The Joint Effects of Diabetes and Depression on Stroke in the Atherosclerosis Risk in Communities (ARIC) Study 公开
Chai Yunjie (Summer 2025)
Abstract
1 Abstract
1.1 Background and Objectives
Although diabetes and depression are well recognized risk factors for stroke, their joint
effects on stroke risk remain underexplored. This study used data from the Atheroscle-
rosis Risk in Communities (ARIC) Study to quantify combined associations of prestroke
depression and diabetes with stroke risk, and to investigate the predictive potential of
depression-diabetes multimorbidity on stroke risk using logistic regression and machine
learning models.
1.2 Methods
We analyzed 5,459 ARIC participants who attended Visit 5 (2011–2013), were free of
prior stroke, and had complete data on diabetes and depressive symptoms (CES-D ≥9).
Participants were classified into four exposure groups: no diabetes or depression, dia-
betes only, depression only, and both diabetes and depression. Incident stroke events
were ascertained through 2020 via adjudicated hospitalization records. Cox proportional
hazards models estimated hazard ratios and 95% confidence intervals across three adjust-
ment levels: unadjusted, adjusted for age, sex, and race, and fully adjusted. We then
applied XGBoost classifier and stepwise logistic regression (AIC-based). Model discrim-
ination was assessed by AUC.
1.3 Result
Over a median 7.8-year follow-up, 233 incident strokes occurred. In the fully adjusted
Cox model, individuals with both depression and diabetes had the highest risk of stroke
(HR 1.95; 95% CI 1.05–3.60), compared to reference. Diabetes only (HR 1.22; 95% CI
0.91–1.63) and depression only (HR 1.12; 95% CI 0.55–2.30) showed weaker, non-significant
associations. The XGBoost model achieved moderate discrimination, improving recall for
stroke cases from 0.40 to 0.62 through threshold adjustment. The final logistic regression
model included age, prevalent CHD, the depression×diabetes interaction (p=0.025), and
hypertension, yielding a C-statistic of 0.625 (95%CI 0.59–0.66).
1.4 Conclusion
Prestroke depression-diabetes multimorbidity suggests a synergistic increase in stroke
risk beyond individual effects. However, the stroke risk predictive performance of the
models was constrained by class imbalance and limited predictor scope. These findings
demonstrates the importance of integrated metabolic and mental health management to
mitigate stroke risk.
Table of Contents
Contents
1 Abstract 2
1.1 Background and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Introduction 3
3 Methods 4
3.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Study Population and Inclusion/Exclusion Criteria . . . . . . . . . . . . 4
3.3 Exposure definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.1 Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.2 Depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Outcome definition: Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5.1 Sociodemographic Variables . . . . . . . . . . . . . . . . . . . . . 5
3.5.2 Lifestyle Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5.3 Clinical and Anthropometric Variables . . . . . . . . . . . . . . . 6
3.5.4 Medical history variables . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6.1 Cox Proportional Hazards Model . . . . . . . . . . . . . . . . . . 7
3.6.2 Machine Learning Prediction Model . . . . . . . . . . . . . . . . . 7
3.6.3 Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Variables included in each model . . . . . . . . . . . . . . . . . . . . . . 9
3.7.1 Cox Proportional Hazards Model . . . . . . . . . . . . . . . . . . 9
3.7.2 Machine Learning Prediction Model . . . . . . . . . . . . . . . . . 9
3.7.3 Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . 10
4 Results 10
4.1 Baseline Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Cox Proportional Hazards Model . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Machine Learning model: Prediction of stroke risk . . . . . . . . . . . . . 17
4.4 Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Discussion 20
About this Master's Thesis
School | |
---|---|
Department | |
Subfield / Discipline | |
Degree | |
Submission | |
Language |
|
Research Field | |
关键词 | |
Committee Chair / Thesis Advisor |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
|
The Joint Effects of Diabetes and Depression on Stroke in the Atherosclerosis Risk in Communities (ARIC) Study () | 2025-07-28 16:41:19 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|