebras over a field F, it is best to consider the more general central simple algebras over F. Essentially, this is because central simple algebras are closed under the tensor product operation, whereas finite dimensional central division algebras in general are not (e.g. if \mathbb{H} is Hamilton's quaternion algebra over \mathbb{R}, then $\left.\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \simeq M_{4}(\mathbb{R})\right)$. Now if A is a central simple algebra over F, then by the Wedderburn Structure Theorem, Theorem 2.1.1, we have an F-algebra isomorphism $A \simeq M_{n}(D)$, for some integer $n \geq 1$ and some finite dimensional central division algebra D over F which is uniquely determined up to F-algebra isomorphism. This promts the following definition.

Definition. Let $A \simeq M_{n_{1}}\left(D_{1}\right)$ and $B \simeq M_{n_{2}}\left(D_{2}\right)$ be two central simple algebras over a field F (where D_{1} and D_{2} are finite dimensional central division algebras over F). We call A and B similar, and write $A \sim B$, if there is an F-algebra isomorphism $D_{1} \simeq D_{2}$.

Remark. Since D_{1} and D_{2} above are uniquely determined up to F-algebra isomorphism, it is clear to see that \sim is an equivalence relation on the set of central simple algebras over F. We write $[A]$ to denote the equivalence class of A under the equivalence relation of similarity.

Definition. For any algebra A over a field F, we define the opposite algebra A^{op} by

$$
A^{\mathrm{op}}=\left\{a^{\mathrm{op}} \mid a \in A\right\}
$$

with the operations defined as follows:

$$
a^{\mathrm{op}}+b^{\mathrm{op}}=(a+b)^{\mathrm{op}}, a^{\mathrm{op}} b^{\mathrm{op}}=(b a)^{\mathrm{op}}, \alpha \cdot a^{\mathrm{op}}=(\alpha \cdot a)^{\mathrm{op}}
$$

for $a, b \in A$ and $\alpha \in F$.
Definition. The Brauer group of a field F, denoted $\operatorname{Br}(F)$, is the set of equivalence classes of central simple F-algebras under the equivalence relation of similarity, with the tensor product acting as the group operation in the following way:

$$
[A] \cdot[B]:=\left[A \otimes_{F} B\right] .
$$

The pair $(\operatorname{Br}(F), \cdot)$ is an abelian group with $[F]=1 \in \operatorname{Br}(F)$ and $[A]^{-1}=\left[A^{\text {op }}\right]$ for all $[A] \in \operatorname{Br}(F)$.

Remark. If D is a finite dimensional central division algebra over F, then $D \in[D] \in \operatorname{Br}(F)$. Conversely, if A is a central simple algebra over F, then $A \simeq M_{n}\left(D^{\prime}\right)$ for some integer $n \geq 1$ and some finite dimensional central division algebra D^{\prime} over F, which is uniquely determined up to F-algebra isomorphism, and we have $[A]=\left[D^{\prime}\right] \in \operatorname{Br}(F)$. Therefore there is a one-to-one correspondence between the set of finite dimensional central division algebras over F (where two F-algebra isomorphic algebras are considered equal) and the set of elements of $\operatorname{Br}(F)$, the bijection taking a finite dimensional central division algebra D over F to its similarity class $[D] \in \operatorname{Br}(F)$.

Theorem 2.1.4. The Brauer group is a torsion abelian group.

Proof. See for instance [6, p. 54].
Notation. We denote the n-torsion subgroup of $\operatorname{Br}(F)$ by ${ }_{n} \operatorname{Br}(F)$.
Definition. Let A be a central simple algebra over a field F. Let D be the central division algebra for which $A \simeq M_{n}(D)$. We define the index of A over F, denoted $\operatorname{ind}_{F}(A)$ or simply ind (A), to be $\operatorname{ind}(A):=\operatorname{deg}(D)$.

Definition. The period (or exponent) of a central simple F-algebra A, denoted $\operatorname{per}(A)$, is the order of its class $[A]$ in $\operatorname{Br}(F)$.

Theorem 2.1.5. (Brauer). Let A be a central simple F-algebra. Then the period $\operatorname{per}(A)$ divides the index ind (A). Moreover, the period $\operatorname{per}(A)$ and the index $\operatorname{ind}(A)$ have the same prime factors.

Proof. See for instance [6, pp. 54 and 55].

2.1.2 Quaternion Algebras

Definition. Let F be a field with $\operatorname{char}(F) \neq 2$. Let $a, b \in F^{*}$. We define the quaternion algebra $A=(a, b)_{F}$ to be the F-algebra on two generators i, j with the defining relations

$$
i^{2}=a, j^{2}=b, i j=-j i .
$$

Proposition 2.1.6. Let $k:=i j \in A=(a, b)_{F}$. Then $\{1, i, j, k\}$ form an F-basis for A (so that $\operatorname{dim}_{F} A=4$).

Proof. See [16, p. 51, Proposition 1.0].
Proposition 2.1.7. $(a, b)_{F}$ is a central simple algebra over F.
Proof. See [16, p. 52, Proposition 1.1].
Theorem 2.1.8. Let A be a central simple F-algebra. Then $\operatorname{deg}(A)=2$ if and only if A is isomorphic to a quaternion algebra over F.

Proof. See [16, p. 74, Theorem 5.1].

2.1.3 Ramifications of Central Simple Algebras

Let R be a commutative regular local ring with field of fractions $F=\mathrm{ff}(R)$. Let \mathfrak{m} be the maximal ideal of R.

Definition. An R-algebra \mathscr{A} is called an Azumaya algebra over R if \mathscr{A} is free of positive finite rank as an R-module, and the algebra $\mathscr{A} \otimes_{R}(R / \mathfrak{m})$ is a central simple algebra over R / \mathfrak{m}.

Definition. Let A be a central simple algebra over F. We say that A is unramified on R if there exists an Azumaya algebra \mathscr{A} over R such that $A \cong \mathscr{A} \otimes_{R} F$.

Now let \mathscr{X} be a regular integral scheme with function field F, and $x \in \mathscr{X}$ a point. Let $\mathcal{O}_{\mathscr{X}, x}$ be the local ring of \mathscr{X} at x. Let A be a central simple algebra over F.

Definition. We say that A is unramified at $x \in \mathscr{X}$ if A is unramified on $\mathcal{O}_{\mathscr{X}, x}$. If A is not unramified at x, we say that A is ramified at x.

2.2 Involutions

Definition. An involution on a central simple algebra A over a field F is a $\operatorname{map} \sigma: A \rightarrow A$ subject to the following conditions:
(a) $\sigma(x+y)=\sigma(x)+\sigma(y)$ for $x, y \in A$.
(b) $\sigma(x y)=\sigma(y) \sigma(x)$ for $x, y \in A$.
(c) $\sigma^{2}(x)=x$ for $x \in A$.

Remark. The center $F=F \cdot 1$ is preserved under σ. The restriction of σ to F is therefore an automorphism which is either the identity or of order 2.

Definition. Involutions which leave the center elementwise invariant are called involutions of the first kind.

Remark. If A is a central simple algebra over a field F with an involution σ of the first kind, then σ defines an isomorphism $A \simeq A^{\text {op }}$. Hence $\operatorname{per}(A) \leq 2$ and $[A] \in{ }_{2} \operatorname{Br}(F)$.

Definition. Involutions whose restriction to the center is an automorphism of order 2 are called involutions of the second kind. Involutions of the second kind are also called of unitary type (or simply unitary).

Definition. An isomorphism of algebras with involution $f:(A, \sigma) \xrightarrow{\sim}\left(A^{\prime}, \sigma^{\prime}\right)$ is an F-algebra isomorphism $f: A \xrightarrow{\sim} A^{\prime}$ such that $\sigma^{\prime} \circ f=f \circ \sigma$.

Definition. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. An automorphism of (A, σ) is an isomorphism of algebras with involution $f:(A, \sigma) \simeq(A, \sigma)$.

Notation. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. The set of automorphisms of (A, σ) is denoted by $\operatorname{Aut}_{F}(A, \sigma)$:

$$
\operatorname{Aut}_{F}(A, \sigma)=\left\{f \in \operatorname{Aut}_{F}(A) \mid \sigma \circ f=f \circ \sigma\right\}
$$

Definition. Let V be a finite dimensional vector space over a field F with $\operatorname{char}(F) \neq 2$. A bilinear form $b: V \times V \rightarrow F$ is called nonsingular if the induced map

$$
\hat{b}: V \rightarrow V^{*}=\operatorname{Hom}_{F}(V, F)
$$

defined by

$$
\hat{b}(x)(y)=b(x, y) \text { for } x, y \in V
$$

is an isomorphism of vector spaces.

Definition. Let V be a finite dimensional vector space over a field F with $\operatorname{char}(F) \neq 2$. For any $f \in \operatorname{End}_{F}(V)$, let $f^{t} \in \operatorname{End}_{F}\left(V^{*}\right)$ be defined by mapping $\phi \in V^{*}$ to $\phi \circ f$. The map f^{t} is called the transpose of f.

Definition. Let V be a finite dimensional vector space over a field F with $\operatorname{char}(F) \neq 2$. Let $b: V \times V \rightarrow F$ be a nonsingular bilinear form. For any $f \in \operatorname{End}_{F}(V)$ we define $\sigma_{b}(f) \in \operatorname{End}_{F}(V)$ by

$$
\sigma_{b}(f)=\hat{b}^{-1} \circ f^{t} \circ \hat{b}
$$

The map $\sigma_{b}: \operatorname{End}_{F}(V) \rightarrow \operatorname{End}_{F}(V)$ is then an involution of $\operatorname{End}_{F}(V)$ which is known as the adjoint involution with respect to the nonsingular bilinear form b.

Notation. Let σ be an involution of the first kind on a central simple algebra A over a field F with $\operatorname{char}(F) \neq 2$. If L is any field containing F, the involution σ extends to an involution of the first kind $\sigma_{L}=\sigma \otimes \operatorname{Id}_{L}$ on $A_{L}=A \otimes_{F} L$. In particular, if L is a splitting field of A, we may identify $A_{L}=\operatorname{End}_{L}(V)$ for some vector space V over L of dimension $n=\operatorname{deg}(A)$. The involution σ_{L} is then the adjoint involution σ_{b} with respect to some nonsingular symmetric or skew-symmetric bilinear form b on V
($[15, \mathrm{p} .13]$).
Definition. An involution σ of the first kind is said to be of symplectic type (or simply symplectic) if for any splitting field L and any isomorphism $\left(A_{L}, \sigma_{L}\right) \simeq\left(\operatorname{End}_{L}(V), \sigma_{b}\right)$, the bilinear form b is skew-symmetric.

Definition. An involution σ of the first kind is said to be of orthogonal type (or simply orthogonal) if for any splitting field L and any isomorphism $\left(A_{L}, \sigma_{L}\right) \simeq\left(\operatorname{End}_{L}(V), \sigma_{b}\right)$, the bilinear form b is symmetric.

Definition. In a central simple F-algebra A with involution of the first kind σ, the set of symmetric elements in A is defined as

$$
\operatorname{Sym}(A, \sigma)=\{a \in A \mid \sigma(a)=a\} .
$$

Definition. In a central simple F-algebra A with involution of the first kind σ, the set of skew-symmetric elements in A is defined as

$$
\operatorname{Skew}(A, \sigma)=\{a \in A \mid \sigma(a)=-a\}
$$

Theorem 2.2.1. Let F be a field with $\operatorname{char}(F) \neq 2$. Let A be a central simple F-algebra of degree n, and let σ be an involution on A of the first kind. Then σ is of symplectic type if and only if

$$
\operatorname{dim}_{F}(\operatorname{Sym}(A, \sigma))=\frac{n(n-1)}{2}\left(\text { and thus } \operatorname{dim}_{F}(\operatorname{Skew}(A, \sigma))=\frac{n(n+1)}{2}\right)
$$

σ is of orthogonal type if and only if
$\operatorname{dim}_{F}(\operatorname{Sym}(A, \sigma))=\frac{n(n+1)}{2}\left(\right.$ and thus $\left.\operatorname{dim}_{F}(\operatorname{Skew}(A, \sigma))=\frac{n(n-1)}{2}\right)$.
Moreover, if σ is of symplectic type, then n is necessarily even.
Proof. See [15, Proposition 2.6].
Definition. Let F be a field with $\operatorname{char}(F) \neq 2$. Let $A=(a, b)_{F}$ be a quaternion algebra over F with $a, b \in F^{*}$. Let $i, j \in A$ be the standard generators of A with $i^{2}=a, j^{2}=b$ and $i j=-j i$. The unique involution τ on A with $\tau(i)=-i$ and $\tau(j)=-j$ is called the quaternion conjugation or the canonical involution on A.

Remark. The canonical involution τ on $A=(a, b)_{F}$ is the only involution of the first kind of symplectic type.

2.2.1 Similitudes of Algebras with Involution

Definition. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. A similitude of (A, σ) is an element $g \in A$ such that

$$
\sigma(g) g \in F^{*}
$$

Definition. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. Let $g \in A$ be a similitude of (A, σ). The scalar $\sigma(g) g \in F^{*}$ is called the multiplier of g and is denoted $\mu(g)$.

Notation. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. The set of all similitudes of (A, σ) is a subgroup of A^{*} which we call $\operatorname{Sim}(A, \sigma)$:

$$
\operatorname{Sim}(A, \sigma)=\left\{g \in A \mid \sigma(g) g \in F^{*}\right\}
$$

Remark. The map $\mu: \operatorname{Sim}(A, \sigma) \rightarrow F^{*}$ given by $\mu(g)=\sigma(g) g$ for all $g \in \operatorname{Sim}(A, \sigma)$ is a group homomorphism.

Definition. Let F be a field and let A be an F-algebra. For any $b \in A^{*}$, we define the inner automorphism of A induced by b, denoted $\operatorname{Int}(b)$, to be the F-algebra automorphism $\operatorname{Int}(b): A \rightarrow A$ given by

$$
\operatorname{Int}(b)(a)=b a b^{-1} \text { for } a \in A
$$

Theorem 2.2.2. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. Then

$$
\operatorname{Aut}_{F}(A, \sigma)=\{\operatorname{Int}(g) \mid g \in \operatorname{Sim}(A, \sigma)\} .
$$

There is therefore an exact sequence

$$
1 \rightarrow F^{*} \rightarrow \operatorname{Sim}(A, \sigma) \xrightarrow{\text { Int }} \operatorname{Aut}_{F}(A, \sigma) \rightarrow 1 .
$$

Proof. See [15, Theorem 12.15].
Definition. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. Let $\operatorname{PSim}(A, \sigma)$ be the group of projective similitudes of (A, σ), defined as

$$
\operatorname{PSim}(A, \sigma)=\operatorname{Sim}(A, \sigma) / F^{*}
$$

Remark. By Theorem 2.2.2, the map Int: $\operatorname{Sim}(A, \sigma) \rightarrow \operatorname{Aut}_{F}(A, \sigma)$ induces a natural isomorphism $\operatorname{PSim}(A, \sigma) \simeq \operatorname{Aut}_{F}(A, \sigma)$.

Notation. Let A be a central simple algebra over a field F, and let σ be a symplectic involution on A. Then $\operatorname{GSp}(A, \sigma):=\operatorname{Sim}(A, \sigma)$ and $\operatorname{PGSp}(A, \sigma):=\operatorname{PSim}(A, \sigma)$.

Notation. Let A be a central simple algebra over a field F, and let σ be an orthogonal involution on A. Then $\operatorname{GO}(A, \sigma):=\operatorname{Sim}(A, \sigma)$ and $\operatorname{PGO}(A, \sigma):=\operatorname{PSim}(A, \sigma)$.

Notation. Let A be a central simple algebra over a field F, and let σ be a unitary involution on A. Then $\operatorname{GU}(A, \sigma):=\operatorname{Sim}(A, \sigma)$ and $\operatorname{PGU}(A, \sigma):=\operatorname{PSim}(A, \sigma)$.

Definition. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. A similitude $g \in \operatorname{Sim}(A, \sigma)$ with multiplier $\mu(g)=1$ is called an isometry of (A, σ).

Notation. Let A be a central simple algebra over a field F, and let σ be an involution (of any kind) on A. The set of all isometries of (A, σ) is a subgroup of $\operatorname{Sim}(A, \sigma)$ which we call $\operatorname{Iso}(A, \sigma)$:

$$
\operatorname{Iso}(A, \sigma)=\{g \in A \mid \sigma(g) g=1\}
$$

Notation. Let A be a central simple algebra over a field F, and let σ be a symplectic involution on A. Then $\operatorname{Sp}(A, \sigma):=\operatorname{Iso}(A, \sigma)$.

Notation. Let A be a central simple algebra over a field F, and let σ be an orthogonal involution on A. Then $\mathrm{O}(A, \sigma):=\operatorname{Iso}(A, \sigma)$.

Notation. Let A be a central simple algebra over a field F, and let σ be a unitary involution on A. Then $\mathrm{U}(A, \sigma):=\operatorname{Iso}(A, \sigma)$.

Now suppose A is a central simple algebra over a field F with even $\operatorname{degree} \operatorname{deg}(A)=2 m$, and let σ be an involution of the first kind on A. Let $g \in \operatorname{Sim}(A, \sigma)$, so that

$$
\begin{equation*}
\sigma(g) g=\mu(g) \in F^{*} \tag{*}
\end{equation*}
$$

Taking the reduced norm of both sides of $(*)$, we obtain

$$
\operatorname{Nrd}_{A}(g)= \pm \mu(g)^{m}
$$

Theorem 2.2.3. If σ is a symplectic involution on A, then

$$
\operatorname{Nrd}_{A}(g)=\mu(g)^{m} \text { for all } g \in \operatorname{GSp}(A, \sigma)
$$

Proof. See [15, Proposition 12.23].
Definition. Let A be a central simple algebra over a field F with even $\operatorname{degree} \operatorname{deg}(A)=2 m$, and with an orthogonal involution σ. A similitude $g \in \operatorname{GO}(A, \sigma)$ is called proper if $\operatorname{Nrd}_{A}(g)=+\mu(g)^{m}$. A similitude $g \in \operatorname{GO}(A, \sigma)$ is called improper if $\operatorname{Nrd}_{A}(g)=-\mu(g)^{m}$.
Notation. Let A be a central simple algebra over a field F with even degree $\operatorname{deg}(A)=2 m$, and with an orthogonal involution σ. The set of all proper similitudes of (A, σ) is a subgroup of $\mathrm{GO}(A, \sigma)$ which we call $\mathrm{GO}^{+}(A, \sigma)$:

$$
\mathrm{GO}^{+}(A, \sigma)=\left\{g \in \mathrm{GO}(A, \sigma) \mid \operatorname{Nrd}_{A}(g)=+\mu(g)^{m}\right\} .
$$

Remark. We have $\left[\operatorname{GO}(A, \sigma): \operatorname{GO}^{+}(A, \sigma)\right] \leq 2$.
Notation. Let A be a central simple algebra over a field F with even degree $\operatorname{deg}(A)=2 m$, and with an orthogonal involution σ. The set of all improper similitudes of (A, σ) is a coset of $\mathrm{GO}^{+}(A, \sigma)$ in $\operatorname{GO}(A, \sigma)$ which we call $\mathrm{GO}^{-}(A, \sigma)$:

$$
\operatorname{GO}^{-}(A, \sigma)=\left\{g \in \operatorname{GO}(A, \sigma) \mid \operatorname{Nrd}_{A}(g)=-\mu(g)^{m}\right\} .
$$

Remark. It is possible for $\mathrm{GO}^{-}(A, \sigma)$ to be empty.
Definition. Let A be a central simple algebra over a field F with even degree $\operatorname{deg}(A)=2 m$, and with an orthogonal involution σ. Let $\mathrm{PGO}^{+}(A, \sigma)$ be the group of proper projective similitudes of (A, σ), defined as

$$
\mathrm{PGO}^{+}(A, \sigma)=\mathrm{GO}^{+}(A, \sigma) / F^{*}
$$

Definition. Let A be a central simple algebra over a field F with even $\operatorname{degree} \operatorname{deg}(A)=2 m$, and with an orthogonal involution σ. A proper similitude $g \in \mathrm{GO}^{+}(A, \sigma)$ with multiplier $\mu(g)=1$ is called a proper isometry of (A, σ).
Notation. Let A be a central simple algebra over a field F with even degree $\operatorname{deg}(A)=2 m$, and with an orthogonal involution σ. The set of all proper isometries of (A, σ) is a subgroup of $\mathrm{GO}^{+}(A, \sigma)$ which we call $\mathrm{O}^{+}(A, \sigma)$:

$$
\mathrm{O}^{+}(A, \sigma)=\mathrm{GO}^{+}(A, \sigma) \cap \mathrm{O}(A, \sigma)=\left\{g \in A \mid \operatorname{Nrd}_{A}(g)=\sigma(g) g=1\right\} .
$$

2.3 Hermitian Forms

Definition. Let A be a central simple algebra over a field F with an involution σ (of any kind). Let M be a finitely generated right A-module. A bi-additive map

$$
h: M \times M \rightarrow A
$$

is called an hermitian form over (A, σ) if h satisfies the following conditions:
(1) $h\left(m_{1} a_{1}, m_{2} a_{2}\right)=\sigma\left(a_{1}\right) h\left(m_{1}, m_{2}\right) a_{2}$ for all $m_{1}, m_{2} \in M$ and $a_{1}, a_{2} \in A$,
(2) $h\left(m_{2}, m_{1}\right)=\sigma\left(h\left(m_{1}, m_{2}\right)\right)$ for all $m_{1}, m_{2} \in M$.

If (2) is replaced by
$\left(2^{\prime}\right) h\left(m_{2}, m_{1}\right)=-\sigma\left(h\left(m_{1}, m_{2}\right)\right)$ for all $m_{1}, m_{2} \in M$,
the map h is called a skew-hermitian form over (A, σ).
Let A be a central simple algebra over a field F with an involution σ (of any kind). Let M be a finitely generated right A-module. Let $M^{*}=\operatorname{Hom}_{A}(M, A)$ be the dual space of M. Then M^{*} can be viewed as a right A-module given by $(f \cdot a)(m)=\sigma(a) f(m)$ for all $f \in M^{*}, m \in M$, $a \in A$. Let $h: M \times M \rightarrow A$ be an hermitian form over (A, σ). Then h induces a right A-module homomorphism $\tilde{h}: M \rightarrow M^{*}$ given by $\tilde{h}\left(m_{1}\right)\left(m_{2}\right)=h\left(m_{1}, m_{2}\right)$ for all $m_{1}, m_{2} \in M$.

Definition. If the map \tilde{h} above is a right A-module isomorphism, we say that h is a regular (or nonsingular) hermitian form.

Remark. The hermitian form h is nonsingular if and only if the only element $m \in M$ such that $h\left(m, m^{\prime}\right)=0$ for all $m^{\prime} \in M$ is $m=0$. The same definition of nonsingular can be made for skew-hermitian forms.

Theorem 2.3.1. Let A be a central simple algebra over a field F with an involution σ (of any kind). Let M be a finitely generated right A-module. Let $h: M \times M \rightarrow A$ be a nonsingular hermitian or skew-hermitian form over (A, σ). Then there exists a unique involution σ_{h} on $\operatorname{End}_{A}(M)$ such that $\sigma_{h}(\alpha)=\sigma(\alpha)$ for all $\alpha \in F$ and

$$
h\left(m_{1}, f\left(m_{2}\right)\right)=h\left(\sigma_{h}(f)\left(m_{1}\right), m_{2}\right) \text { for } m_{1}, m_{2} \in M, f \in \operatorname{End}_{A}(M)
$$

Proof. See [15, Proposition 4.1].
Definition. The involution σ_{h} in Theorem 2.3.1 is called the adjoint involution with respect to h.

Definition. Let A be a central simple algebra over a field F with an involution σ (of any kind). Let M and M^{\prime} be finitely generated right A-modules. Let $h: M \times M \rightarrow A$ and $h^{\prime}: M^{\prime} \times M^{\prime} \rightarrow A$ be hermitian forms over (A, σ). We say that h and h^{\prime} are equivalent, denoted $h \simeq h^{\prime}$, if there exists a bijective A-linear mapping $\phi: M \rightarrow M^{\prime}$ such that

$$
h^{\prime}\left(\phi\left(m_{1}\right), \phi\left(m_{2}\right)\right)=h\left(m_{1}, m_{2}\right) \text { for all } m_{1}, m_{2} \in M
$$

Definition. Let A be a central simple algebra over a field F with an involution σ of the first kind. Let M be a finitely generated right A-module. Let $h: M \times M \rightarrow A$ be a nonsingular hermitian form over (A, σ). A bijective A-linear mapping $\phi: M \rightarrow M$ for which there exists $\lambda \in F^{*}$ such that

$$
h\left(\phi\left(m_{1}\right), \phi\left(m_{2}\right)\right)=\lambda h\left(m_{1}, m_{2}\right) \text { for all } m_{1}, m_{2} \in M
$$

is called a similitude of h. The set of all similitudes of h form a group which we call $\operatorname{Sim}(h)$.
Definition. Let A be a central simple algebra over a field F with an involution σ of the first kind. Let h be an hermitian form over (A, σ). An element $\lambda \in F^{*}$ satisfying $\lambda h \simeq h$ is called a similarity factor of h. The group of similarity factors of h is defined to be the collection of all similarity factors of h :

$$
G_{F}(h):=\left\{\lambda \in F^{*} \mid \lambda h \simeq h\right\}
$$

Definition. Let F / F_{0} be a quadratic field extension. Let A be a central simple algebra over F with an involution σ of the second kind such that $\sigma(x)=x$ for all $x \in F_{0}$. Let M be a finitely generated right A-module. Let $h: M \times M \rightarrow A$ be a nonsingular hermitian form over (A, σ). A bijective A-linear mapping $\phi: M \rightarrow M$ for which there exists $\lambda \in F_{0}^{*}$ such that

$$
h\left(\phi\left(m_{1}\right), \phi\left(m_{2}\right)\right)=\lambda h\left(m_{1}, m_{2}\right) \text { for all } m_{1}, m_{2} \in M
$$

is called a similitude of h. The set of all similitudes of h form a group which we call $\operatorname{Sim}(h)$.

Definition. Let F / F_{0} be a quadratic field extension. Let A be a central simple algebra over F with an involution σ of the second kind such that $\sigma(x)=x$ for all $x \in F_{0}$. Let h be an hermitian form over (A, σ). An element $\lambda \in F_{0}^{*}$ satisfying $\lambda h \simeq h$ is called a similarity factor of h. The group of similarity factors of h is defined to be the collection of all similarity factors of h :

$$
G_{F_{0}}(h):=\left\{\lambda \in F_{0}^{*} \mid \lambda h \simeq h\right\} .
$$

Remark. Let A be a central simple algebra over a field F with an involution σ (of any kind). Let M be a finitely generated right A-module. Let $h: M \times M \rightarrow A$ be a nonsingular hermitian over (A, σ), and let $\sigma_{h}: \operatorname{End}_{A}(M) \rightarrow \operatorname{End}_{A}(M)$ be the adjoint involution with respect to h. Then we have

$$
\operatorname{Sim}\left(\operatorname{End}_{A}(M), \sigma_{h}\right)=\operatorname{Sim}(h)
$$

2.3.1 Hermitian Forms over Division Algebras and Quadratic Forms

Let F be a field with $\operatorname{char}(F) \neq 2$. Let D be a central division algebra over F with an involution σ (of any kind). Let $V \simeq D^{n}$ be a right D-vector space of dimension n. Let $h: V \times V \rightarrow D$ be an hermitian form over (D, σ). Then there exist $a_{1}, \ldots, a_{n} \in D^{*}$ such that $\sigma\left(a_{i}\right)=a_{i}$ for $1 \leq i \leq n$ and for all $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in D^{n}$ we have

$$
h(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} \sigma\left(x_{i}\right) a_{i} y_{i}
$$

In this case, we write $h=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.
Definition. We define the rank of h, denoted $\operatorname{Rank}(h)$, to be the integer $\operatorname{Rank}(h):=\operatorname{dim}_{D} V=n$.

Example. If $D=F$ and $\sigma=\operatorname{Id}_{F}$ is the identity map on F, then $h: V \times V \rightarrow F$ is a symmetric bilinear pairing on V and the map $q_{h}: V \rightarrow F$ given by $q_{h}(x)=h(x, x)$ for all $x \in V$ is a quadratic form over F. Conversely, let $q: V \rightarrow F$ be a quadratic form over F. Then the associated symmetric bilinear pairing $B: V \times V \rightarrow F$ given by

$$
B(x, y)=\frac{q(x+y)-q(x)-q(y)}{2} \text { for all } x, y \in V
$$

is an hermitian form over $\left(F, \operatorname{Id}_{F}\right)$.
Definition. The determinant of a nonsingular quadratic form q over F, denoted $d(q)$, is defined to be $d(q)=\operatorname{det}\left(M_{q}\right) \cdot\left(F^{*}\right)^{2} \in F^{*} /\left(F^{*}\right)^{2}$, where M_{q} is the symmetric matrix associated with q.

Definition. Let q be a nonsingular quadratic form over F of dimension n. We define the discriminant of q by

$$
\operatorname{disc}(q)=(-1)^{\frac{n(n-1)}{2}} d(q) \in F^{*} /\left(F^{*}\right)^{2}
$$

Definition. Let $q: V \rightarrow F$ be a quadratic form over F. Let $v \in V$ with $v \neq 0$. We say that v is an isotropic vector if $q(v)=0$. We say that v is anisotropic if $q(v) \neq 0$.

Definition. Let $q: V \rightarrow F$ be a quadratic form over F. We say that q is isotropic if there exists an isotropic vector $v \in V$. Otherwise, we say that q is anisotropic.

Theorem 2.3.2. Let $q: V \rightarrow F$ be a quadratic form over F with $\operatorname{dim}(q)=2$. The following four statements are equivalent:
(1) q is regular and isotropic.
(2) q is regular, with $d(q)=-1 \cdot\left(F^{*}\right)^{2}$.
(3) $q \simeq\langle 1,-1\rangle$.
(4) q corresponds to the equivalence class of the binary quadratic form $x y$.

Proof. See [16, p. 9, Theorem 3.2].
Definition. The isometry class of a quadratic form q over F with $\operatorname{dim}(q)=2$ satisfying the conditions in Theorem 2.3.2 is called the hyperbolic plane and is denoted by \mathbb{H}.

Definition. Let $q_{1}: V_{1} \rightarrow F$ and $q_{2}: V_{2} \rightarrow F$ be quadratic forms over F. Define $q_{1} \perp q_{2}: V_{1} \oplus V_{2} \rightarrow F$ by setting

$$
\left(q_{1} \perp q_{2}\right)\left(v_{1}, v_{2}\right)=q_{1}\left(v_{1}\right)+q_{2}\left(v_{2}\right) \text { for all } v_{1} \in V_{1}, v_{2} \in V_{2}
$$

Then $q_{1} \perp q_{2}$ is a quadratic form over F, and we call $q_{1} \perp q_{2}$ the orthogonal sum of q_{1} and q_{2}.

Definition. Let q be a quadratic form over F. We say that q is hyperbolic if q is isometric to an orthogonal sum of hyperbolic planes, that is, $q \simeq m \cdot \mathbb{H}$ for some $m \in \mathbb{N}$.

Definition. Let $q_{1}: V_{1} \rightarrow F$ and $q_{2}: V_{2} \rightarrow F$ be regular quadratic forms over F. We call q_{1} and q_{2} Witt equivalent, and write $q_{1} \sim q_{2}$, if there exist $r, s \in \mathbb{N}$ such that $q_{1} \perp r \cdot \mathbb{H} \simeq q_{2} \perp s \cdot \mathbb{H}$.

Remark. It is clear to see that \sim is an equivalence relation on the set of isometry classes of regular quadratic forms over F. For a regular quadratic form q over F, we write $[q]$ to denote the equivalence class of (the isometry class of) q under the equivalence relation of Witt equivalence.
Definition. The Witt group of F, denoted $W(F)$, is the set of equivalence classes of (isometry classes of) regular quadratic forms over F under the equivalence relation of Witt equivalence, with the orthogonal sum acting as the group operation in the following way:

$$
\left[q_{1}\right]+\left[q_{2}\right]:=\left[q_{1} \perp q_{2}\right] .
$$

The pair $(W(F),+)$ is an abelian group with $[\mathbb{H}]=0 \in W(F)$ and $-[q]=[-q]$ for all $[q] \in W(F)$.
Theorem 2.3.3. (Witt's Decomposition Theorem). Any regular quadratic form q over F splits into an orthogonal sum

$$
q \simeq q_{h} \perp q_{a}
$$

where q_{h} is hyperbolic and q_{a} is anisotropic. Furthermore, the isometry classes of q_{h} and q_{a} are uniquely determined.

Proof. See [16, p. 12, Theorem 4.1].
Definition. The splitting $q \simeq q_{h} \perp q_{a}$ of Theorem 2.3.3 is called the Witt decomposition of q.

Remark. It follows from Witt's Decomposition Theorem, Theorem 2.3.3, that the elements of $W(F)$ are in one-to-one correspondence with the isometry classes of all anisotropic regular quadratic forms over F. If q and q^{\prime} are regular quadratic forms over F, then q and q^{\prime} represent the same element in $W(F)\left([q]=\left[q^{\prime}\right] \in W(F)\right)$ if and only if their anisotropic parts are equivalent $\left(q_{a} \simeq q_{a}^{\prime}\right)$. Thus $W(F)$ can be thought of as a group consisting of isometry classes of anisotropic regular quadratic forms over F.

2.3.2 Quadratic Forms over Complete Discretely Valuated Fields

Let (F, v) be a nondyadic complete discretely valuated field with valuation ring $A=\{x \in F \mid v(x) \geq 0\} \cup\{0\}$. Let $\pi \in A$ be a uniformizer of A, and let the group of units of the ring A be denoted by U. Then every element $y \in F^{*}$ can be written uniquely in the form $y=u \pi^{v(y)}$ for some $u \in U$. Thus any 1-dimensional reqular quadratic form over F can be written as $\langle u\rangle$ or $\langle u \pi\rangle$ for some $u \in U$. Hence an arbitrary regular quadratic form q over F can be written as

$$
q \simeq q_{1} \perp q_{2} \pi
$$

where $q_{1}=\left\langle u_{1}, \ldots, u_{n_{1}}\right\rangle, q_{2}=\left\langle v_{1}, \ldots, v_{n_{2}}\right\rangle$ with $u_{i}, v_{i} \in U$.
Let $\mathfrak{m}=\{x \in F \mid v(x) \geq 1\} \cup\{0\}$ be the unique maximal ideal of A, and let $\bar{F}=A / \mathfrak{m}$ be the residue class field of A. By assumption, (F, v) is nondyadic and so char $(\bar{F}) \neq 2$. For $a \in A$, let $\bar{a}=a+\mathfrak{m} \in \bar{F}$. Let $\overline{q_{1}}=\left\langle\overline{u_{1}}, \ldots, \overline{u_{n}}\right\rangle$ and $\overline{q_{2}}=\left\langle\overline{v_{1}}, \ldots, \overline{v_{n}}\right\rangle$.

Theorem 2.3.4. (Springer). We have a group isomorphism

$$
\left(\delta_{1}, \delta_{2}\right): W(F) \rightarrow W(\bar{F}) \oplus W(\bar{F}),
$$

where $\delta_{1}: W(F) \rightarrow W(\bar{F})$ is given by $\delta_{1}(q)=\overline{q_{1}}$ and $\delta_{2}: W(F) \rightarrow W(\bar{F})$ is given by $\delta_{2}(q)=\overline{q_{2}}$.

Proof. See [16, p. 147, Corollary 1.6].
Definition. The map $\delta_{1}: W(F) \rightarrow W(\bar{F})$ given by $\delta_{1}(q)=\overline{q_{1}}$ is called the first residue homomorphism, and $\overline{q_{1}}$ is called the first residue form of q. The map $\delta_{2}: W(F) \rightarrow W(\bar{F})$ given by $\delta_{2}(q)=\overline{q_{2}}$ is called the second residue homomorphism, and $\overline{q_{2}}$ is called the second residue form of q.

Theorem 2.3.5. Suppose that $q=q_{1} \perp q_{2} \pi$, where $q_{1}=\left\langle u_{1}, \ldots, u_{n_{1}}\right\rangle$, $q_{2}=\left\langle v_{1}, \ldots, v_{n_{2}}\right\rangle$ with $u_{i}, v_{i} \in U$. Then the following are equivalent:
(1) q is isotropic;
(2) q_{1} or q_{2} is isotropic;
(3) $\overline{q_{1}}$ or $\overline{q_{2}}$ is isotropic.

Proof. See [16, p. 148, Proposition 1.9].

Chapter 3

Galois Cohomology

3.1 Profinite Groups and Galois Groups

Definition. Let (Λ, \leq) be a partially ordered set. We say that (Λ, \leq) is directed if for all $\alpha, \beta \in \Lambda$ there exists $\gamma \in \Lambda$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

Definition. A filtered inverse system of groups $\left(G_{\alpha}, \phi_{\alpha \beta}\right)$ consists of:
(a) a directed partially ordered set (Λ, \leq);
(b) for all $\alpha \in \Lambda$ there exists a group G_{α};
(c) if $\alpha, \beta \in \Lambda$ with $\alpha \leq \beta$ then there exists a group homomorphism $\phi_{\alpha \beta}: G_{\beta} \rightarrow G_{\alpha} ;$
(d) if $\alpha, \beta, \gamma \in \Lambda$ with $\alpha \leq \beta \leq \gamma$ then $\phi_{\alpha \gamma}=\phi_{\alpha \beta} \circ \phi_{\beta \gamma}$.

Definition. Let $\left(G_{\alpha}, \phi_{\alpha \beta}\right)$ be a filtered inverse system of groups. The inverse limit of $\left(G_{\alpha}, \phi_{\alpha \beta}\right)$, denoted $\lim _{\longleftarrow} G_{\alpha}$, is defined to be

$$
\lim _{\hookleftarrow} G_{\alpha}:=\left\{\left(g_{\alpha}\right) \in \prod_{\alpha \in \Lambda} G_{\alpha} \mid \phi_{\alpha \beta}\left(g_{\beta}\right)=g_{\alpha} \text { for all } \alpha \leq \beta\right\} .
$$

Definition. A group G is called profinite if $G=\lim G_{\alpha}$ for some filtered inverse system of groups $\left(G_{\alpha}, \phi_{\alpha \beta}\right)$ where G_{α} is a finite group for all α.

Remark. A profinite group $G=\lim G_{\alpha}$ has a natural topology: give G_{α} the discrete topology for all α, give $\prod_{\alpha} G_{\alpha}$ the product topology and then the profinite group $G \subseteq \prod_{\alpha} G_{\alpha}$ is given the subspace topology.

Let K / F be a Galois extension. Then the Galois groups of finite Galois subextensions of K / F together with the group homomorphisms
$\phi_{L M}: \operatorname{Gal}(M / F) \rightarrow \operatorname{Gal}(L / F)$ (where L / F and M / F are finite Galois subextensions of K / F such that $F \subseteq L \subseteq M \subseteq K$) form a filtered inverse system of groups $\left(\operatorname{Gal}(L / F), \phi_{L M}\right)$.

Proposition 3.1.1. Let K / F be a Galois extension and let
$\left(\operatorname{Gal}(L / F), \phi_{L M}\right)$ be the filtered inverse system of groups defined above. Then

$$
\lim _{亡} \operatorname{Gal}(L / F)=\operatorname{Gal}(K / F) \text {. }
$$

Proof. See [6, Proposition 4.1.3].
Remark. Since $|\operatorname{Gal}(L / F)|=[L: F]<\infty$ for all finite Galois subextensions L / F of K / F, it follows from Proposition 3.1.1 that $\operatorname{Gal}(K / F)$ is a profinite group.

3.2 Cohomology of Profinite Groups

Definition. Let Γ be a profinite group and let A be a discrete topological space. A left action by Γ on A is called continuous if for all $a \in A$, the stabilizer of a in Γ

$$
\operatorname{Stab}_{\Gamma}(a)=\{\sigma \in \Gamma \mid \sigma \cdot a=a\} \leq \Gamma
$$

is an open subgroup of Γ.
Definition. Let Γ be a profinite group and let A be a discrete topological space. We call A a Γ-set if A is equipped with a continuous left action by Γ.

Definition. Let Γ be a profinite group and let A be a group which is also a Γ-set. We call A a Γ-group if Γ acts by group homomorphisms, that is,

$$
\sigma\left(a_{1} a_{2}\right)=\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \text { for all } \sigma \in \Gamma, a_{1}, a_{2} \in A \text {. }
$$

Definition. Let Γ be a profinite group. A Γ-module is an abelian Γ-group.
Definition. Let Γ be a profinite group and let A be a Γ-set. We define

$$
H^{0}(\Gamma, A):=A^{\Gamma}=\{a \in A \mid \sigma a=a \text { for all } \sigma \in \Gamma\} .
$$

Remark. If A is a Γ-group, then $H^{0}(\Gamma, A) \leq A$ is a subgroup of A.
Definition. Let Γ be a profinite group and let A be a Γ-group. Let $\alpha: \Gamma \rightarrow A$ be a continuous map and for $\sigma \in \Gamma$, let $\alpha_{\sigma}=\alpha(\sigma) \in A$. We call α a 1-cocycle of Γ with values in A if

$$
\alpha_{\sigma \tau}=\alpha_{\sigma} \sigma\left(\alpha_{\tau}\right) \text { for all } \sigma, \tau \in \Gamma .
$$

Notation. Let Γ be a profinite group and let A be a Γ-group. The set of all 1-cocycles of Γ with values in A is denoted by $Z^{1}(\Gamma, A)$.
Definition. Let Γ be a profinite group and let A be a Γ-group. The 1-cocycle $\alpha: \Gamma \rightarrow A$ given by $\alpha_{\sigma}=1$ for all $\sigma \in \Gamma$ is a distinguished element in $Z^{1}(\Gamma, A)$ which is called the trivial 1-cocycle.
Definition. Let Γ be a profinite group and let A be a Γ-group. Let $\alpha: \Gamma \rightarrow A$ and $\alpha^{\prime}: \Gamma \rightarrow A$ be 1-cocycles. We say that α and α^{\prime} are cohomologous or equivalent if there exists $a \in A$ such that

$$
\alpha_{\sigma}^{\prime}=a \alpha_{\sigma} \sigma(a)^{-1} \text { for all } \sigma \in \Gamma .
$$

Notation. Let Γ be a profinite group and let A be a Γ-group. The set of equivalence classes of 1 -cocycles of Γ with values in A is denoted by $H^{1}(\Gamma, A)$. Then $H^{1}(\Gamma, A)$ is a pointed set whose distinguished element is the cohomology class of the trivial 1-cocycle.
Remark. If A is a Γ-module, then $Z^{1}(\Gamma, A)$ is an abelian group, where the group operation is given by $(\alpha \cdot \beta)_{\sigma}=\alpha_{\sigma} \beta_{\sigma}$ for all $\alpha, \beta \in Z^{1}(\Gamma, A)$ and $\sigma \in \Gamma$. This group operation is compatible with the equivalence relation on 1-cocycles and thus makes $H^{1}(\Gamma, A)$ an abelian group.

3.3 Principal Homogeneous Spaces

Definition. Let Γ be a profinite group and let A be a Γ-group. Let P be a nonempty Γ-set equipped with a right action by A. We call P a (Γ, A)-set if

$$
\sigma(p a)=\sigma(p) \sigma(a) \text { for all } \sigma \in \Gamma, p \in P \text { and } a \in A .
$$

Definition. Let Γ be a profinite group, let A be a Γ-group and let P be a (Γ, A)-set. We say that P is a principal homogeneous space under A (or an A-torsor) if the action of A on P is simply transitive, that is, for all $p, q \in P$ there exists a unique $a \in A$ such that $q=p a$.
Notation. Let Γ be a profinite group and let A be a Γ-group. We will denote the collection of all principal homogeneous spaces under A by $\operatorname{PHS}(\Gamma, A)$.
Example. Let Γ be a profinite group and let A be a Γ-group. Given any 1-cocycle of Γ with values in A, we may construct a corresponding principal homogeneous space under A by defining a map $\psi: Z^{1}(\Gamma, A) \rightarrow \operatorname{PHS}(\Gamma, A)$ given by $\psi(\alpha)=P_{\alpha}$ for all $\alpha \in Z^{1}(\Gamma, A)$, where P_{α} is the set A equipped with a left action - by Γ given by

$$
\sigma \bullet a=\alpha_{\sigma} \sigma(a) \text { for all } \sigma \in \Gamma, a \in A
$$

and a right action $*$ by A given by

$$
a * b=a b \text { for all } a, b \in A \text {. }
$$

Definition. Let Γ be a profinite group and let A be a Γ-group. Let P and Q be principal homogeneous spaces under A. A map $\phi: P \rightarrow Q$ is called a morphism of principal homogeneous spaces under A if
(1) $\phi(\sigma p)=\sigma \phi(p)$ for all $\sigma \in \Gamma, p \in P$ and
(2) $\phi(p a)=\phi(p) a$ for all $p \in P, a \in A$.

Theorem 3.3.1. Let Γ be a profinite group and let A be a Γ-group. Let $\psi: Z^{1}(\Gamma, A) \rightarrow \operatorname{PHS}(\Gamma, A)$ be the map defined in the example above. Then ψ induces a bijection between $H^{1}(\Gamma, A)$ and the set of isomorphism classes of principal homogeneous spaces under A.

Proof. See for instance [15, Proposition 28.14].

Chapter 4

Linear Algebraic Groups and Patching Techniques

4.1 First Definitions

Some general references for the contents of this section are ($[15$, Chapters VI and VII]) and ($[2]$).
Definition. Let F be a field. A linear algebraic group over F is an affine algebraic variety G over F endowed with the structure of a group such that the multiplication map

$$
\begin{aligned}
& \mu: G \times G \rightarrow G \\
& \left(g_{1}, g_{2}\right) \mapsto g_{1} g_{2}
\end{aligned}
$$

and the inverse map

$$
\begin{gathered}
i: G \rightarrow G \\
g \mapsto g^{-1}
\end{gathered}
$$

are morphisms of varieties.
Example. Let F be a field. The additive group \mathbb{G}_{a} over F is the affine line \mathbb{A}_{F}^{1} endowed with the group operation $\mu(x, y)=x+y$, the identity element 0 and the inverse map $i(x)=-x$.
Example. Let F be a field. The multiplicative group \mathbb{G}_{m} over F is the affine open set $F^{*} \subseteq \mathbb{A}^{1}$ endowed with the multiplication map $\mu(x, y)=x y$, the identity element 1 and the inverse map $i(x)=x^{-1}$.

Example. Let F be a field and let $n \in \mathbb{N}$. The general linear group GL_{n} over F is the set of invertible $n \times n$ matrices over F endowed with the multiplcation map given by matrix multiplication $\mu(A, B)=A B$, the identity element being the $n \times n$ identity matrix I_{n} and the inverse map given by the inverse matrix $i(A)=A^{-1}$.

Notation. Let F be a field and let F_{s} be the separable closure of F. Let G be a linear algebraic group over F. Then $G\left(F_{s}\right)$ is a $\operatorname{Gal}\left(F_{s} / F\right)$-group, and we define

$$
H^{1}(F, G):=H^{1}\left(F, G\left(F_{s}\right)\right)=H^{1}\left(\operatorname{Gal}\left(F_{s} / F\right), G\left(F_{s}\right)\right)
$$

Definition. Let F be a field. Let G_{1} and G_{2} be linear algebraic groups over F. A morphism of linear algebraic groups $\phi: G_{1} \rightarrow G_{2}$ is a group homomorphism which is also a morphism of varieties.

Definition. Let F be a field and let F_{s} be the separable closure of F. A linear algebraic group T over F is called a torus if there exists $n \in \mathbb{N}$ such that

$$
T\left(F_{s}\right) \simeq \mathbb{G}_{m}^{n}
$$

Let K / F be a field extension. We say that the torus T is split over K if

$$
T(K) \simeq \mathbb{G}_{m}^{n}
$$

Definition. Let F be a field and let G be a linear algebraic group over F. A subtorus $T \subseteq G$ is said to be maximal if T is not contained in a larger subtorus of G.

Definition. Let F be a field and let \bar{F} be the algebraic closure of F. Let G be a linear algebraic group over F. We say that G is semisimple if $G \neq\{1\}$ and $G \times{ }_{F} \bar{F}$ has no nontrivial solvable connected normal subgroups.

Definition. Let F be a field and let G be a semisimple linear algebraic group over F. We say that G is split if it contains a split maximal torus.

Definition. Let V be a finite-dimensional \mathbb{R}-vector space, let $\alpha \in V$ with $\alpha \neq 0$ and let $s \in \operatorname{End}(V)$. We say that s is a reflection with respect to α if
(1) $s(\alpha)=-\alpha$ and
(2) there exists a hyperplane $W \subseteq V$ such that $\left.s\right|_{W}=\mathrm{Id}$.

Remark. If $s \in \operatorname{End}(V)$ is a reflection with respect to $\alpha \in V$, then there exists a unique $f \in V^{*}$ with $\left.f\right|_{W}=0$ and $f(\alpha)=2$ such that

$$
s(v)=v-f(v) \alpha \text { for all } v \in V
$$

Definition. Let V be a finite-dimensional \mathbb{R}-vector space with $V \neq 0$, and let $\Phi \subseteq V$ be a finite subset of V. We call Φ a root system if the following conditions hold:
(a) $0 \notin \Phi$.
(b) Φ spans V.
(c) If $\alpha \in \Phi$ and $x \alpha \in \Phi$ for $x \in \mathbb{R}$, then $x= \pm 1$.
(d) For each $\alpha \in \Phi$ there exists a reflection $s_{\alpha} \in \operatorname{End}(V)$ with respect to α such that $s_{\alpha}(\Phi)=\Phi$.
(e) For all $\alpha, \beta \in \Phi$ we have $s_{\alpha}(\beta)-\beta=n_{\alpha, \beta} \cdot \alpha$ for some $n_{\alpha, \beta} \in \mathbb{Z}$.

Remark. The reflection $s_{\alpha} \in \operatorname{End}(V)$ with respect to $\alpha \in \Phi$ in (d) is uniquely determined by α (see Bourbaki [3, Chapter VI, §1, Lemme 1]).

Definition. Let V be a finite-dimensional \mathbb{R}-vector space with $V \neq 0$, and let $\Phi \subseteq V$ be a root system. The elements of Φ are called roots.

Definition. Let V be a finite-dimensional \mathbb{R}-vector space with $V \neq 0$, and let $\Phi \subseteq V$ be a root system. For $\alpha \in \Phi$, we define $\alpha^{*} \in V^{*}$ by

$$
s_{\alpha}(v)=v-\alpha^{*}(v) \alpha \text { for all } v \in V .
$$

Such α^{*} are called coroots.
Definition. Let V be a finite-dimensional \mathbb{R}-vector space with $V \neq 0$, and let $\Phi \subseteq V$ be a root system. We define the root lattice, denoted Λ_{r}, to be the additive subgroup of V generated by all roots $\alpha \in \Phi$.

Definition. Let V be a finite-dimensional \mathbb{R}-vector space with $V \neq 0$, and let $\Phi \subseteq V$ be a root system. We define the weight lattice, denoted Λ, to be

$$
\Lambda:=\left\{v \in V \mid \alpha^{*}(v) \in \mathbb{Z} \text { for } \alpha \in \Phi\right\}
$$

Remark. By definition, we have $\Lambda_{r} \subseteq \Lambda$.
Let F be a field and let G be a split semisimple linear algebraic group over F with a split maximal torus T over F. Using the adjoint representation Ad: $G \rightarrow \operatorname{GL}(\operatorname{Lie}(G))$, one can define a root system $\Phi(G) \subseteq T^{*} \otimes_{\mathbb{Z}} \mathbb{R}$ such that $\Lambda_{r} \subseteq T^{*} \subseteq \Lambda$, where Λ_{r} is the root lattice, T^{*} is the character group of T and Λ is the weight lattice ([15, Theorem 25.1 and Proposition 25.2]).

Definition. We say that G above is simply connected if the character group $T^{*}=\Lambda$. We say that G is adjoint if the character group $T^{*}=\Lambda_{r}$.

Definition. Let F be a field and let F_{s} be the separable closure of F. Let G be a semisimple linear algebraic group over F. We say that G is simply connected if the split group $G \times_{F} F_{s}$ is simply connected. We say that G is adjoint if the split group $G \times{ }_{F} F_{s}$ is adjoint.

Definition. Let F be a field and let F_{s} be the separable closure of F. Let G be a semisimple linear algebraic group over F. We say that G is absolutely simple if $G \times_{F} F_{s}$ has no nontrivial connected normal subgroups.

4.2 Classification of Absolutely Simple, Adjoint, Classical Linear Algebraic Groups

Let F be a field with $\operatorname{char}(F) \neq 2$, and let G be an absolutely simple linear algebraic group over F of classical type. Then, for an arbitrary integer $n \geq 1$, to the group G is associated a central simple algebra with possible additional structure:
(1) ${ }^{1} A_{n}$: Central simple F-algebras of degree $n+1$;
(2) ${ }^{2} A_{n}$: Central simple algebras of degree $n+1$ over a quadratic extension of F with involution of the second kind leaving F elementwise invariant;
(3) B_{n} : Quadratic forms over F of dimension $2 n+1$;
(4) C_{n} : Central simple F-algebras of degree $2 n$ with symplectic involution;
(5) D_{n} : Central simple F-algebras of degree $2 n$ with orthogonal involution.

Case 1: Linear Algebraic Groups Of Type ${ }^{1} A_{n}$

Let G be an absolutely simple, simply connected linear algebraic group of type ${ }^{1} A_{n}$ over F, and let \bar{G} be the corresponding absolutely simple, adjoint linear algebraic group of type ${ }^{1} A_{n}$ over F. Then $G=\operatorname{SL}(A)$ and $\bar{G}=\operatorname{PGL}(A)$ for some central simple F-algebra A of degree $n+1$. Then $H^{1}(F, \mathrm{PGL}(A))$ classifies F-isomorphism classes of central simple F-algebras B such that $\operatorname{deg}(A)=\operatorname{deg}(B)$.

Case 2: Linear Algebraic Groups Of Type ${ }^{2} A_{n}$

Let G be an absolutely simple, simply connected linear algebraic group of type ${ }^{2} A_{n}$ over F, and let \bar{G} be the corresponding absolutely simple, adjoint linear algebraic group of type ${ }^{2} A_{n}$ over F. Then $G=\operatorname{SU}(A, \sigma)$ and $\bar{G}=\operatorname{PGU}(A, \sigma)$ for some central simple algebra A of degree $n+1$ whose center $Z(A)$ is a quadratic extension of F, with involution σ of the second kind such that $\sigma(x)=x$ for all $x \in F$.

Now $H^{1}(F, \operatorname{PGU}(A, \sigma))$ classifies F-isomorphism classes of tuples (B, τ) consisting of a central simple algebra B whose center $Z(B) \cong Z(A)$ is a quadratic extension of F such that $\operatorname{deg}(A)=\operatorname{deg}(B)$, with involution τ of the second kind such that $\tau(x)=x$ for all $x \in F$. The trivial element in this set is the class of (A, σ).

Now suppose $[(A, \tau)]=1 \in H^{1}(F, \operatorname{PGU}(A, \sigma))$, so that $(A, \tau) \simeq(A, \sigma)$. Write A as $A \cong M_{m}(D)$ for some $m \in \mathbb{N}$ and D a central division algebra over $Z(A)$. Let h_{1} be the hermitian form on D corresponding to σ, so that σ is the adjoint involution with respect to h_{1}, and let h_{2} be the hermitian form on D corresponding to τ, so that τ is the adjoint involution with respect to h_{2}. Then the condition that $(A, \tau) \simeq(A, \sigma)$ is equivalent to the condition that $h_{1} \simeq \lambda h_{2}$ for some $\lambda \in F$.

Case 3: Linear Algebraic Groups Of Type B_{n}

Let G be an absolutely simple, simply connected linear algebraic group of type B_{n} over F, and let \bar{G} be the corresponding absolutely simple, adjoint linear algebraic group of type B_{n} over F. Then $G=\operatorname{Spin}(q)$ and $\bar{G}=\mathrm{O}^{+}(q)$ for some quadratic form q over F of dimension $2 n+1$. Then $H^{1}\left(F, \mathrm{O}^{+}(q)\right) \cong H^{1}(F, \mathrm{SO}(q))$ classifies isometry classes of quadratic forms q^{\prime} over F such that $\operatorname{dim}(q)=\operatorname{dim}\left(q^{\prime}\right)$ and $\operatorname{disc}(q)=\operatorname{disc}\left(q^{\prime}\right)$.

Case 4: Linear Algebraic Groups Of Type C_{n}

Let G be an absolutely simple, simply connected linear algebraic group of type C_{n} over F, and let \bar{G} be the corresponding absolutely simple, adjoint linear algebraic group of type C_{n} over F. Then $G=\operatorname{Sp}(A, \sigma)$ and $\bar{G}=\operatorname{PGSp}(A, \sigma)$ for some central simple F-algebra A of degree $2 n$ with symplectic involution σ.

Now $H^{1}(F, \operatorname{PGSp}(A, \sigma))$ classifies F-isomorphism classes of central simple F-algebras B such that $\operatorname{deg}(A)=\operatorname{deg}(B)$, with symplectic involution τ. The trivial element in this set is the class of (A, σ).

Now suppose $[(A, \tau)]=1 \in H^{1}(F, \operatorname{PGSp}(A, \sigma))$, so that $(A, \tau) \simeq(A, \sigma)$. Write A as $A \cong M_{m}(D)$ for some $m \in \mathbb{N}$ and D a central division algebra over F. Let h_{1} be the hermitian form on D corresponding to σ, so that σ is the adjoint involution with respect to h_{1}, and let h_{2} be the hermitian form on D corresponding to τ, so that τ is the adjoint involution with respect to h_{2}. Then the condition that $(A, \tau) \simeq(A, \sigma)$ is equivalent to the condition that $h_{1} \simeq \lambda h_{2}$ for some $\lambda \in F$.

Case 5: Linear Algebraic Groups Of Type D_{n}

Let G be an absolutely simple, simply connected linear algebraic group of type D_{n} over F, and let \bar{G} be the corresponding absolutely simple, adjoint linear algebraic group of type D_{n} over F. Then $G=\operatorname{Spin}(A, \sigma)$ and $\bar{G}=\mathrm{PGO}^{+}(A, \sigma)$ for some central simple F-algebra A of degree $2 n$ with orthogonal involution σ.

Now $H^{1}\left(F, \mathrm{PGO}^{+}(A, \sigma)\right)$ classifies F-isomorphism classes of triples (B, τ, η) consisting of a central simple F-algebra B with orthogonal involution τ such that $\operatorname{deg}(A)=\operatorname{deg}(B)$, with an F-algebra isomorphism $\eta: Z(C(A, \sigma)) \rightarrow Z(C(B, \tau))$ of the centers of the Clifford algebras. The trivial element in this set is the class of (A, σ, Id).

Now suppose $[(A, \tau, \eta)]=1 \in H^{1}\left(F, \mathrm{PGO}^{+}(A, \sigma)\right)$, so that $(A, \tau, \eta) \simeq(A, \sigma, \mathrm{Id})$. Write A as $A \cong M_{m}(D)$ for some $m \in \mathbb{N}$ and D a central division algebra over F. Let h_{1} be the hermitian form on D corresponding to σ, so that σ is the adjoint involution with respect to h_{1}, and let h_{2} be the hermitian form on D corresponding to τ, so that τ is the adjoint involution with respect to h_{2}. Then the condition that $(A, \tau, \eta) \simeq(A, \sigma, \mathrm{Id})$ is equivalent to the condition that there is a similitude $\phi: h_{1} \simeq \lambda h_{2}$ for some $\lambda \in F^{*}$ such that $\phi \upharpoonright_{Z(C(A, \sigma))}: Z(C(A, \sigma)) \rightarrow Z(C(A, \tau))$ coincides with η.

4.3 Semi-Global Fields and Patching

Definition. A semi-global field is the function field of a smooth, projective, geometrically integral curve over a complete discretely valuated field.

Let K be a complete discretely valuated field with valuation ring T and a parameter $t \in T$. Let X be a smooth, projective, geometrically integral curve over K, and let $F=K(X)$ be the function field of the curve X (so that F is a semi-global field).

Definition. A regular two dimensional integral scheme \mathscr{X} which is proper over T with function field F is called a regular proper model of F.

By Abhyankar ([1]) and Lipman ([17]), there exists a regular proper model \mathscr{X} of F with special fibre X_{0} such that X_{0} is a union of regular curves with normal crossings. Let $\mathscr{P} \subseteq X_{0}$ be a finite set of closed points of \mathscr{X} containing all the nodal points of X_{0} and at least one point on each component. Let \mathscr{U} be the set of irreducible components of $X_{0} \backslash \mathscr{P}$. Then $\mathscr{U}=\left\{U_{1}, U_{2}, \ldots, U_{l}\right\}$ is a finite set.

Notation. For $P \in \mathscr{P}$, let $\mathcal{O}_{\mathscr{X}, P}$ be the local ring at P. So $\mathcal{O}_{\mathscr{X}, P}$ is a two dimensional regular local ring. Let \mathfrak{m}_{P} be the maximal ideal of $\mathcal{O}_{\mathscr{X}, P}$, and let $\widehat{\mathcal{O}_{\mathscr{X}, P}}$ denote the completion of $\mathcal{O}_{\mathscr{X}, P}$ at the maximal ideal \mathfrak{m}_{P}. Define $F_{P}:=\mathrm{ff}\left(\widehat{\mathcal{O}_{\mathscr{X}, P}}\right)$.

Notation. For $U \in \mathscr{U}$, let R_{U} be the set of rational functions which are regular on U :

$$
R_{U}:=\{f \in F \mid f \text { is regular on } U\} .
$$

Let $\widehat{R_{U}}$ be the (t)-adic completion of R_{U}. Define $F_{U}:=\mathrm{ff}\left(\widehat{R_{U}}\right)$.

Notation. For $P \in \mathscr{P}$, each height one prime ideal ρ of $\widehat{\mathcal{O X X P}_{X, P}}$ that contains t determines a branch of X_{0} at P (i.e. an irreducible component of the pullback of X_{0} to Spec $\left.\widehat{\mathcal{O}_{\mathscr{X}, P}}\right)$. We let \hat{R}_{ρ} denote the completion of the local ring $\widehat{\mathcal{O}_{\mathscr{X}, P}}$ at ρ. Define $F_{\rho}:=\mathrm{ff}\left(\hat{R}_{\rho}\right)$. Since $t \in \rho$, the contraction of $\rho \subseteq \widehat{\mathcal{O}_{\mathscr{X}, P}}$ to the local ring $\mathcal{O}_{\mathscr{X}, P}$ defines an irreducible component of Spec $\mathcal{O}_{X_{0}, P}$ and hence an irreducible component of X_{0} containing P. This in turn is the closure of a unique connected component U of $X_{0} \backslash \mathscr{P}$, and we say that ρ lies on U. We call $F_{U, P}:=F_{\rho}$ a branch field.
Remark. For P and U as above, there are natural inclusions $F_{P} \hookrightarrow F_{U, P}$ and $F_{U} \hookrightarrow F_{U, P}$.

4.4 Local-Global Principles for Linear Algebraic Groups

Notation. Let $F, \mathscr{X}, \mathscr{P}, \mathscr{U}$ be as in Section 4.3, and let G be a linear algebraic group over F. We define

$$
\amalg_{\mathscr{X}, \mathscr{P}, \mathscr{U}}(F, G):=\operatorname{ker}\left(H^{1}(F, G) \rightarrow \prod_{x \in \mathscr{P} \cup \mathscr{U}} H^{1}\left(F_{x}, G\right)\right) .
$$

Theorem 4.4.1. Let $F, \mathscr{X}, \mathscr{P}, \mathscr{U}$ be as in Section 4.3, and let $\mathscr{B}=\{(P, U) \in \mathscr{P} \times \mathscr{U} \mid P$ is in the closure of $U\}$. Let G be a linear algebraic group over F. Then we have a bijection

$$
\left.\prod_{U \in \mathscr{U}} G\left(F_{U}\right)\right\rangle \prod_{(P, U) \in \mathscr{B}} G\left(F_{U, P)} / \prod_{P \in \mathscr{P}} G\left(F_{P}\right) \xrightarrow{\sim} \amalg_{\mathscr{X}, \mathscr{P}, \mathscr{U}}(F, G) .\right.
$$

Proof. See [9, Corollary 3.6].
Notation. Let F be any field and let Ω_{F} be the set of all discrete valuations on F. For $v \in \Omega_{F}$, let \hat{F}_{v} denote the completion of F at v. Let G be a linear algebraic group over F. We define

$$
\amalg(F, G):=\operatorname{ker}\left(H^{1}(F, G) \rightarrow \prod_{v \in \Omega_{F}} H^{1}\left(\hat{F}_{v}, G\right)\right) .
$$

Definition. Let F be any field and let G be a linear algebraic group over F. We say that the Hasse principle holds for G if $\amalg(F, G)$ is trivial.

Theorem 4.4.2. Let $F, \mathscr{X}, \mathscr{P}, \mathscr{U}$ be as in Section 4.3, and let G be a linear algebraic group over F. Then we have an injection

$$
Ш_{\mathscr{X}, \mathscr{P}, \mathscr{U}}(F, G) \hookrightarrow \amalg(F, G) .
$$

Proof. See [9, Proposition 8.2].

Chapter 5

Main Theorems

5.1 Quadratic Forms Over Two Dimensional Complete Fields

Let R be a complete two dimensional regular local ring, let $F=\mathrm{ff}(R)$, and suppose $2 \in R^{*}$. Let $\mathfrak{m}=(\pi, \delta)$ be the maximal ideal of R. Let $\widehat{R_{(\pi)}}$ denote the completion of the localization of R at the prime ideal (π), and let $\widehat{R_{(\delta)}}$ denote the completion of the localization of R at the prime ideal (δ). Define $F_{\pi}:=\mathrm{ff}\left(\widehat{R_{(\pi)}}\right)$ and $F_{\delta}:=\mathrm{ff}\left(\widehat{R_{(\delta)}}\right)$. Then F_{π} and F_{δ} are complete discretely valued fields. Further the residue field $\kappa(\pi)$ of F_{π} is the field of fractions of $R /(\pi)$ and hence a local field. Similarly the residue field $\kappa(\delta)$ of F_{δ} is the field of fractions of $R /(\delta)$ and hence a local field.

Let q be a quadratic form over F. Suppose

$$
q \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta
$$

where $q_{1}=\left\langle u_{1}, \ldots, u_{n_{1}}\right\rangle, q_{2}=\left\langle v_{1}, \ldots, v_{n_{2}}\right\rangle, q_{3}=\left\langle w_{1}, \ldots, w_{n_{3}}\right\rangle$, $q_{4}=\left\langle\theta_{1}, \ldots, \theta_{n_{4}}\right\rangle$ with $u_{i}, v_{i}, w_{i}, \theta_{i} \in R^{*}$. In this section we analyze elements λ in F with $\lambda q \simeq q$.

Suppose $k=R / \mathfrak{m}$ is a finite field. Then the order of $k^{*} / k^{* 2}$ is 2 . For any $\theta \in R$, let $\bar{\theta}$ denote the image of θ in k.

We begin with the following
Lemma 5.1.1. There exists $\beta \in F$ such that $\beta\left(F_{\pi}^{*}\right)^{2}=\left(F_{\pi}^{*}\right)^{2}$, $\beta\left(F_{\delta}^{*}\right)^{2}=t\left(F_{\delta}^{*}\right)^{2}$ and $\beta\langle 1,-t\rangle \simeq\langle 1,-t\rangle$ over F.

Proof. Consider the quadratic field extension $k(\sqrt{(\bar{t})}) / k$. Since k is a finite field, the field norm map $N_{k(\sqrt{(\bar{t})}) / k}: k(\sqrt{(\bar{t})}) \rightarrow k$ is surjective.

In particular, there exists $s \in k(\sqrt{(\bar{t})})$ such that $N_{k(\sqrt{(\bar{t})}) / k}(s)=\bar{t}$. Let $\bar{P}(z)=z^{2}+\bar{r} z+\bar{t} \in k[z]$ be the minimal polynomial of s over k. Then $\bar{P}(z)$ splits over $k(\sqrt{(\bar{t})})$ as $\bar{P}(z)=(z-s)\left(z-s_{0}\right)$ for some $s_{0} \in k(\sqrt{(\bar{t})})$. Note that $s \neq s_{0}$, for if $s=s_{0}$, then $s \in k(\sqrt{(\bar{t})})$ is equal to its k-conjugate, so $s \in k$ and $N_{k(\sqrt{(\bar{t})) / k}}(s)=s^{2} \in\left(k^{*}\right)^{2}$, which contradicts the fact that $N_{k(\sqrt{(\bar{t})}) / k}(s)=\bar{t} \notin\left(k^{*}\right)^{2}$.

Let \tilde{R} be the integral closure of R in $F(\sqrt{t})$. Since R is a complete two dimensional local ring, so is \tilde{R}. Let $\tilde{\mathfrak{m}}$ be the maximal ideal of \tilde{R}. Now $t \in R^{*}$, and by assumption, $2 \in R^{*}$. Hence $\tilde{R}=R[(\sqrt{t})]$ and $\tilde{R} / \tilde{\mathfrak{m}}=k(\sqrt{(\bar{t})})$. Let $P(z)=z^{2}+r z+t \in R[z]$ be a lift of $\bar{P}(z)$. Since \tilde{R} is Henselian and $P(z)$ is monic, the factorization $\bar{P}(z)=(z-s)\left(z-s_{0}\right) \in k(\sqrt{(\bar{t})})[z]$ can be lifted to a factorization $P(z)=(z-\tilde{s})\left(z-\tilde{s_{0}}\right) \in R[(\sqrt{t})][z]$, where $\tilde{s} \in R[(\sqrt{t})]$ is a lift of $s \in k(\sqrt{(\bar{t})})$ and $\tilde{s_{0}} \in R[(\sqrt{t})]$ is a lift of $s_{0} \in k(\sqrt{(\bar{t})})$. Then $P(z)=z^{2}+r z+t=(z-\tilde{s})\left(z-\tilde{s_{0}}\right)$, so $t=\tilde{s_{s}} \tilde{0}_{0} \in N_{F(\sqrt{t}) / F}(F(\sqrt{t}))$.

Let $\beta=\delta^{2}+r \pi \delta+t \pi^{2} \in F$. Then $\beta=\delta^{2}\left(1+\delta^{-2} r \pi \delta+\delta^{-2} t \pi^{2}\right) \in F_{\pi}$. But $1+\delta^{-2} r \pi \delta+\delta^{-2} t \pi^{2} \in\left(F_{\pi}^{*}\right)^{2}$. Therefore $\beta\left(F_{\pi}^{*}\right)^{2}=\left(F_{\pi}^{*}\right)^{2}$. Similarly, $\beta=t \pi^{2}\left(1+t^{-1} \pi^{-1} r \delta+t^{-1} \pi^{-2} \delta^{2}\right) \in F_{\delta}$. But $1+t^{-1} \pi^{-1} r \delta+t^{-1} \pi^{-2} \delta^{2} \in\left(F_{\delta}^{*}\right)^{2}$. Therefore $\beta\left(F_{\delta}^{*}\right)^{2}=t\left(F_{\delta}^{*}\right)^{2}$.

It remains to show that $\beta\langle 1,-t\rangle \simeq\langle 1,-t\rangle$. To this end, let

$$
\beta^{\prime}=\frac{\beta}{\pi^{2}}=\left(\frac{\delta}{\pi}\right)^{2}+r\left(\frac{\delta}{\pi}\right)+t \in F
$$

Let $\alpha=\delta / \pi \in F$, so that $\beta^{\prime}=\alpha^{2}+r \alpha+t$. Then $\beta^{\prime}=P(\alpha)=(\alpha-\tilde{s})\left(\alpha-\tilde{s_{0}}\right)$. Now $\alpha \in F$ and $\tilde{s}, \tilde{s_{0}} \in F(\sqrt{t})$ are F-conjugates. Thus $\alpha-\tilde{s}, \alpha-\tilde{s_{0}} \in F(\sqrt{t})$ are F-conjugates, and $\beta^{\prime}=(\alpha-\tilde{s})\left(\alpha-\tilde{s_{0}}\right) \in N_{F(\sqrt{t}) / F}(F(\sqrt{t}))=D_{F}(\langle 1,-t\rangle)=G_{F}(\langle 1,-t\rangle)$ (since $\langle 1,-t\rangle$ is a Pfister form over F). So $\beta^{\prime} \in G_{F}(\langle 1,-t\rangle)$, and thus $\beta=\beta^{\prime} \pi^{2} \in G_{F}(\langle 1,-t\rangle)$ also. Therefore $\beta\langle 1,-t\rangle \simeq\langle 1,-t\rangle$ as required.

Now let q be a quadratic form over F. Suppose

$$
q \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta
$$

where $q_{1}=\left\langle u_{1}, \ldots, u_{n_{1}}\right\rangle, q_{2}=\left\langle v_{1}, \ldots, v_{n_{2}}\right\rangle, q_{3}=\left\langle w_{1}, \ldots, w_{n_{3}}\right\rangle$, $q_{4}=\left\langle\theta_{1}, \ldots, \theta_{n_{4}}\right\rangle$ with $u_{i}, v_{i}, w_{i}, \theta_{i} \in R^{*}$.
Lemma 5.1.2. Let $q_{1}^{\prime}=\left\langle u_{1}^{\prime}, \ldots, u_{n_{1}}^{\prime}\right\rangle, q_{2}^{\prime}=\left\langle v_{1}^{\prime}, \ldots, v_{n_{2}}^{\prime}\right\rangle$, $q_{3}^{\prime}=\left\langle w_{1}^{\prime}, \ldots, w_{n_{3}}^{\prime}\right\rangle, q_{4}^{\prime}=\left\langle\theta_{1}^{\prime}, \ldots, \theta_{n_{4}}^{\prime}\right\rangle$ be quadratic forms over F with
$u_{i}^{\prime}, v_{i}^{\prime}, w_{i}^{\prime}, \theta_{i}^{\prime} \in R^{*}$. Then

$$
q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \simeq q_{1}^{\prime} \perp q_{2}^{\prime} \pi \perp q_{3}^{\prime} \delta \perp q_{4}^{\prime} \pi \delta \text { over } F
$$

if and only if $q_{i} \simeq q_{i}^{\prime}$ over F for all i.
Proof. The "if" part is clear. For the converse, first note that F_{π} is a complete discretely valued field with parameter π. Let $\kappa(\pi):=\widehat{R_{(\pi)}} /(\pi)$ be the residue field of F_{π}. For $a \in \widehat{R_{(\pi)}}$, let $\bar{a}=a+(\pi) \in \widehat{R_{(\pi)}} /(\pi)=\kappa(\pi)$. For $1 \leq i \leq 4$, let $\overline{q_{i}}$ be the residue form of q_{i} over F_{π}, so that $\overline{q_{i}}$ is a quadratic form over $\kappa(\pi)$. Now

$$
\begin{aligned}
& q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \simeq q_{1}^{\prime} \perp q_{2}^{\prime} \pi \perp q_{3}^{\prime} \delta \perp q_{4}^{\prime} \pi \delta \text { over } F \\
& \quad \Longrightarrow\left(q_{1} \perp q_{3} \delta\right) \perp\left(q_{2} \perp q_{4} \delta\right) \pi \simeq\left(q_{1}^{\prime} \perp q_{3}^{\prime} \delta\right) \perp\left(q_{2}^{\prime} \perp q_{4}^{\prime} \delta\right) \pi \text { over } F_{\pi}
\end{aligned}
$$

By Springer's theorem ([16, p. 147, Corollary 1.6]), we obtain

$$
\overline{q_{1}} \perp \overline{q_{3}} \bar{\delta} \simeq \overline{q_{1}^{\prime}} \perp \overline{q_{3}^{\prime}} \bar{\delta} \text { and } \overline{q_{2}} \perp \overline{q_{4}} \bar{\delta} \simeq \overline{q_{2}^{\prime}} \perp \overline{q_{4}^{\prime}} \bar{\delta} \text { over } \kappa(\pi)
$$

Now $\kappa(\pi)$ is a complete discretely valuated field with parameter $\bar{\delta}$ and residue field $k=F / \mathfrak{m}$. For $1 \leq i \leq 4$, let $\tilde{q_{i}}$ be the residue form of $\overline{q_{i}}$ over $\kappa(\pi)$, so that $\tilde{q_{i}}$ is a quadratic form over k. Then we can apply Springer's theorem again to obtain $\tilde{\overline{q_{i}}} \simeq \tilde{q_{i}^{\prime}}$ over k for all i. Since $k=F / \mathfrak{m}$, it follows that $q_{i} \simeq q_{i}^{\prime}$ over F for all i as required.

Remark 5.1.3. For $1 \leq i \leq 4$, let q_{i} and q_{i}^{\prime} be as above. The proof of Lemma 5.1.2 shows that

$$
q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \simeq q_{1}^{\prime} \perp q_{2}^{\prime} \pi \perp q_{3}^{\prime} \delta \perp q_{4}^{\prime} \pi \delta \text { over } F_{\pi}
$$

if and only if $q_{i} \simeq q_{i}^{\prime}$ over F for all i. Thus

$$
q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \simeq q_{1}^{\prime} \perp q_{2}^{\prime} \pi \perp q_{3}^{\prime} \delta \perp q_{4}^{\prime} \pi \delta \text { over } F
$$

if and only if

$$
q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \simeq q_{1}^{\prime} \perp q_{2}^{\prime} \pi \perp q_{3}^{\prime} \delta \perp q_{4}^{\prime} \pi \delta \text { over } F_{\pi}
$$

As a consequence, for $w \in R^{*}$ and $r, s \in \mathbb{Z}$, if $\theta=w \pi^{r} \delta^{s}$ satisfies $\theta q \simeq q$ over F_{π}, then $\theta q \simeq q$ over F. Similarly, if $\theta=w \pi^{r} \delta^{s}$ satisfies $\theta q \simeq q$ over F_{δ}, then $\theta q \simeq q$ over F.

We can use Lemma 5.1.2 to analyze when $\lambda \in F^{*}$ satisfies $\lambda q \simeq q$ over F for the three cases $\lambda=w, \lambda=\pi$ and $\lambda=\delta$, where $w \in R^{*}$.

Proposition 5.1.4. Let $w \in R^{*}$. We have
(i) $w q \simeq q$ over $F \Longleftrightarrow w q_{i} \simeq q_{i}$ over F for all i;
(ii) $\pi q \simeq q$ over $F \Longleftrightarrow q_{1} \simeq q_{2}$ and $q_{3} \simeq q_{4}$ over F;
(iii) $\delta q \simeq q$ over $F \Longleftrightarrow q_{1} \simeq q_{3}$ and $q_{2} \simeq q_{4}$ over F.

Proof. (i) We have

$$
\begin{aligned}
w q \simeq q & \Longleftrightarrow w q_{1} \perp w q_{2} \pi \perp w q_{3} \delta \perp w q_{4} \pi \delta \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \\
& \Longleftrightarrow w q_{i} \simeq q_{i} \text { for all } i
\end{aligned}
$$

where the second equivalence follows from Lemma 5.1.2.
(ii) We have

$$
\begin{aligned}
\pi q \simeq q & \Longleftrightarrow q_{2} \perp q_{1} \pi \perp q_{4} \delta \perp q_{3} \pi \delta \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \\
& \Longleftrightarrow q_{1} \simeq q_{2} \text { and } q_{3} \simeq q_{4}
\end{aligned}
$$

where the second equivalence follows from Lemma 5.1.2.
(iii) We have

$$
\begin{aligned}
\delta q \simeq q & \Longleftrightarrow w q_{3} \perp w q_{4} \pi \perp w q_{1} \delta \perp w q_{2} \pi \delta \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \\
& \Longleftrightarrow w q_{1} \simeq q_{3} \text { and } w q_{2} \simeq q_{4}
\end{aligned}
$$

where the second equivalence follows from Lemma 5.1.2.

The goal of this section is to prove the following:
Proposition 5.1.5. Suppose there exists $\lambda_{\pi} \in F_{\pi}$ such that $\lambda_{\pi} q \simeq q$ over F_{π}, and suppose there exists $\lambda_{\delta} \in F_{\delta}$ such that $\lambda_{\delta} q \simeq q$ over F_{δ}. Then there exists $\beta \in F$ such that $\beta\left(F_{\pi}^{*}\right)^{2}=\lambda_{\pi}\left(F_{\pi}^{*}\right)^{2}, \beta\left(F_{\delta}^{*}\right)^{2}=\lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}$ and $\beta q \simeq q$ over F.

Proof. From the unit structure of $\widehat{R_{(\pi)}}$ and $\widehat{R_{(\delta)}}$ (cf. [19, Remark 7.1]), we have $\lambda_{\pi}=w^{\prime} \pi^{r_{1}} \delta^{s_{1}}$ and $\lambda_{\delta}=w \pi^{r_{2}} \delta^{s_{2}}$, where $w, w^{\prime} \in R^{*}$ and
$r_{1}, r_{2}, s_{1}, s_{2} \in \mathbb{Z}$. Since we are interested in the square classes, we assume that $r_{1}, r_{2}, s_{1}, s_{2} \in\{0,1\}$.

Suppose there exists $\beta^{\prime} \in F$ such that $\beta^{\prime}\left(F_{\pi}^{*}\right)^{2}=\left(F_{\pi}^{*}\right)^{2}, \beta^{\prime}\left(F_{\delta}^{*}\right)^{2}=$ $\lambda_{\pi}^{-1} \lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}$ and $\beta^{\prime} q \simeq q$ over F. Let $\beta=\beta^{\prime} \lambda_{\pi} \in F$. Then

$$
\begin{gathered}
\beta\left(F_{\pi}^{*}\right)^{2}=\beta^{\prime} \lambda_{\pi}\left(F_{\pi}^{*}\right)^{2}=\lambda_{\pi}\left(F_{\pi}^{*}\right)^{2} \\
\beta\left(F_{\delta}^{*}\right)^{2}=\beta^{\prime} \lambda_{\pi}\left(F_{\delta}^{*}\right)^{2}=\lambda_{\pi}^{-1} \lambda_{\delta} \lambda_{\pi}\left(F_{\delta}^{*}\right)^{2}=\lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}
\end{gathered}
$$

and $\beta q \simeq \beta^{\prime} \lambda_{\pi} q \simeq \lambda_{\pi} q \simeq q$ over F by Remark 5.1.3. Therefore, we may assume that $\lambda_{\pi}=1$. By multiplicativity, it is enough to consider the cases $\lambda_{\delta}=w, \lambda_{\delta}=\pi$ and $\lambda_{\delta}=\delta$.

Case 1: $\lambda_{\delta}=w$.
For $a \in R$, let $\bar{a}=a+\mathfrak{m} \in R / \mathfrak{m}=k$. Let $\overline{q_{1}}=\left\langle\overline{u_{1}}, \ldots, \overline{u_{n_{1}}}\right\rangle$, $\overline{q_{2}}=\left\langle\overline{v_{1}}, \ldots, \overline{v_{n_{2}}}\right\rangle, \overline{q_{3}}=\left\langle\overline{w_{1}}, \ldots, \overline{w_{n_{3}}}\right\rangle$ and $\overline{q_{4}}=\left\langle\overline{\theta_{1}}, \ldots, \overline{\theta_{n_{4}}}\right\rangle$. If $\lambda_{\delta}=w \in\left(R^{*}\right)^{2}$, then $\beta=1 \in F$ has the required properties. So suppose that $\lambda_{\delta}=w \notin\left(R^{*}\right)^{2}$. Since $k=R / \mathfrak{m}$ is a finite field, $\left|k^{*} /\left(k^{*}\right)^{2}\right|=2$. So $k^{*} /\left(k^{*}\right)^{2}=\{\overline{1}, \bar{t}\}$. By lifting from k to R, we may assume that $\lambda_{\delta}=t u^{2}$ for some $u \in R^{*}$.

For $1 \leq i \leq 4$, let $\left(q_{i}\right)_{a}$ denote the anisotropic part of q_{i}. If q_{i} is hyperbolic over F, the group of similarity factors of q_{i} is $G_{F}\left(q_{i}\right)=F^{*}$. Thus for $\lambda \in R^{*}$, by Proposition 5.1.4 (i),

$$
\begin{aligned}
\lambda \in G_{F}(q) & \Longleftrightarrow \lambda \in G_{F}\left(q_{1}\right) \cap G_{F}\left(q_{2}\right) \cap G_{F}\left(q_{3}\right) \cap G_{F}\left(q_{4}\right) \\
& \Longleftrightarrow \lambda \in G_{F}\left(\left(q_{1}\right)_{a}\right) \cap G_{F}\left(\left(q_{2}\right)_{a}\right) \cap G_{F}\left(\left(q_{3}\right)_{a}\right) \cap G_{F}\left(\left(q_{4}\right)_{a}\right) \\
& \Longleftrightarrow \bar{\lambda} \in G_{k}\left(\left(\overline{q_{1}}\right)_{a}\right) \cap G_{k}\left(\left(\overline{q_{2}}\right)_{a}\right) \cap G_{k}\left(\left(\overline{q_{3}}\right)_{a}\right) \cap G_{k}\left(\left(\overline{q_{4}}\right)_{a}\right),
\end{aligned}
$$

where the third equivalence follows because R is complete. But the only anisotropic forms over the finite field k are $\langle\overline{1}\rangle,\langle\bar{t}\rangle$ and $\langle\overline{1},-\bar{t}\rangle$ ($[16, \mathrm{p} .37]$). Thus, for $1 \leq i \leq 4,\left(\overline{q_{i}}\right)_{a}=\langle\overline{1}\rangle,\langle\bar{t}\rangle$ or $\langle\overline{1},-\bar{t}\rangle$, or $\operatorname{dim}\left(\left(\overline{q_{i}}\right)_{a}\right)=0$. Now $\lambda_{\delta} \in G_{F}(q)$ by Remark 5.1.3. Hence, by the above equivalences, $\overline{\lambda_{\delta}}=\bar{t} \in G_{k}\left(\left(\overline{q_{i}}\right)_{a}\right)$ for all i. But $\bar{t} \notin\left(k^{*}\right)^{2}$, so $\bar{t} \notin G_{k}(\langle\overline{1}\rangle)$ and $\bar{t} \notin G_{k}(\langle\bar{t}\rangle)$. Therefore, for each i, either $\left(\bar{q}_{i}\right)_{a}=\langle\overline{1},-\bar{t}\rangle$ or $\operatorname{dim}\left(\left(\overline{q_{i}}\right)_{a}\right)=0$.

By Lemma 5.1.1, there exists $\beta \in F$ such that $\beta\left(F_{\pi}^{*}\right)^{2}=\left(F_{\pi}^{*}\right)^{2}=\lambda_{\pi}\left(F_{\pi}^{*}\right)^{2}, \beta\left(F_{\delta}^{*}\right)^{2}=t\left(F_{\delta}^{*}\right)^{2}=\lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}$ and $\beta \in G_{F}(\langle 1,-t\rangle)=G_{F}\left(\left(q_{i}\right)_{a}\right)$ for $1 \leq i \leq 4$. It follows from the above equivalences that $\beta \in G_{F}(q)$, so $\beta q \simeq q$ as required.

Case 2: $\lambda_{\delta}=\pi$.
Let $\beta=\delta^{2}+\pi \in F$. Then $\beta=\delta^{2}\left(1+\delta^{-2} \pi\right) \in F_{\pi}$. But $1+\delta^{-2} \pi \in\left(F_{\pi}^{*}\right)^{2}$. Therefore $\beta\left(F_{\pi}^{*}\right)^{2}=\left(F_{\pi}^{*}\right)^{2}=\lambda_{\pi}\left(F_{\pi}^{*}\right)^{2}$. Similarly, $\beta=\pi\left(1+\pi^{-1} \delta^{2}\right) \in F_{\delta}$. But $1+\pi^{-1} \delta^{2} \in\left(F_{\delta}^{*}\right)^{2}$. Therefore $\beta\left(F_{\delta}^{*}\right)^{2}=\pi\left(F_{\delta}^{*}\right)^{2}=\lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}$.

It remains to show that $\beta q \simeq q$. To this end, first note that since $\lambda_{\delta} q=\pi q \simeq q$, we have $q_{1} \simeq q_{2}$ and $q_{3} \simeq q_{4}$. Then

$$
\begin{aligned}
q & \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \\
& \simeq q_{1} \perp q_{1} \pi \perp q_{3} \delta \perp q_{3} \pi \delta \\
& \simeq\langle 1, \pi\rangle q_{1} \perp\langle 1, \pi\rangle q_{3} \delta .
\end{aligned}
$$

Now $\beta=\delta^{2}+\pi \in D_{F}(\langle 1, \pi\rangle)=G_{F}(\langle 1, \pi\rangle)$ (since $\langle 1, \pi\rangle$ is a Pfister form over $F\left(\left[16\right.\right.$, p. 319, Theorem 1.8])). Hence $\beta \in G_{F}(q)$, so $\beta q \simeq q$ as required.

Case 3: $\lambda_{\delta}=\delta$.
Let $\beta=\delta^{2}+\delta \pi^{2} \in F$. Then $\beta=\delta^{2}\left(1+\delta^{-1} \pi^{2}\right) \in F_{\pi}$. But $1+\delta^{-1} \pi^{2} \in\left(F_{\pi}^{*}\right)^{2}$. Therefore $\beta\left(F_{\pi}^{*}\right)^{2}=\left(F_{\pi}^{*}\right)^{2}=\lambda_{\pi}\left(F_{\pi}^{*}\right)^{2}$. Similarly, $\beta=\delta \pi^{2}\left(1+\pi^{-2} \delta\right) \in F_{\delta}$. But $1+\pi^{-2} \delta \in\left(F_{\delta}^{*}\right)^{2}$. Therefore $\beta\left(F_{\delta}^{*}\right)^{2}=\delta\left(F_{\delta}^{*}\right)^{2}=\lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}$.

It remains to show that $\beta q \simeq q$. To this end, first note that since $\lambda_{\delta} q=\delta q \simeq q$, we have $q_{1} \simeq q_{3}$ and $q_{2} \simeq q_{4}$. Then

$$
\begin{aligned}
q & \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \\
& \simeq q_{1} \perp q_{2} \pi \perp q_{1} \delta \perp q_{2} \pi \delta \\
& \simeq\langle 1, \delta\rangle q_{1} \perp\langle 1, \delta\rangle q_{2} \pi .
\end{aligned}
$$

Now $\beta=\delta^{2}+\delta \pi^{2} \in D_{F}(\langle 1, \delta\rangle)=G_{F}(\langle 1, \delta\rangle)$ (since $\langle 1, \delta\rangle$ is a Pfister form over $F\left(\left[16\right.\right.$, p. 319, Theorem 1.8])). Hence $\beta \in G_{F}(q)$, so $\beta q \simeq q$ as required.

5.2 Semi-Global Fields - Quadratic Forms Case

Let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let X be a geometrically integral curve over K, and let $F=K(X)$ be the function field of the curve X. Suppose q and q^{\prime} are quadratic forms over F with $\operatorname{dim}(q)=\operatorname{dim}\left(q^{\prime}\right)$ and $\operatorname{disc}(q)=\operatorname{disc}\left(q^{\prime}\right)$. Write $q=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $q^{\prime}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ with $a_{i}, b_{i} \in F^{*}$. By Abhyankar ([1]) and Lipman ([17]), there exists a regular integral model \mathscr{X} with special fibre X_{0} such that for all $i, \sup \left(a_{i}\right) \cup \sup \left(b_{i}\right) \cup X_{0}$ is a union of regular curves with normal crossings. Let $\mathscr{P} \subseteq X_{0}$ be a finite set of closed points of \mathscr{X} containing all the nodal points of $\sup \left(a_{i}\right) \cup \sup \left(b_{i}\right) \cup X_{0}$ and at least one point on each component. Let \mathscr{U} be the set of irreducible components of $X_{0} \backslash \mathscr{P}$. Then $\mathscr{U}=\left\{U_{1}, U_{2}, \ldots, U_{l}\right\}$ is a finite set.

Notation. For $P \in \mathscr{P}$, let $\mathcal{O}_{\mathscr{X}, P}$ be the local ring at P. So $\mathcal{O}_{\mathscr{X}, P}$ is a two dimensional regular local ring. Let \mathfrak{m}_{P} be the maximal ideal of $\mathcal{O}_{\mathscr{X}, P}$, and let $\widehat{\mathcal{O}_{\mathscr{X}, P}}$ denote the completion of $\mathcal{O}_{\mathscr{X}, P}$ at the maximal ideal \mathfrak{m}_{P}. Define $F_{P}:=\mathrm{ff}\left(\widehat{\mathcal{O}_{\mathscr{X}, P}}\right)$.

Notation. For $U \in \mathscr{U}$, let R_{U} be the set of rational functions which are regular on U :

$$
R_{U}:=\{f \in F \mid f \text { is regular on } U\}
$$

Let $t \in K$ be a parameter and let $\widehat{R_{U}}$ be the (t)-adic completion of R_{U}. Define $F_{U}:=\mathrm{ff}\left(\widehat{R_{U}}\right)$.

Notation. For $P \in \mathscr{P}$, each height one prime ideal ρ of $\widehat{\mathcal{O}_{\mathscr{X}, P}}$ that contains t determines a branch of X_{0} at P (i.e. an irreducible component of the pullback of X_{0} to $\operatorname{Spec} \widehat{\mathcal{O}_{\mathscr{X}, P}}$). We let \hat{R}_{ρ} denote the complete local ring of $\widehat{\mathcal{O}_{\mathscr{X}, P}}$ at ρ. Define $F_{\rho}:=\operatorname{ff}\left(\hat{R}_{\rho}\right)$. Since $t \in \rho$, the contraction of $\rho \subseteq \widehat{\mathcal{O}_{\mathscr{X}}, P}$ to the local ring $\mathcal{O}_{\mathscr{X}, P}$ defines an irreducible component of Spec $\mathcal{O}_{X_{0}, P}$ and hence an irreducible component of X_{0} containing P. This in turn is the closure of a unique connected component U of $X_{0} \backslash \mathscr{P}$, and we say that ρ lies on U. We call $F_{U, P}:=F_{\rho}$ a branch field.

We begin by proving the following local-global principle for similarities in the patching set up:
Proposition 5.2.1. Suppose for all $U \in \mathscr{U}$ there exists $\lambda_{U} \in F_{U}^{*}$ such that $q \simeq \lambda_{U} q^{\prime}$ over F_{U}, and suppose for all $P \in \mathscr{P}$ there exists $\lambda_{P} \in F_{P}^{*}$ such that $q \simeq \lambda_{P} q^{\prime}$ over F_{P}. Then there exists $\lambda \in F$ such that $q \simeq \lambda q^{\prime}$ over F.

Proof. By assumption, for all $U \in \mathscr{U}$ there exists $\lambda_{U} \in F_{U}^{*}$ such that $q \simeq \lambda_{U} q^{\prime}$ over F_{U}, and for all $P \in \mathscr{P}$ there exists $\lambda_{P} \in F_{P}^{*}$ such that $q \simeq \lambda_{P} q^{\prime}$ over F_{P}. So for all $U \in \mathscr{U}$ we have an isomorphism $\phi_{U}: q \simeq \lambda_{U} q^{\prime}$ over F_{U}, and for all $P \in \mathscr{P}$ we have an isomorphism $\phi_{P}: q \simeq \lambda_{P} q^{\prime}$ over F_{P}. Then for all $P \in \mathscr{P}, U \in \mathscr{U}$ the $\operatorname{map} \phi_{P}^{-1} \phi_{U}: q \simeq \lambda_{P}^{-1} \lambda_{U} q$ is a similitude of q over the branch field $F_{U, P}$ with similarity factor $\lambda_{P}^{-1} \lambda_{U} \in F_{U, P}$. For each $P \in \mathscr{P}, U \in \mathscr{U}$ define $\lambda_{U, P}:=\lambda_{P}^{-1} \lambda_{U} \in F_{U, P}$.

Let $P \in \mathscr{X}$ be a closed point. Let $R_{P}:=\widehat{\mathcal{O}_{\mathscr{X}, P}}$. Then R_{P} is a complete two dimensional regular local ring with $F_{P}=\mathrm{ff}\left(R_{P}\right)$. Then, by the choice of \mathscr{X}, the maximal ideal $\mathfrak{m}_{P}=\left(\pi_{P}, \delta_{P}\right)$ for some π_{P}, δ_{P} such that $a_{i}=u_{i P} \pi_{P}^{r_{i P}} \delta_{P}^{s_{i P}}$ and $b_{i}=w_{i P} \pi_{P}^{r_{i P}^{\prime}} \delta_{P}^{s_{i P}^{\prime}}$ for some units $u_{i P}, w_{i P} \in R_{P}^{*}$ and $s t_{i P}, s_{i P}, r_{i P}^{\prime}, s_{i P}^{\prime} \in \mathbb{Z}$. In particular we have

$$
\begin{aligned}
q & \simeq q_{1} \perp q_{2} \pi \perp q_{3} \delta \perp q_{4} \pi \delta \\
q^{\prime} & \simeq q_{1}^{\prime} \perp q_{2}^{\prime} \pi \perp q_{3}^{\prime} \delta \perp q_{4}^{\prime} \pi \delta
\end{aligned}
$$

where $q_{1}=\left\langle u_{1}, \ldots, u_{n_{1}}\right\rangle, q_{2}=\left\langle v_{1}, \ldots, v_{n_{2}}\right\rangle, q_{3}=\left\langle w_{1}, \ldots, w_{n_{3}}\right\rangle$, $q_{4}=\left\langle\theta_{1}, \ldots, \theta_{n_{4}}\right\rangle, q_{1}^{\prime}=\left\langle u_{1}^{\prime}, \ldots, u_{n_{1}}^{\prime}\right\rangle, q_{2}^{\prime}=\left\langle v_{1}^{\prime}, \ldots, v_{n_{2}}^{\prime}\right\rangle$, $q_{3}^{\prime}=\left\langle w_{1}^{\prime}, \ldots, w_{n_{3}}^{\prime}\right\rangle, q_{4}^{\prime}=\left\langle\theta_{1}^{\prime}, \ldots, \theta_{n_{4}}^{\prime}\right\rangle$ with $u_{i}, v_{i}, w_{i}, \theta_{i}, u_{i}^{\prime}, v_{i}^{\prime}, w_{i}^{\prime}, \theta_{i}^{\prime} \in R^{*}$.

Let $\overline{\left(R_{P}\right)_{\left(\pi_{P}\right)}}$ denote the completion of the localization of R_{P} at the prime ideal $\left(\pi_{P}\right)$, and let $\overline{\left(R_{P}\right)_{\left(\delta_{P}\right)}}$ denote the completion of the localization of R_{P} at the prime ideal $\left(\delta_{P}\right)$. Define $\left(F_{P}\right)_{\pi_{P}}:=\mathrm{ff}\left(\overline{\left(R_{P}\right)_{\left(\pi_{P}\right)}}\right)$ and $\left(F_{P}\right)_{\delta_{P}}:=$ $\mathrm{ff}\left(\overline{\left(R_{P}\right)_{\left(\delta_{P}\right)}}\right)$.
Claim. For all $P \in \mathscr{P}, U \in \mathscr{U}$ we may write $\lambda_{U, P}=\beta_{P} z^{2}$ where $\beta_{P} \in F_{P}$ is such that $q \simeq \beta_{P} q^{\prime}$ over F_{P} and $z \in F_{U, P}^{*}$.

Proof of Claim. Fix $P \in \mathscr{P}$. There are two cases:

Case 1: There is only one $U \in \mathscr{U}$ with P in the closure of U. Then either $F_{U, P}=\left(F_{P}\right)_{\pi_{P}}$ or $F_{U, P}=\left(F_{P}\right)_{\delta_{P}}$. From the unit structure of $\overline{\left(R_{P}\right)_{\left(\pi_{P}\right)}}$ and $\overline{\left(R_{P}\right)_{\left(\delta_{P}\right)}}$ (cf. [19, Remark 7.1]), we have $\lambda_{U, P}=w \pi_{P}^{r} \delta_{P}^{s} z^{2}$ where $w \in R_{P}^{*}, r, s \in \mathbb{Z}$ and $z \in F_{U, P}^{*}$. Let $\beta_{P}=w \pi_{P}^{r} \delta_{P}^{s} \in F_{P}$. Then $\lambda_{U, P}=\beta_{P} z^{2}$. Since $\lambda_{U, P}$ is a similarity for q over $F_{U, P}$, we have that β_{P} is a similarity for q over $F_{U, P}$ also. Thus, by (5.1.3), we have that β_{P} is a similarity for q over F_{P} and the claim is proved in this case.

Case 2: There exist $U_{1}, U_{2} \in \mathscr{U}$ with $U_{1} \neq U_{2}$ such that P is in the closure of U_{1} and P is in the closure of U_{2}. Then by reordering the U_{i} if necessary, we have $F_{U_{1}, P}=\left(F_{P}\right)_{\pi_{P}}$ and $F_{U_{2}, P}=\left(F_{P}\right)_{\delta_{P}}$. Then $\lambda_{U_{1}, P} \in$ $\left(F_{P}\right)_{\pi_{P}}$ is such that $\left(\lambda_{U_{1}, P}\right) q \simeq q$ over $\left(F_{P}\right)_{\pi_{P}}$ and $\lambda_{U_{2}, P} \in\left(F_{P}\right)_{\delta_{P}}$ is such that $\left(\lambda_{U_{2}, P}\right) q \simeq q$ over $\left(F_{P}\right)_{\delta_{P}}$. Thus, by Proposition 5.1.5, there exists $\beta_{P} \in F_{P}$ such that $\beta_{P}\left(\left(F_{P}\right)_{\pi_{P}}^{*}\right)^{2}=\lambda_{U_{1}, P}\left(\left(F_{P}\right)_{\pi_{P}}^{*}\right)^{2}, \beta_{P}\left(\left(F_{P}\right)_{\delta_{P}}^{*}\right)^{2}=$ $\lambda_{U_{2}, P}\left(\left(F_{P}\right)_{\delta_{P}}^{*}\right)^{2}$ and $\beta_{P} q \simeq q$ over F_{P}. Hence $\lambda_{U_{1}, P}=\beta_{P} z_{1}^{2}$ for some $z_{1} \in F_{U_{1}, P}^{*}$ and $\lambda_{U_{2}, P}=\beta_{P} z_{2}^{2}$ for some $z_{2} \in F_{U_{2}, P}^{*}$. This completes the proof of the claim.

By the claim, for all $P \in \mathscr{P}$ we have an isomorphism $\alpha_{P}: q \simeq \beta_{P} q$ over F_{P}. By [9, Corollary 3.4], for all $P \in \mathscr{P}, U \in \mathscr{U}$ we can factorize $z \in F_{U, P}^{*}$ as $z=z_{P} z_{U}$ for some $z_{P} \in F_{P}^{*}$ and $z_{U} \in F_{U}^{*}$. Then for all $P \in \mathscr{P}, U \in \mathscr{U}$ we have $\lambda_{U, P}=\beta_{P} z_{P}^{2} z_{U}^{2}$. Then for all $U \in \mathscr{U}$ we have an isomorphism $\phi_{U}^{\prime}:=\phi_{U} \circ m_{z_{U}^{-1}}: q \simeq \lambda_{U} z_{U}^{-2} q^{\prime}$ over F_{U}, and for all $P \in \mathscr{P}$ we have an isomorphism $\phi_{P}^{\prime}:=\phi_{P} \circ m_{z_{P}} \circ \alpha_{P}: q \simeq \lambda_{P} z_{P}^{2} \beta_{P} q^{\prime}$ over F_{P}. Then for all $P \in \mathscr{P}, U \in \mathscr{U}$ the $\operatorname{map}\left(\phi_{P}^{\prime}\right)^{-1} \phi_{U}^{\prime}: q \simeq\left(\lambda_{P} z_{P}^{2} \beta_{P}\right)^{-1} \lambda_{U} z_{U}^{-2} q$ is a similitude of q over the branch field $F_{U, P}$ with similarity factor

$$
\begin{equation*}
\left(\lambda_{P} z_{P}^{2} \beta_{P}\right)^{-1} \lambda_{U} z_{U}^{-2}=\lambda_{P}^{-1} \lambda_{U} z_{U}^{-2} z_{P}^{-2} \beta_{P}^{-1}=\lambda_{U, P} \lambda_{U, P}^{-1}=1 \in F_{U, P} \tag{*}
\end{equation*}
$$

Therefore for all $P \in \mathscr{P}, U \in \mathscr{U}$ the $\operatorname{map}\left(\phi_{P}^{\prime}\right)^{-1} \phi_{U}^{\prime}$ is an isometry of q over $F_{U, P}$. Now by rearranging $(*)$, for all $P \in \mathscr{P}, U \in \mathscr{U}$ we have $\lambda_{U} z_{U}^{-2}=\lambda_{P} z_{P}^{2} \beta_{P} \in F_{U} \cap F_{P}=F$. For each $P \in \mathscr{P}, U \in \mathscr{U}$ define $\lambda:=\lambda_{U} z_{U}^{-2}=\lambda_{P} z_{P}^{2} \beta_{P} \in F$. Then for all $U \in \mathscr{U}$ the map $\phi_{U}^{\prime}: q \simeq \lambda q^{\prime}$ over F_{U} is an isomorphism, and for all $P \in \mathscr{P}$ the map $\phi_{P}^{\prime}: q \simeq \lambda q^{\prime}$ over F_{P} is an isomorphism.

Case 1: $\operatorname{dim}(q)$ is even. Then $\operatorname{disc}(q)=\operatorname{disc}\left(q^{\prime}\right)=\operatorname{disc}\left(\lambda q^{\prime}\right)$, so $\left[\lambda q^{\prime}\right] \in H^{1}(F, \mathrm{SO}(q))$. Now $\mathrm{SO}(q)$ is a rational, connected group and there-
fore the map

$$
\Psi: H^{1}(F, \mathrm{SO}(q)) \rightarrow \prod_{U \in \mathcal{U}} H^{1}\left(F_{U}, \mathrm{SO}(q)\right) \prod_{P \in \mathcal{P}} H^{1}\left(F_{P}, \mathrm{SO}(q)\right)
$$

has trivial kernel ([8]). Since for all $P \in \mathscr{P}, U \in \mathscr{U}$ the maps $\phi_{U}^{\prime}: q \simeq \lambda q^{\prime}$ over F_{U} and $\phi_{P}^{\prime}: q \simeq \lambda q^{\prime}$ over F_{P} are isomorphisms, we have $\Psi\left(\left[\lambda q^{\prime}\right]\right)=0$, and thus $\left[\lambda q^{\prime}\right]=0=[q]$. Therefore $q \simeq \lambda q^{\prime}$ over F as required.

Case 2: $\operatorname{dim}(q)$ is odd. For all $P \in \mathscr{P}, U \in \mathscr{U}$ we have $q \simeq \lambda q^{\prime}$ over F_{U} and $q \simeq \lambda q^{\prime}$ over F_{P}. Since $\operatorname{dim}(q)=\operatorname{dim}\left(q^{\prime}\right)$ is odd and $\operatorname{disc}(q)=\operatorname{disc}\left(q^{\prime}\right)$, it follows that for all $P \in \mathscr{P}, U \in \mathscr{U}$ we have $q \simeq q^{\prime}$ over F_{U} and $q \simeq q^{\prime}$ over F_{P}. Hence $q \simeq q^{\prime}$ over $F([8])$.

Let Ω_{F} be the set of all divisorial discrete valuations of F. For $v \in \Omega_{F}$, let \hat{F}_{v} denote the completion of F at v.

Theorem 5.2.2. Suppose for all divisorial discrete valuations $v \in \Omega_{F}$ there exists $\lambda_{v} \in \hat{F}_{v}$ such that $q \simeq \lambda_{v} q^{\prime}$ over \hat{F}_{v}. Then there exists $\lambda \in F$ such that $q \simeq \lambda q^{\prime}$ over F.

Proof. Choose a regular integral model \mathscr{X} with special fibre X_{0} such that for all $j, \sup \left(a_{j}\right) \cup \sup \left(b_{j}\right) \cup X_{0}$ is a union of regular curves with normal crossings. Write $X_{0}=\bigcup_{i=1}^{d} X_{i}$ where the X_{i} are irreducible components. For $1 \leq i \leq d$, let v_{i} be the discrete valuation on F corresponding to X_{i}. So for $1 \leq i \leq d$, we have $q \simeq \lambda_{v_{i}} q^{\prime}$ over $\hat{F}_{v_{i}}$.

Since $F_{v_{i}}$ is the completion of F at the discrete valuation v_{i}, we have $\lambda_{v_{i}}=\lambda_{v_{i}}^{\prime} x_{i}^{2}$ for some $\lambda_{v_{i}}^{\prime} \in F^{*}$. Hence replacing $\lambda_{v_{i}}$ by $\lambda_{v_{i}}^{\prime}$, we assume that $\lambda_{v_{i}} \in F^{*}$.

Since $q \simeq \lambda_{v_{i}} q^{\prime}$ over $\hat{F}_{v_{i}}$, by [9, Proposition 5.8], there exists a nonempty open set $U_{i} \subsetneq X_{i}$ such that $q \simeq \lambda_{v_{i}}^{\prime} q^{\prime}$ over $F_{U_{i}}$. Let $\mathscr{U}=\left\{U_{1}, \ldots, U_{d}\right\}$ and let $\mathscr{P}=X_{0} \backslash \bigcup_{i=1}^{d} U_{i}$. Then for each $P \in \mathscr{P}$, by (5.1.5), there exists $\lambda_{P} \in F_{P}$ such that $q \simeq \lambda_{P} q^{\prime}$ over F_{P}. Then applying Proposition 5.2 .1 to the patch $\{\mathscr{U}, \mathscr{P}\}$, it follows that there exists $\lambda \in F$ such that $q \simeq \lambda q^{\prime}$ over F as required.

Let L / F be a quadratic field extension, and let τ be the nontrivial automorphism of L / F. Let h_{1} and h_{2} be hermitian forms over (L, τ).

Corollary 5.2.3. Suppose for all divisorial discrete valuations $v \in \Omega_{F}$ there exists $\lambda_{v} \in \hat{F}_{v}$ such that $h_{1} \simeq \lambda_{v} h_{2}$. Then there exists $\lambda \in F$ such that $h_{1} \simeq \lambda h_{2}$ over L.

Proof. Let q_{h} denote the trace form of h (cf. [21, p. 348]). By assumption, for all divisorial discrete valuations $v \in \Omega_{F}$ there exists $\lambda_{v} \in \hat{F}_{v}$ such that $h_{1} \simeq \lambda_{v} h_{2}$. Then, by Jacobson, for all $v \in \Omega_{F}$ we have $q_{h_{1}} \simeq \lambda_{v} q_{h_{2}}$ over \hat{F}_{v} ($[21$, p. 348, Theorem 1.1]). Then, by Theorem 5.2.2, there exists $\lambda \in F$ such that $q_{h_{1}} \simeq \lambda q_{h_{2}}$ over F. Thus, by Jacobson, we have $h_{1} \simeq \lambda h_{2}$ over L as required ($[21$, p. 348, Theorem 1.1]).

5.3 Quaternion Division Algebras Over Two Dimensional Complete Fields

Let R be a complete two dimensional regular local ring, let $F=\mathrm{ff}(R)$, and suppose $2 \in R^{*}$. Let $\mathfrak{m}=(\pi, \delta)$ be the maximal ideal of R. Suppose $k=R / \mathfrak{m}$ is a finite field with $\operatorname{char}(k) \neq 2$. Let D be a quaternion division algebra over F which is unramified on R except possibly at (π) and (δ). Let τ be the canonical involution on D. Let h be an hermitian form over (D, τ). Then $h=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ where $a_{i} \in F^{*}$. Suppose $a_{i}=u_{i} \pi^{r_{i}} \delta^{s_{i}}$ with $u_{i} \in R^{*}, r_{i}, s_{i} \in \mathbb{Z}$ for $1 \leq i \leq n$. Let $\widehat{R_{(\pi)}}$ denote the completion of the localization of R at the prime ideal (π), and let $\widehat{R_{(\delta)}}$ denote the completion of the localization of R at the prime ideal (δ). Define $F_{\pi}:=\mathrm{ff}\left(\widehat{R_{(\pi)}}\right)$ and $F_{\delta}:=\mathrm{ff}\left(\widehat{R_{(\delta)}}\right)$. Then F_{π} and F_{δ} are complete discretely valued fields.

Proposition 5.3.1. Suppose there exists $\lambda_{\pi} \in F_{\pi}$ such that $\lambda_{\pi} h \simeq h$ over F_{π}, and suppose there exists $\lambda_{\delta} \in F_{\delta}$ such that $\lambda_{\delta} h \simeq h$ over F_{δ}. Then there exists $\beta \in F$ such that $\beta\left(F_{\pi}^{*}\right)^{2}=\lambda_{\pi}\left(F_{\pi}^{*}\right)^{2}, \beta\left(F_{\delta}^{*}\right)^{2}=\lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}$ and $\beta h \simeq h$ over F.

Proof. First note that since D is a division algebra over F, it follows that $D \otimes_{F} F_{\pi}$ is a division algebra over F_{π} and $D \otimes_{F} F_{\delta}$ is a division algebra over F_{δ} ($[18$, Proposition 5.8$]$). Now since D is unramified on R except possibly at (π) and (δ), we have that $D=(u, v \pi),(u, v \delta),(u \pi, v \delta)$ or $(u, v \pi \delta)$ where $u, v \in R^{*}[22$, Lemma 3.6]. Let $N=\langle 1,-a,-b, a b\rangle$ be the norm form of D, so that $a \in\{u, u \pi\}$ and $b \in\{v \pi, v \delta, v \pi \delta\}$. Let $q_{h}=\left\langle a_{1}, \ldots, a_{n}\right\rangle \otimes N$ denote the trace form of h (cf. [21, p. 352]). Then $q_{h}=\left\langle b_{1}, \ldots, b_{4 n}\right\rangle$ where $b_{i} \in F^{*}, b_{i}=v_{i} \pi^{x_{i}} \delta^{y_{i}}$ with $v_{i} \in R^{*}, x_{i}, y_{i} \in\{0,1\}$ for $1 \leq i \leq 4 n$.

By assumption, there exists $\lambda_{\pi} \in F_{\pi}$ such that $\lambda_{\pi} h \simeq h$ over F_{π}. Then, by Jacobson, we have $\lambda_{\pi}\left(q_{h}\right)_{F_{\pi}} \simeq\left(q_{h}\right)_{F_{\pi}}$ over F_{π} ([21, p. 352, Theorem 1.7]). By assumption, there exists $\lambda_{\delta} \in F_{\delta}$ such that $\lambda_{\delta} h \simeq h$ over F_{δ}. Then, by Jacobson, we have $\lambda_{\delta}\left(q_{h}\right)_{F_{\delta}} \simeq\left(q_{h}\right)_{F_{\delta}}$ over $F_{\delta}([21$, p. 352, Theorem 1.7]). Therefore, by Proposition 5.1.5, there exists $\beta \in F$ such that $\beta\left(F_{\pi}^{*}\right)^{2}=\lambda_{\pi}\left(F_{\pi}^{*}\right)^{2}, \beta\left(F_{\delta}^{*}\right)^{2}=\lambda_{\delta}\left(F_{\delta}^{*}\right)^{2}$ and $\beta q_{h} \simeq q_{h}$ over F. Then, by Jacobson, we have $\beta h \simeq h$ over F as required ([21, p. 352, Theorem

5.4 Semi-Global Fields - Symplectic Involution Case

Let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let X be a geometrically integral curve over K, and let $F=K(X)$ be the function field of the curve X. Let A be a central simple algebra over F, and let σ be a symplectic involution on A. Let h_{1} and h_{2} be two hermitian forms over (A, σ). Choose a regular integral model \mathscr{X} with special fibre X_{0} with the following properties:
(1) $\operatorname{ram}_{\mathscr{X}}(A) \cup X_{0}$ is a union of regular curves with normal crossings.
(2) There exists a finite set of closed points $\mathscr{P} \subseteq X_{0}$ containing all the nodal points of $\operatorname{ram}_{\mathscr{X}}(A) \cup X_{0}$ and at least one point on each component, such that for each $P \in \mathscr{P}$, we have $A \otimes_{F} F_{P} \cong M_{n}\left(D_{P}\right)$, where D_{P} is a central division algebra over F_{P} and for $1 \leq i \leq$ 2, $\left(h_{i}\right)_{F_{\mathcal{P}}}$ corresponds under Morita equivalence to $\left(\tilde{h}_{i}\right)_{P}$ over D_{P}, where $\left(h_{i}\right)_{P}$ is an hermitian form for the canonical involution such that $\left(\tilde{h}_{i}\right)_{P}=\left\langle a_{i_{1}}, \ldots, a_{i_{n}}\right\rangle$ where $a_{i_{j}} \in F_{P}^{*}, a_{i_{j}}=u_{P_{i_{j}}} \pi_{P}^{r_{i_{j}}} \delta_{P}^{s_{i}}$ with $u_{P_{i_{j}}} \in \mathcal{O}_{\mathscr{X}, P}^{*}, r_{i_{j}}, s_{i_{j}} \in \mathbb{Z}$ for $1 \leq i \leq 2,1 \leq j \leq n$ where $\mathfrak{m}_{P}=$ $\left(\pi_{P}, \delta_{P}\right)$ is the maximal ideal of $\mathcal{O}_{\mathscr{X}, P}$, the local ring at P.

Let \mathscr{U} be the set of irreducible components of $X_{0} \backslash \mathscr{P}$. Then $\mathscr{U}=\left\{U_{1}, U_{2}, \ldots, U_{l}\right\}$ is a finite set.

Proposition 5.4.1. Suppose for all $U \in \mathscr{U}$ there exists $\lambda_{U} \in F_{U}^{*}$ such that $h_{1} \simeq \lambda_{U} h_{2}$ over F_{U}, and suppose for all $P \in \mathscr{P}$ there exists $\lambda_{P} \in F_{P}^{*}$ such that $h_{1} \simeq \lambda_{P} h_{2}$ over F_{P}. Then there exists $\lambda \in F$ such that $h_{1} \simeq \lambda h_{2}$ over F.

Proof. By assumption, for all $U \in \mathscr{U}$ there exists $\lambda_{U} \in F_{U}^{*}$ such that $h_{1} \simeq \lambda_{U} h_{2}$ over F_{U}, and for all $P \in \mathscr{P}$ there exists $\lambda_{P} \in F_{P}^{*}$ such that $h_{1} \simeq \lambda_{P} h_{2}$ over F_{P}. So for all $U \in \mathscr{U}$ we have an isomorphism $\phi_{U}: h_{1} \simeq \lambda_{U} h_{2}$ over F_{U}, and for all $P \in \mathscr{P}$ we have an isomorphism $\phi_{P}: h_{1} \simeq \lambda_{P} h_{2}$ over F_{P}. Then for all $P \in \mathscr{P}, U \in \mathscr{U}$ the map $\phi_{P}^{-1} \phi_{U}: h_{1} \simeq \lambda_{P}^{-1} \lambda_{U} h_{1}$ is a similitude of h_{1} over the branch field $F_{U, P}$ with similarity factor $\lambda_{P}^{-1} \lambda_{U} \in F_{U, P}$. For each $P \in \mathscr{P}, U \in \mathscr{U}$ define $\lambda_{U, P}:=\lambda_{P}^{-1} \lambda_{U} \in F_{U, P}$.

Claim. For all $P \in \mathscr{P}, U \in \mathscr{U}$ we have $\lambda_{U, P}=\beta_{P} z^{2}$ for some $\beta_{P} \in F_{P}$ is such that $h_{1} \simeq \beta_{P} h_{1}$ over F_{P} and $z \in F_{U, P}^{*}$.

Proof of Claim. Fix $P \in \mathscr{P}$. Let $R_{P}:=\widehat{\mathcal{O}_{\mathscr{X}}, P}$. Then R_{P} is a complete two dimensional regular local ring with $F_{P}=\mathrm{ff}\left(R_{P}\right)$. By the choice of \mathscr{X}, the maximal ideal \mathfrak{m}_{P} at P is generated by $\left(\pi_{P}, \delta_{P}\right)$ such that $A \otimes F_{P} \simeq M_{n}\left(D_{P}\right)$ for some division algebra D_{P} over F_{P} of index at most 2 which is unramified at P except possibly at (π) and (δ), and under Moirta equivalence h_{i} corresponds to hermitian forms $\left(\tilde{h}_{i}\right)_{P}$ over D_{P} such that $\left(\tilde{h}_{i}\right)_{P}=\left\langle a_{i_{1}}, \ldots, a_{i_{n}}\right\rangle$ where $a_{i_{j}} \in F_{P}^{*}, a_{i_{j}}=u_{P_{i_{j}}} \pi_{P}^{r_{i_{j}}} \delta_{P}^{s_{i_{j}}}$ with $u_{P_{i_{j}}} \in \mathcal{O}_{\mathscr{X}, P}^{*}, r_{i_{j}}, s_{i_{j}} \in \mathbb{Z}$ for $1 \leq i \leq 2,1 \leq j \leq n$.

Let $\overline{\left(R_{P}\right)_{\left(\pi_{P}\right)}}$ denote the completion of the localization of R_{P} at the prime ideal $\left(\pi_{P}\right)$, and let $\widehat{\left(R_{P}\right)_{\left(\delta_{P}\right)}}$ denote the completion of the localization of R_{P} at the prime ideal $\left(\delta_{P}\right)$. Define $\left(F_{P}\right)_{\pi_{P}}:=\mathrm{ff}\left(\overline{\left(R_{P}\right)_{\left(\pi_{P}\right)}}\right)$ and $\left(F_{P}\right)_{\delta_{P}}:=\mathrm{ff}\left(\overline{\left(R_{P}\right)_{\left(\delta_{P}\right)}}\right)$. There are two cases:

Case 1: There is only one $U \in \mathscr{U}$ with P in the closure of U. Then either $F_{U, P}=\left(F_{P}\right)_{\pi_{P}}$ or $F_{U, P}=\left(F_{P}\right)_{\delta_{P}}$. From the unit structure of $\overline{\left(R_{P}\right)_{\left(\pi_{P}\right)}}$ and $\overline{\left(R_{P}\right)_{\left(\delta_{P}\right)}}$ (cf. [19, Remark 7.1]), we have $\lambda_{U, P}=w \pi_{P}^{r} \delta_{P}^{s} z^{2}$ where $w \in R_{P}^{*}, r, s \in \mathbb{Z}$ and $z \in F_{U, P}^{*}$. Let $\beta_{P}=w \pi_{P}^{r} \delta_{P}^{s} \in F_{P}$. Then $\lambda_{U, P}=\beta_{P} z^{2}$. Since $\lambda_{U, P}$ is a similarity for h_{1} over $F_{U, P}$, we have that β_{P} is a similarity for h_{1} over $F_{U, P}$ also. Let $q_{h_{1}}$ denote the trace form of h_{1}. Then β_{P} is a similarity for $q_{h_{1}}$ over $F_{U, P}$. Thus, (5.1.3), we have that β_{P} is a similarity for $q_{h_{1}}$ over F_{P}, and hence β_{P} is a similarity for h_{1} over F_{P}, which proves the claim in this case.

Case 2: There exist $U_{1}, U_{2} \in \mathscr{U}$ with $U_{1} \neq U_{2}$ such that P is in the closure of U_{1} and P is in the closure of U_{2}. Then by reordering the U_{i} if necessary, we have $F_{U_{1}, P}=\left(F_{P}\right)_{\pi_{P}}$ and $F_{U_{2}, P}=\left(F_{P}\right)_{\delta_{P}}$. Then $\lambda_{U_{1}, P} \in\left(F_{P}\right)_{\pi_{P}}$ is such that $\left(\lambda_{U_{1}, P}\right) h_{1} \simeq h_{1}$ over $\left(F_{P}\right)_{\pi_{P}}$ and $\lambda_{U_{2}, P} \in\left(F_{P}\right)_{\delta_{P}}$ is such that $\left(\lambda_{U_{2}, P}\right) h_{1} \simeq h_{1}$ over $\left(F_{P}\right)_{\delta_{P}}$. Thus, by Proposition 5.3.1, there exists $\beta_{P} \in F_{P}$ such that $\beta_{P}\left(\left(F_{P}\right)_{\pi_{P}}^{*}\right)^{2}=\lambda_{U_{1}, P}\left(\left(F_{P}\right)_{\pi_{P}}^{*}\right)^{2}$, $\beta_{P}\left(\left(F_{P}\right)_{\delta_{P}}^{*}\right)^{2}=\lambda_{U_{2}, P}\left(\left(F_{P}\right)_{\delta_{P}}^{*}\right)^{2}$ and $\beta_{P} h_{1} \simeq h_{1}$ over F_{P}. Hence $\lambda_{U_{1}, P}=\beta_{P} z_{1}^{2}$ for some $z_{1} \in F_{U_{1}, P}^{*}$ and $\lambda_{U_{2}, P}=\beta_{P} z_{2}^{2}$ for some $z_{2} \in F_{U_{2}, P}^{*}$. This completes the proof of the claim.

By the claim, for all $P \in \mathscr{P}$ we have an isomorphism $\alpha_{P}: h_{1} \simeq \beta_{P} h_{1}$ over F_{P}. By [9, Corollary 3.4], for all $P \in \mathscr{P}, U \in \mathscr{U}$ we can factorize $z \in F_{U, P}^{*}$ as $z=z_{P} z_{U}$ for some $z_{P} \in F_{P}^{*}$ and $z_{U} \in F_{U}^{*}$. Then for all $P \in \mathscr{P}, U \in \mathscr{U}$ we have $\lambda_{U, P}=\beta_{P} z_{P}^{2} z_{U}^{2}$. Then for all $U \in \mathscr{U}$ we have an isomorphism $\phi_{U}^{\prime}:=\phi_{U} \circ m_{z_{U}^{-1}}^{-1} h_{1} \simeq \lambda_{U} z_{U}^{-2} h_{2}$ over F_{U}, and for all $P \in \mathscr{P}$ we have an isomorphism $\phi_{P}^{\prime}:=\phi_{P} \circ m_{z_{P}} \circ \alpha_{P}: h_{1} \simeq \lambda_{P} z_{P}^{2} \beta_{P} h_{2}$ over F_{P}. Then for all $P \in \mathscr{P}, U \in \mathscr{U}$ the $\operatorname{map}\left(\phi_{P}^{\prime}\right)^{-1} \phi_{U}^{\prime}: h_{1} \simeq\left(\lambda_{P} z_{P}^{2} \beta_{P}\right)^{-1} \lambda_{U} z_{U}^{-2} h_{1}$
is a similitude of h_{1} over the branch field $F_{U, P}$ with similarity factor

$$
\begin{equation*}
\left(\lambda_{P} z_{P}^{2} \beta_{P}\right)^{-1} \lambda_{U} z_{U}^{-2}=\lambda_{P}^{-1} \lambda_{U} z_{U}^{-2} z_{P}^{-2} \beta_{P}^{-1}=\lambda_{U, P} \lambda_{U, P}^{-1}=1 \in F_{U, P} \tag{*}
\end{equation*}
$$

Therefore for all $P \in \mathscr{P}, U \in \mathscr{U}$ the $\operatorname{map}\left(\phi_{P}^{\prime}\right)^{-1} \phi_{U}^{\prime}$ is an isometry of h_{1} over $F_{U, P}$. Now by rearranging $(*)$, for all $P \in \mathscr{P}, U \in \mathscr{U}$ we have $\lambda_{U} z_{U}^{-2}=\lambda_{P} z_{P}^{2} \beta_{P} \in F_{U} \cap F_{P}=F$. For each $P \in \mathscr{P}, U \in \mathscr{U}$ define $\lambda:=\lambda_{U} z_{U}^{-2}=\lambda_{P} z_{P}^{2} \beta_{P} \in F$. Then for all $U \in \mathscr{U}$ the map $\phi_{U}^{\prime}: h_{1} \simeq \lambda h_{2}$ over F_{U} is an isomorphism, and for all $P \in \mathscr{P}$ the map $\phi_{P}^{\prime}: h_{1} \simeq \lambda h_{2}$ over F_{P} is an isomorphism. Thus $h_{1} \simeq \lambda h_{2}$ over F as required.

Let Ω_{F} be the set of all divisorial discrete valuations of F. For $v \in \Omega_{F}$, let \hat{F}_{v} denote the completion of F at v.
Theorem 5.4.2. Suppose for all divisorial discrete valuations $v \in \Omega_{F}$ there exists $\lambda_{v} \in \hat{F}_{v}$ such that $h_{1} \simeq \lambda_{v} h_{2}$ over \hat{F}_{v}. Then there exists $\lambda \in F$ such that $h_{1} \simeq \lambda h_{2}$ over F.

Proof. Choose a regular integral model \mathscr{X} with special fibre X_{0} such that $\operatorname{ram}_{\mathscr{X}}(A) \cup X_{0}$ is a union of regular curves with normal crossings. Write $X_{0}=\bigcup_{i=1}^{d} X_{i}$ where the X_{i} are irreducible components. For $1 \leq i \leq d$, let v_{i} be the discrete valuation on F corresponding to X_{i}. So for $1 \leq i \leq d$, we have $h_{1} \simeq \lambda_{v_{i}} h_{2}$ over $\hat{F}_{v_{i}}$.

Since for any $\lambda \in F_{v}, \lambda=\lambda^{\prime} a^{2}$ for some $a \in F_{v}$, without loss of generality we assume that $\lambda_{v_{i}} \in F^{*}$ for all i. Hence by [9, Proposition 5.8], for each i, there exists a proper nonempty set U_{i} of X_{i} such that $h_{1} \simeq \lambda_{v_{i}} h_{2}$ over $\hat{F}_{U_{i}}$.

Let $\mathscr{P}=X_{0} \backslash \cup U_{i}$. Let $P \in \mathscr{P}$. By the choice of \mathscr{X}, A is unramified at P which is unramified at P except possibly at $\left(\pi_{P}\right)$ and hence $A \otimes F_{P} \simeq$ $M_{n}\left(D_{P}\right)$ for some division algebra D_{P} over F_{P} which is unramified at P except possibly at $\left(\pi_{P}\right)$ and $\left(\delta_{P}\right)$. Since A is of period at most 2 , by [19, Proposition 5.7], $\operatorname{ind}\left(D_{P}\right)$ is at most 2. Let $\left(\tilde{h}_{i}\right)=<a_{i_{1}}, \cdots, a_{i_{n}}>$ for some $a_{i_{j}} \in F_{P}^{*}$. By blowing up if necessary \mathscr{X} at the closed points in \mathscr{P}, we may assume that $a_{i_{j}}=u_{P_{i_{j}}} \pi_{P}^{r_{i j}} \delta_{P}^{s_{i}}$ with $u_{P_{i_{j}}} \in \mathcal{O}_{\mathscr{X}, P}^{*}, r_{i_{j}}, s_{i_{j}} \in \mathbb{Z}$ for $1 \leq i \leq 2,1 \leq j \leq n$. Then for each $P \in \mathscr{P}$, by (5.3.1), there exists $\lambda_{P} \in F_{P}$ such that $h_{1} \simeq \lambda_{P} h_{2}$ over F_{P}. Then applying Proposition 5.4.1 to the patch $\{\mathscr{U}, \mathscr{P}\}$, it follows that there exists $\lambda \in F$ such that $h_{1} \simeq \lambda h_{2}$ over F as required.

5.5 The Main Theorems

Let $p \in \mathbb{N}$ be a prime with $p \neq 2$, and let K be a p-adic field. Let X be a geometrically integral curve over K, and let $F=K(X)$ be the function field of the curve X.

Theorem 5.5.1. Let G be an absolutely simple, adjoint linear algebraic group over F of classical type ${ }^{2} A_{n}$, so that $G=\operatorname{PGU}(A, \sigma)$ for some central simple algebra A of degree $n+1$ whose center $Z(A)$ is a quadratic extension of F, with involution σ of the second kind such that $\sigma(x)=x$ for all $x \in F$. Then the Hasse principle holds for principal homogeneous spaces under G in the case when $(A, \sigma)=(L, \tau)$ where L / F is a quadratic field extension and τ is the nontrivial automorphism of L / F.

Proof. First note that in the case when $(A, \sigma)=(L, \tau)$ where L / F is a quadratic field extension and τ is the nontrivial automorphism of L / F, the tuple (A, σ) reduces to an hermitian form h_{1} over (L, τ) and $G=\operatorname{PGU}\left(h_{1}\right)$. Now $H^{1}\left(F, \operatorname{PGU}\left(h_{1}\right)\right)$ classifies similarity classes of nonsingular hermitian forms over (L, τ). The trivial element in this set is the similarity class of h_{1}. Then the condition that $\left[h_{2}\right]=1 \in H^{1}\left(F, \operatorname{PGU}\left(h_{1}\right)\right)$ is equivalent to the condition that $h_{1} \simeq \lambda h_{2}$ for some $\lambda \in F$. So by Corollary 5.2.3, the Hasse principle holds for principal homogeneous spaces under PGU $\left(h_{1}\right)$.

Theorem 5.5.2. Let G be an absolutely simple, adjoint linear algebraic group over F of classical type C_{n}. Then the Hasse principle holds for principal homogeneous spaces under G.

Proof. Let G be an absolutely simple, adjoint linear algebraic group of type C_{n} over F. Then $G=\operatorname{PGSp}(A, \sigma)$ for some central simple F-algebra A of degree $2 n$ with symplectic involution σ.

Now $H^{1}(F, \operatorname{PGSp}(A, \sigma))$ classifies F-isomorphism classes of central simple F-algebras B such that $\operatorname{deg}(A)=\operatorname{deg}(B)$, with symplectic involution τ. The trivial element in this set is the class of (A, σ).

Now suppose $[(A, \tau)]=1 \in H^{1}(F, \operatorname{PGSp}(A, \sigma))$, so that $(A, \tau) \simeq(A, \sigma)$. Write A as $A \cong M_{m}(D)$ for some $m \in \mathbb{N}$ and D a central division algebra over F. Let h_{1} be the hermitian form on D corresponding to σ, so that σ is the adjoint involution with respect to h_{1}, and let h_{2} be the hermitian form on D corresponding to τ, so that τ is the adjoint involution with respect to h_{2}. Then the condition that $(A, \tau) \simeq(A, \sigma)$ is equivalent to the condition that $h_{1} \simeq \lambda h_{2}$ for some $\lambda \in F$. So by Theorem 5.4.2, the Hasse principle holds for principal homogeneous spaces under $\operatorname{PGSp}(A, \sigma)$.

Theorem 5.5.3. Let G be an absolutely simple, adjoint linear algebraic group over F of classical type D_{n}, so that $G=\operatorname{PGO}^{+}(A, \sigma)$ for some central simple F-algebra A of degree $2 n$ with orthogonal involution σ. Then the Hasse principle holds for principal homogeneous spaces under G in the case when A is split.

Proof. First note that in the case when A is split, the tuple (A, σ) reduces to a quadratic form q over F and $G=\operatorname{PSO}(q)$. Now $H^{1}(F, \operatorname{PSO}(q))$ clas-
sifies similarity classes of nonsingular quadratic forms q^{\prime} over F such that $\operatorname{dim}\left(q^{\prime}\right)=\operatorname{dim}(q)$ and $\operatorname{disc}\left(q^{\prime}\right)=\operatorname{disc}(q)$. The trivial element in this set is the similarity class of q. Then the condition that
$\left[q^{\prime}\right]=1 \in H^{1}(F, \operatorname{PSO}(q))$ is equivalent to the condition that $q \simeq \lambda q^{\prime}$ for some $\lambda \in F$. So by Theorem 5.2.2, the Hasse principle holds for principal homogeneous spaces under $\operatorname{PSO}(q)$.

Bibliography

[1] Shreeram S. Abhyankar, Resolution of singularities of algebraic surfaces. Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay,1968), pp, 1-11, 1969, Oxford Univ. Press, London.
[2] A. Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991.
[3] N. Bourbaki, Éléments de mathématique, Masson, Paris, 1981, Groupes et algèbres de Lie. Chapitres 4,5 et 6 .
[4] V. I. Chernousov, The Hasse principle for groups of type E_{8}, (Russian) Dokl. Akad. Nauk SSSR 306 (1989), 1059-1063; translation in Soviet Math. Dokl. 39 (1989), no. 3, 592-596.
[5] J.-L. Colliot-Thélène, R. Parimala and V. Suresh, Patching and localglobal principles for homogeneous spaces over function fields of p-adic curves, Commentari Math. Helv. 87 (2012), 1011-1033.
[6] P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol.101, Cambridge University Press, Cambridge, 2006.
[7] D. Harbater and J. Hartmann, Patching over fields, Israel J. Math. 176 (2010), 61-107.
[8] D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231-263.
[9] D. Harbater, J. Hartmann and D. Krashen, Local-global principles for torsors over arithmetic curves, American Journal of Mathematics, 137 (2015), 1559-1612.
[10] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. I. (German) Math. Z. 90 (1965), 404-428.
[11] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen. II. (German) Math. Z. 92 (1966), 396-415.
[12] G. Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III. (German) J. Reine Angew. Math. 274(275) (1975).
[13] M. Kneser, Hasse principle for H^{1} of simply connected groups, 1966 Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) pp. 159-163 Amer. Math. Soc., Providence, R.I.
[14] M. Kneser, Lectures on Galois cohomology of classical groups, With an appendix by T. A. Springer. Notes by P. Jothilingam. Tata Institute of Fundamental Research Lectures on Mathematics, No. 47. Tata Institute of Fundamental Research, Bombay, 1969. ii +158 pp.
[15] M.-A. Knus, A.S. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, A.M.S, Providence RI, 1998.
[16] T. Y. Lam, Introduction to Quadratic Forms over Fields, Grad. Stud. Math. 67, Amer. Math. Soc., Providence, RI, 2005.
[17] J. Lipman, Introduction to resolution of singularities, in Algebraic geometry, pp, 187-230. American Mathematical Society, Providence, R.I, 1975.
[18] R. Parimala, R. Preeti and V. Suresh, Local-global principle for reduced norms over function fields of p-adic curves, Compos. Math. 154 (2018), 410-458.
[19] R. Parimala and V. Suresh, Local-global principle for classical groups over function fields of p-adic curves, Commentari Math. Helv. 97 (2022), 255-304.
[20] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80.
[21] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Math. Wiss., Vol. 270, Berlin, Heidelberg, New York 1985.
[22] Z. Wu, Hasse principle for hermitian spaces over semi-global fields, J. Algebra 458 (2016), 171-196.

