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Abstract 
 

Large The Joint Effects of Diabetes and Depression on Stroke in the Atherosclerosis Risk in 
Communities (ARIC) Study 

 
By Yunjie Chai 

  
1 Abstract 

1.1 Background and Objectives 
Although diabetes and depression are well recognized risk factors for stroke, their joint 
effects on stroke risk remain underexplored. This study used data from the Atheroscle- 

rosis Risk in Communities (ARIC) Study to quantify combined associations of prestroke 
depression and diabetes with stroke risk, and to investigate the predictive potential of 

depression-diabetes multimorbidity on stroke risk using logistic regression and machine 
learning models. 

1.2 Methods 
We analyzed 5,459 ARIC participants who attended Visit 5 (2011–2013), were free of 
prior stroke, and had complete data on diabetes and depressive symptoms (CES-D ≥9). 
Participants were classified into four exposure groups: no diabetes or depression, dia- 
betes only, depression only, and both diabetes and depression. Incident stroke events 

were ascertained through 2020 via adjudicated hospitalization records. Cox proportional 
hazards models estimated hazard ratios and 95% confidence intervals across three adjust- 

ment levels: unadjusted, adjusted for age, sex, and race, and fully adjusted. We then 
applied XGBoost classifier and stepwise logistic regression (AIC-based). Model discrim- 

ination was assessed by AUC. 
1.3 Result 

Over a median 7.8-year follow-up, 233 incident strokes occurred. In the fully adjusted 
Cox model, individuals with both depression and diabetes had the highest risk of stroke 
(HR 1.95; 95% CI 1.05–3.60), compared to reference. Diabetes only (HR 1.22; 95% CI 

0.91–1.63) and depression only (HR 1.12; 95% CI 0.55–2.30) showed weaker, non-significant 
associations. The XGBoost model achieved moderate discrimination, improving recall for 
stroke cases from 0.40 to 0.62 through threshold adjustment. The final logistic regression 
model included age, prevalent CHD, the depression×diabetes interaction (p=0.025), and 

hypertension, yielding a C-statistic of 0.625 (95%CI 0.59–0.66). 
1.4 Conclusion 

Prestroke depression-diabetes multimorbidity suggests a synergistic increase in stroke 
risk beyond individual effects. However, the stroke risk predictive performance of the 

models was constrained by class imbalance and limited predictor scope. These findings 
demonstrates the importance of integrated metabolic and mental health management to 

mitigate stroke risk. 
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1 Abstract

1.1 Background and Objectives

Although diabetes and depression are well recognized risk factors for stroke, their joint
effects on stroke risk remain underexplored. This study used data from the Atheroscle-
rosis Risk in Communities (ARIC) Study to quantify combined associations of prestroke
depression and diabetes with stroke risk, and to investigate the predictive potential of
depression-diabetes multimorbidity on stroke risk using logistic regression and machine
learning models.

1.2 Methods

We analyzed 5,459 ARIC participants who attended Visit 5 (2011–2013), were free of
prior stroke, and had complete data on diabetes and depressive symptoms (CES-D ≥9).
Participants were classified into four exposure groups: no diabetes or depression, dia-
betes only, depression only, and both diabetes and depression. Incident stroke events
were ascertained through 2020 via adjudicated hospitalization records. Cox proportional
hazards models estimated hazard ratios and 95% confidence intervals across three adjust-
ment levels: unadjusted, adjusted for age, sex, and race, and fully adjusted. We then
applied XGBoost classifier and stepwise logistic regression (AIC-based). Model discrim-
ination was assessed by AUC.

1.3 Result

Over a median 7.8-year follow-up, 233 incident strokes occurred. In the fully adjusted
Cox model, individuals with both depression and diabetes had the highest risk of stroke
(HR 1.95; 95% CI 1.05–3.60), compared to reference. Diabetes only (HR 1.22; 95% CI
0.91–1.63) and depression only (HR 1.12; 95% CI 0.55–2.30) showed weaker, non-significant
associations. The XGBoost model achieved moderate discrimination, improving recall for
stroke cases from 0.40 to 0.62 through threshold adjustment. The final logistic regression
model included age, prevalent CHD, the depression×diabetes interaction (p=0.025), and
hypertension, yielding a C-statistic of 0.625 (95%CI 0.59–0.66).

1.4 Conclusion

Prestroke depression-diabetes multimorbidity suggests a synergistic increase in stroke
risk beyond individual effects. However, the stroke risk predictive performance of the
models was constrained by class imbalance and limited predictor scope. These findings
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demonstrates the importance of integrated metabolic and mental health management to
mitigate stroke risk.

2 Introduction

Stroke remains one of the leading causes of long-term disability and death worldwide
(World Health Organization, 2025). According to FastStats from the CDC, there were
162,639 deaths attributed to cerebrovascular disease in the United States in 2023, making
stroke the fourth leading cause of death nationally (Centers for Disease Control and
Prevention, 2024). Beyond its human toll, stroke imposes a substantial economic burden.
The direct medical costs in the United States for stroke were estimated at $52.8 billion
for 2017–2018, including the cost of healthcare services, medications, and missed days of
work (Tsao et al., 2022).

Among established vascular risk factors, both diabetes and depression play significant
roles. Diabetes mellitus contributes to chronic inflammation, endothelial dysfunction, and
metabolic derangement, which accelerate vascular damage (R. Chen et al., 2016). Major
depression has been associated with behavioral dysregulation, hypothalamic–pituitary–
adrenal (HPA) axis disturbance, and elevated inflammatory cytokines (R. Chen et al.,
2016; Emerging Risk Factors Collaboration, 2010). Each condition independently in-
creases the risk of stroke through pathways such as chronic inflammation, HPA axis,
and autonomic dysregulation, metabolic dysfunction, and adverse health behaviors (Pan
et al., 2011; Sacco et al., 2015). These overlapping mechanisms suggest the potential for
synergistic effects on vascular health when both conditions are present.

Evidence from large cohort studies supports the adverse impact of multimorbidity,
particularly involving diabetes and depression, on stroke risk and post-stroke outcomes.
Ouk et al. (Ouk et al., 2020) found that patients with both conditions had substantially
higher risks of institutionalisation and post-stroke dementia, particularly among women.
A meta-analysis also indicated that depression is associated with a 1.5-fold increase in all-
cause and cardiovascular mortality among individuals with diabetes (van Dooren et al.,
2013). In addition, studies have shown that diabetes itself is a significant risk factor for
stroke. The Northern Manhattan Study demonstrated that each additional year of dia-
betes duration increases the risk of ischemic stroke by 3%, with risk tripling in individuals
living with diabetes for over ten years (Banerjee et al., 2012). Furthermore, multimor-
bidity has been consistently associated with worse post-stroke outcomes and increased
mortality in large-scale cohort studies (Gallacher et al., 2018). Gallacher analysed data
from 8,751 UK Biobank participants with stroke or transient ischaemic attack (TIA)
and found that over 85% had at least one additional long-term condition. Increasing
multimorbidity was associated with higher all-cause mortality, with diabetes, depression,
cancer, and coronary heart disease among the conditions significantly linked to increased
risk. These results underscore the importance of incorporating multimorbidity into stroke
research and clinical guidelines.

In addition to clinical risk factors, biomarker research has identified elevated levels
of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phospho-
rylated tau (p-tau181 and p-tau217) as markers of neuroinflammation and white-matter
injury (Sanchez et al., 2025). These markers may link neurovascular damage with neu-
rodegenerative processes.

Despite these findings, the interactive effects of depression and diabetes on stroke risk
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and outcomes remain undercharacterized, particularly in studies that integrate longitu-
dinal data and advanced modeling strategies. To address these gaps, this study aims to
first use the Atherosclerosis Risk in Communities (ARIC) longitudinal cohort and Cox
proportional hazards models to quantify the joint effect of depression and diabetes on
time to stroke occurrence, providing interpretable hazard ratios for relative risk. Sec-
ond, we will develop and validate machine learning models, including XGBoost, random
forests, and neural networks, to evaluate whether incorporating comorbidity information
improves personalized stroke risk prediction. By integrating these approaches, our study
seeks both to clarify the association between comorbidity and stroke risk and to enhance
predictive stratification for high-risk individuals.

3 Methods

3.1 Data Source

The Atherosclerosis Risk in Communities (ARIC) Study is a prospective, community-
based cohort established to investigate the causes and clinical consequences of atheroscle-
rosis (The ARIC Investigators, 1989). Between 1987 and 1989, the study enrolled 15,792
adults aged 45–64 years from four U.S. communities: Forsyth County, North Carolina;
Jackson, Mississippi; suburban Minneapolis, Minnesota; and Washington County, Mary-
land. Recruitment began in 1987, with baseline examinations completed by 1989.

Participants have been followed longitudinally through repeated in-person examina-
tions and annual (semiannual since 2012) telephone interviews to ascertain cardiovascular
events, comorbid conditions, hospitalizations, and mortality. As of 2020, eight examina-
tion visits have been completed: Visit 1 (1987–1989), Visit 2 (1990–1992), Visit 3 (1993–
1995), Visit 4 (1996–1998), Visit 5 (2011–2013), Visit 6 (2016–2017), Visit 7 (2018–2019),
and Visit 8 (2020).

The ARIC Study is supported by the National Heart, Lung, and Blood Institute
(NHLBI) and approved by the institutional review boards of all participating institutions.
Written informed consent was obtained from all participants at each study visit(The
ARIC Investigators, 1989; Wright et al., 2021).

3.2 Study Population and Inclusion/Exclusion Criteria

Participants who attended Visit 5 (2011–2013) of the Atherosclerosis Risk in Commu-
nities (ARIC) Study (n = 6,538) were eligible for inclusion. This Study used Visit 5
as the baseline. Prevalent ischemic stroke or transient ischemic attack (TIA) at visit 5
was determined base on self-reported stroke history and adjudicated surveillance events.
Participants identified as having prevalent ischemic stroke or transient ischemic attack
at visit 5 were excluded (n = 209). Participants were excluded if they had missing data
on diabetes status (n = 262). Participants missing depression assessment based on the
self-reported depression scale were excluded (n = 139). Participants with missing prior
stroke/TIA status (n = 11), or other key baseline covariates (n = 445) were also excluded.
In addition, individuals who self identified with racial groups other than Black or White
were excluded due to small sample sizes (n = 18). The final analytic sample comprised
5,459 participants (Figure 3.2).Based on Visit 5 assessments, participants were catego-
rized into four exposure groups: (1) no diabetes and no depression, (2) diabetes only, (3)
depression only, and (4) both diabetes and depression.
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3.3 Exposure definition

3.3.1 Diabetes

Diabetes was defined as meeting at least one of the following criteria: self-reported physi-
cian diagnosis, self-reported use of diabetes medications, non-fasting blood glucose level
≥200 mg/dL, fasting blood glucose (FBG) ≥126 mg/dL, or hemoglobin A1c (HbA1c)
≥6.5%. Among individuals identified as having diabetes, glycemic control was further
categorized as controlled (HbA1c < 7%) or uncontrolled (HbA1c ≥7%), consistent with
glycemic targets recommended by the American Diabetes Association (American Dia-
betes Association, 2021).

3.3.2 Depression

Depressive symptoms at Visit 5 were assessed using the 11-item version of the Center for
Epidemiologic Studies Depression Scale (CES-D), a validated short form of the original
20-item scale developed for use in older adult populations (Kohout et al., 1993). The CES-
D score was analyzed both as a continuous measure to capture the severity of depressive
symptoms and as a binary indicator of clinically elevated symptoms. Based on prior
validation research, a cutoff score of ≥9 was used to define clinically significant depressive
symptoms (Takeshita et al., 2002).

3.4 Outcome definition: Stroke

The primary outcome was incident stroke, defined as the first definite or probable stroke
event (of any type) occurring after Visit 5 among participants without prior stroke at
baseline. Stroke events were ascertained using ARIC’s active surveillance system, which
included annual or semiannual participant interviews, review of hospital discharge sum-
maries and ICD-9-CM codes (430–438), and keyword searches in medical records (e.g.,
“stroke,” “aphasia,” “cerebrovascular disease”). Stroke hospitalizations were eligible for
validation if any cerebrovascular ICD codes were recorded or relevant keywords were
identified in discharge summaries or clinical notes. Detailed medical record abstraction
was performed, and diagnoses were adjudicated by trained physicians based on modified
National Survey of Stroke criteria.

A stroke was classified as definite or probable if there was evidence of a sudden or
rapid onset of neurological symptoms lasting >24 hours or leading to death, in the absence
of a non-stroke cause (e.g., trauma, tumor, metabolic coma). Diagnostic confirmation
was based on clinical presentation, imaging (CT/MRI), and physician review. The final
classification incorporated both computer-generated diagnoses and physician consensus.
Disagreements were resolved by a second reviewer (Rosamond et al., 1999).

3.5 Covariates

All covariates were assessed at Visit 5 (2011–2013) unless otherwise specified (Graff-
Radford et al., 2017).

3.5.1 Sociodemographic Variables

Age Age was calculated from the participant’s date of birth and the date of Visit 5. The
mean age of participants at Visit 5 was approximately 75 ± 5 years.
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Gender Gender was self-reported as male or female.
Race Race was self-reported and categorized as Black or White. Participants of other

racial groups (e.g., Asian, Native American) were excluded due to small sample sizes.
Center Center refers to the ARIC field centers where participants were recruited

and examined. These include: Washington County, Maryland; Forsyth County, North
Carolina; Jackson, Mississippi; and suburbs of Minneapolis, Minnesota.

3.5.2 Lifestyle Variables

Smoking status Smoking status was self-reported at Visit 5 using ARIC study proto-
cols and categorized as never, former, or current smoker. In the ARIC questionnaire,
participants who reported smoking fewer than 400 cigarettes in their lifetime were classi-
fied as never smokers, consistent with ARIC definitions. Some prior literature had used
a ≥100 cigarette threshold to define ever smoking(Howard et al., 1998), however, this
study adheres to the original ARIC classification. Former smokers had smoked at least
400 cigarettes in their lifetime but had quit smoking at the time of the interview. Current
smokers were currently smoking at the time of the interview, either every day or on some
days.

Drinker status Drinker status was self reported using the ARIC Alcohol and Smok-
ing Form. Participants were categorized as never, former, or current drinkers.

3.5.3 Clinical and Anthropometric Variables

Body Mass Index (BMI) BMI was calculated as weight in kilograms divided by height
in meters squared (kg/m2). Participants were categorized as underweight (< 18.5), nor-
mal weight (18.5–24.9), overweight (25–29.9), or obese (≥ 30).

HypertensionHypertension was defined as systolic blood pressure (BP)≥140 mmHg,
diastolic BP ≥90 mmHg, or current use of antihypertensive medications. Systolic and
diastolic BP were measured during the physical examination.

Antihypertensive Medication Use of antihypertensive medications was based on
self-reported medication use during the past four weeks prior to Visit 5. Participants
were instructed to bring all prescription and over-the-counter medications taken within
the two weeks prior to the clinic visit, including vitamins and supplements, in their
original containers (“ARIC Visit5 Medication Instruction Sheet”, 2011).

3.5.4 Medical history variables

Previous CHD Previous Coronary Heart Disease (CHD) was defined as death from
CHD and definite or probable fatal and nonfatal myocardial infarction (MI).

Previous Heart Failure Previous Heart Failure (HF) was defined as a physician
report or hospitalization records with ICD-9 code 428.x in the primary discharge position
(Rosamond et al., 1999).

3.6 Statistical Analysis

A two stage analysis was conducted to evaluate the association between comorbidity of
depression and diabetes with incident stroke, using both traditional Cox proportional
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hazards regression and machine learning prediction models. Additionally, logistic regres-
sion with stepwise selection was used to supplement the predictive findings of the machine
learning model.

3.6.1 Cox Proportional Hazards Model

The Cox proportional hazards model was used to estimate the association between co-
morbidity status and risk of incident stroke. The Cox model is expressed by the hazard
function denoted by h(t). It can be expressed as follow (Cox, 1972):

h(t|X) = h0(t) exp(β1X1 + β2X2 + · · ·+ βpXp) (1)

where:

• h(t|X): hazard function at time t for an individual with covariate vector X

• h0(t): baseline hazard function

• β1, β2, . . . , βp: regression coefficients

• X1, X2, . . . , Xp: covariates included in the model

The exposure variable was a four level categorical variable indicating comorbidity
status: No diabetes and no depression (reference group), Diabetes only, Depression only,
Both diabetes and depression. Hazard ratios and 95% confidence intervals were estimated
in three models: Unadjusted model, Adjusted for some variables, Fully adjusted for all
variables. Kaplan–Meier survival curves were generated to compare stroke-free survival
across comorbidity groups. Statistical differences in survival curves were evaluated using
the log-rank test, Wilcoxon test, and likelihood ratio test. To assess the proportional
hazards assumption of the Cox models, log(-log) survival curves were plotted against
log(time). A two-sided p-value < 0.05 was considered statistically significant.

3.6.2 Machine Learning Prediction Model

To complement traditional Cox regression analysis and explore the predictive utility of
depression-diabetes multimorbidity, a machine learning model was developed to classify
individuals at high risk of stroke. Participants with complete outcome and covariate data
were included. The outcome variable was incident stroke. Predictor variables included
sociodemographic, lifestyle, clinical, and medical history factors from Visit 5. Categorical
variables were converted into dummy variables. Additional derived features were engi-
neered. The dataset was split into training (80%) and testing (20%) sets. Given the low
prevalence of incident stroke, Borderline-SMOTE was applied to oversample the minority
class in the training set. All features were scaled using StandardScaler. XGBoostClassi-
fier, a gradient boosting decision tree algorithm, with hyperparameters optimized through
grid search and 3-fold cross-validation was used. The XGBoost model minimizes the fol-
lowing regularized logistic loss function for binary classification (T. Chen & Guestrin,
2016):

L(ϕ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (2)

where:
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Ω(fk) = γT +
1

2
λ∥w∥2 (3)

• L(ϕ): total objective function to be minimized

• l(yi, ŷi): logistic loss between the observed outcome yi and predicted probability ŷi

• fk: the k-th regression tree in the ensemble

• Ω(fk): regularization term penalizing the complexity of tree fk

• T : number of leaves in the decision tree

• w: vector of scores on the leaves

• γ: penalty for each additional leaf node

• λ: L2 regularization parameter on leaf weights

Model performance was evaluated on the testing set using Area Under the Receiver
Operating Characteristic Curve, Area Under the Precision-Recall Curve, Classification
report ,Confusion matrix, and Threshold optimization to achieve recall ≥ 60%, Model
interpretability was further explored using feature importance plots.

3.6.3 Logistic Regression Model

We additionally conducted a logistic regression analysis with stepwise variable selection to
explore the predictive ability of depression-diabetes multimorbidity and other covariates
for incident stroke. The logistic regression model has the following form:

log

(
p

1− p

)
= β0 + β1X1 + β2X2 + · · ·+ βkXk (4)

where:

• p: the predicted probability of incident stroke

• β0: intercept term

• β1, β2, . . . , βk: regression coefficients

• X1, X2, . . . , Xk: covariates selected via stepwise variable selection

Stepwise selection was based on the Akaike Information Criterion (AIC), which eval-
uates model fit while penalizing model complexity(Akaike, 1974).

AIC = 2k − 2 ln(L) (5)

where:

• k: the number of model parameters

• L: the maximum likelihood of the model
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The final model’s predictive performance was evaluated using the area under the
receiver operating characteristic (ROC) curve (AUC). An AUC value closer to 1 indicates
better discrimination.

By integrating traditional regression models (Cox and logistic) with machine learning
approaches, this study aimed to both quantify the relative risk of stroke associated with
depression-diabetes multimorbidity and evaluate its predictive value.

3.7 Variables included in each model

3.7.1 Cox Proportional Hazards Model

Exposure: Comorbidity status of depression and diabetes, modeled as a categorical
variable with four levels:
0 = neither condition (reference), 1 = diabetes only, 2 = depression only, 3 = both
conditions.

Outcome: Incident stroke, which is time to stroke (in days) paired with stroke status
(where 1 = stroke event, and 0 = censored (no event))

Table 1: Covariates included in Each Cox Proportional Hazards Model

Model Covariates

Model 1 (Unadjusted) None

Model 2 (Adjusted) Age
Gender (reference: Female)
Race (reference: White)

Model 3 (Fully Adjusted) Age
Gender (reference: Female)
Race (reference: White)
Smoking status (reference: Never)
Drinking status (reference: Never)
Body mass index
Hypertension (reference: No)
Antihypertensive medication use (reference: No)
History of heart failure (reference: No)
History of coronary heart disease (reference: No)

3.7.2 Machine Learning Prediction Model

The outcome variable was incident stroke (binary). Features included the following: Age,
Gender, Race, Smoking status, Drinking status ,Body Mass Index, Hypertension status,
Antihypertensive medication use, History of coronary heart disease, History of heart
failure, Comorbidity status of depression and diabetes
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3.7.3 Logistic Regression Model

To examine whether depression and diabetes exerts a synergistic effect on stroke risk, an
interaction term was created, defined as the product of depression status and diabetes
status. This variable equals 1 only when both conditions are present and 0 otherwise.
This interaction was included with other covariates in a multivariable logistic regression
model using stepwise variable selection. Other covariates include: Depression status,
Diabetes status, Age, Gender, Race, Smoking status, Drinking status ,Body Mass Index,
Hypertension status, Antihypertensive medication use, History of coronary heart disease
and History of heart failure. The outcome is stroke.

4 Results

4.1 Baseline Characteristics

Among the 5459 participants in the study, the mean age was 75.4 years, and 58.3 per-
cent were female. 3527 of 5459 participants had no diabetes or depression, 1594 had
diabetes only, 185 had depression only, with 153 had both conditions. Among the four
exposure groups, individuals with both depression and diabetes had the highest mean
BMI, and the highest proportions of females, Black participants, hypertension, use of
antihypertensive medication, and prevalent heart failure. Among all participants, 4.3%
(n=233) experienced an incident stroke during follow-up. The stroke risk was highest in
participants with both diabetes and depression (7.8%). These results suggest a possible
synergistic effect of diabetes and depression on stroke risk.

Table 2: Baseline Characteristics of Participants by Comorbidity Status

Variable
Total
Cohort
(n=5459)

No
Diabetes/
Depression
(n=3527)

Diabetes
Only

(n=1594)

Depression
Only

(n=185)

Diabetes
and

Depression
(n=153)

Continuous variables
mean (SD)

BMI(kg/m2) 28.75 (5.69) 27.66 (5.23) 30.70 (5.76) 28.89 (5.88) 33.39 (7.06)

CES-D Score 3.04 (2.96) 2.42 (2.14) 2.76 (2.25) 10.86 (1.97) 10.84 (2.07)

Age(years) 75.42 (5.08) 75.39 (5.06) 75.44 (5.04) 76.19 (5.79) 74.97 (5.30)

Systolic
BP(mmHg)

130.12
(18.04)

129.94
(17.72)

130.37
(18.70)

130.71
(17.28)

130.91
(19.25)

Diastolic
BP(mmHg)

66.22 (10.73) 66.65 (10.70) 65.08 (10.67) 67.67 (10.32) 66.31 (11.50)

Continued on next page
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Table 2 (continued)

Variable
Total
Cohort

No
Diabetes/
Depression

Diabetes
Only

Depression
Only

Diabetes
and

Depression

Categorical variables
n (%)

Center

Forsyth
1151

(21.08%)
788

(22.34%)
293

(18.38%)
44

(23.78%)
26

(16.99%)

Jackson
1126

(20.63%)
587

(16.64%)
425

(26.66%)
56

(30.27%)
58

(37.91%)

Minneapolis
1699

(31.12%)
1250

(35.44%)
405

(25.41%)
33

(17.84%)
11

(7.19%)

Washington
1483

(27.17%)
902

(25.57%)
471

(29.55%)
52

(28.11%)
58

(37.91%)

Gender

Female
3182

(58.29%)
2112

(59.88%)
843

(52.89%)
119

(64.32%)
108

(70.59%)

Male
2277

(41.71%)
1415

(40.12%)
751

(47.11%)
66

(35.68%)
45

(29.41%)

Race

Black
1226

(22.46%)
638

(18.09%)
467

(29.30%)
60

(32.43%)
61

(39.87%)

White
4233

(77.54%)
2889

(81.91%)
1127

(70.70%)
125

(67.57%)
92

(60.13%)

Drinking
Status

Current
2721

(49.84%)
1936

(54.89%)
670

(42.03%)
76

(41.08%)
39

(25.49%)

Former
1570

(28.76%)
893

(25.32%)
552

(34.63%)
61

(32.97%)
64

(41.83%)

Never
1168

(21.40%)
698

(19.79%)
372

(23.34%)
48

(25.95%)
50

(32.68%)

Smoking
Status

Continued on next page
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Table 2 (continued)

Variable
Total
Cohort

No
Diabetes/
Depression

Diabetes
Only

Depression
Only

Diabetes
and

Depression

Current
320

(5.86%)
209

(5.93%)
77

(4.83%)
21

(11.35%)
13

(8.50%)

Former
2650

(48.54%)
1685

(47.77%)
807

(50.63%)
93

(50.27%)
65

(42.48%)

Never
2173

(39.81%)
1440

(40.83%)
615

(38.58%)
56

(30.27%)
62

(40.52%)

Unknown
316

(5.79%)
193

(5.47%)
95

(5.96%)
15

(8.11%)
13

(8.50%)

Hypertension
Status

No
1412

(25.87%)
1105

(31.33%)
232

(14.55%)
57

(30.81%)
18

(11.76%)

Yes
4047

(74.13%)
2422

(68.67%)
1362

(85.45%)
128

(69.19%)
135

(88.24%)

Prevalent
Heart Failure

No
4792

(87.78%)
3214

(91.13%)
1313

(82.37%)
155

(83.78%)
110

(71.90%)

Yes
667

(12.22%)
313

(8.87%)
281

(17.63%)
30

(16.22%)
43

(28.10%)

Prevalent
CHD

No
4642

(85.03%)
3082

(87.38%)
1274

(79.92%)
160

(86.49%)
126

(82.35%)

Yes
817

(14.97%)
445

(12.62%)
320

(20.08%)
25

(13.51%)
27

(17.65%)

Incident
Stroke

No
5226

(95.73%)
3391

(96.40%)
1517

(95.17%)
177

(95.68%)
141

(92.16%)

Yes
233

(4.27%)
136

(3.86%)
77

(4.83%)
8

(4.32%)
12

(7.84%)
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4.2 Cox Proportional Hazards Model
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Visit 5 Participants
(n = 6,538)

Exclude: Prior Stroke/TIA
(n = 209)

Exclude: Missing Diabetes Status
(n = 262)

Exclude: Missing Depression Score
(n = 139)

Exclude: Missing Prior Stroke/TIA status
(n = 11)

Exclude: Other Covariates Missing
(n = 445)

Exclude: Asian (n = 12), Native American (n = 6)
Total n = 18

Final Analytic Sample
(n = 5,459)

Exposure Groups:
1) No diabetes, no depression

2) Diabetes only
3) Depression only

4) Both diabetes and depression

Figure 1: Study Population Selection Diagram
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Table 3: Hazard Ratios (HR) and 95% Confidence Intervals for Incident Stroke by Ex-
posure Group

Exposure
Stroke
events
(n)

Model 1
HR

(95% CI)

Model 2
HR

(95% CI)

Model 3
HR

(95% CI)

No Diabetes or Depression 136 1.00 1.00 1.00

Diabetes only 77
1.367

(1.034–1.809)
1.335

(1.007–1.770)
1.215

(0.906–1.629)

Depression only 8
1.310

(0.642–2.673)
1.215

(0.595–2.483)
1.120

(0.546–2.296)

Diabetes and Depression 12
2.379

(1.318–4.295)
2.359

(1.302–4.274)
1.946

(1.051–3.601)

Model 1: Unadjusted According to the unadjusted Cox proportional hazards
model, individuals with diabetes and depression multimorbidity had the highest risk
of incident stroke. Compared to those without diabetes or depression, individuals with
diabetes only had a 37% higher risk of stroke (HR = 1.367, 95% CI: 1.034–1.809), and
those with depression had a 31% higher risk (HR = 1.310, 95% CI: 0.642–2.673). In-
dividuals with both diabetes and depression had a 132% higher risk of stroke (HR =
2.379, 95% CI: 1.318–4.295) compared to reference group. The confidence interval does
not include 1, indicating that this association is statistically significant. However, the
small event counts in Depression only group and Diabetes and Depression group yield
wider confidence intervals. These findings highlight the increased stroke risk associated
with depression and diabetes, especially when both conditions are present.

Model 2: Adjusted for Age Gender Race Adjusting for age, sex and race in
model 2, the association remained significant for the multimorbidity group (HR=2.359,
95% CI: 1.302–4.274) with a hazard ratio comparable to that in unadjusted model. Mul-
timorbidity status still plays an important role in predicting stroke.

Model 3: Fully adjusted In the fully adjusted model, the hazard ratio for the
multimorbidity group remained high (HR=1.946, 95% CI: 1.051–4.274 ). The association
was statistically significant,indicating the effect of multimorbidity on stroke risk.

Kaplan-Meier Survival Curve Analysis and Log-Rank Tests:
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Figure 2: Kaplan–Meier survival curves by comorbidity group

Figure 2 displays the Kaplan–Meier survival curves stratified by comorbidity status.
Individuals with both diabetes and depression consistently exhibited the lowest survival
probabilities over time, reflecting the highest risk of incident stroke. In contrast, partic-
ipants without diabetes or depression had the highest survival probabilities, suggesting
the lowest stroke risk. These visual patterns are consistent with the findings from the
Cox regression models, which revealed a stepwise increase in hazard ratios with increasing
comorbidity burden.

Statistical tests confirmed the differences in survival across comorbidity groups, with
significant results from the log-rank test (χ2 = 11.74, p = 0.0083), the Wilcoxon test
(χ2 = 8.75, p = 0.0329), and the likelihood ratio test (−2 logL, χ2 = 9.33, p = 0.0252).
These results underscore the prognostic importance of comorbidity of depression and
diabetes in predicting stroke risk.

Log(-log) Survival Plot: Assessment of Proportional Hazards Assumption
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Figure 3: Log(-log) survival curves by comorbidity group

Figure 3 presents the log(-log) survival curves plotted against log(time) for each co-
morbidity group. Ideally, if the assumption holds, the curves for different groups should
be approximately parallel. In this case, some deviations are observed, particularly for the
multimorbidity group. These deviations may be attributed to smaller event counts and
increased right-censoring in certain strata. While the curves were generally aligned, the
proportional hazards assumption was considered acceptable for the present analysis.

4.3 Machine Learning model: Prediction of stroke risk

To investigate the predictive potential of depression-diabetes multimorbidity on stroke
risk, a machine learning model was developed.
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Table 4: Classification Metrics for Stroke Prediction at Two Thresholds

Threshold = 0.5

Class Precision Recall F1 Score

No Stroke 0.96 0.61 0.74

Stroke 0.04 0.40 0.08

Accuracy = 0.60

Threshold = 0.258

Class Precision Recall F1 Score

No Stroke 0.96 0.45 0.61

Stroke 0.05 0.62 0.09

Accuracy = 0.45
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Figure 4: Confusion Matrix

This figure presents a Confusion Matrix, which summarizes the performance of a
binary classification model in predicting stroke at a threshold of 0.258. The matrix
shows:

• True Negatives (TN): 466 individuals correctly identified as not having a stroke.

• False Positives (FP): 579 individuals incorrectly predicted to have a stroke.

• False Negatives (FN): 18 individuals incorrectly predicted as stroke-free.

• True Positives (TP): 29 individuals correctly identified as having a stroke.

Table 4 shows that the model achieved high precision for stroke free individuals,
indicating that most predicted non-stroke cases were accurate. However, recall for stroke
cases was low, reflecting underdetection of the minority class when using the default
classification threshold of 0.5. In After adjusting the threshold, recall for stroke cases
were improved to 0.62, enhancing the model’s potential utility for screening purposes.
However, this improvement came at the cost of reduced precision, leading to a higher
rate of false positives, which is a trade off.

While the model captured a signal from depression and diabetes multimorbidity with
other covariates, its overall performance in identifying high and low risk individuals re-
mained limited. These results indicate that depression and diabetes comorbidity con-
tributes to stroke risk stratification. However, the severe class imbalance and restricted
predictor strength may have constrained the model’s predictive capability.
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4.4 Logistic Regression Model

Table 5: Summary of Stepwise Selection for Logistic Regression Predicting Stroke Risk

Step Effect Entered DF Score Chi-Square Pr > ChiSq

1 age 1 24.8979 <0.0001

2 Prevalent CHD 1 13.7432 0.0002

3 Depression × Diabetes 1 5.0107 0.0252

4 Hypertension 1 3.3129 0.0687

Table 5 summarizes the variables selected through stepwise logistic regression to predict
incident stroke. Age was the strongest predictor, followed by prevalent coronary heart
disease, which remained significant. Importantly, the interaction term between depression
and diabetes was also retained in the model (p = 0.0252), suggesting a synergistic effect of
the two conditions on stroke risk. Hypertension status showed a trend toward significance,
indicating its potential relevance. The final stepwise logistic model achieved a c-statistic
of 0.625 (95% CI 0.589–0.661). While a c statistics of 0.5 suggests no discrimination, and
a c statistic of 1 means perfect discrimination, this model falls in the range of moderate
but limited discrimination.

5 Discussion

In this community-based prospective cohort of the ARIC Study, we found that comor-
bidity of diabetes and depression was significantly associated with an increased risk of
incident stroke. Individuals with both conditions had the highest stroke incidence rate
(7.8%) and the highest hazard ratio across 4 exposure groups. In the fully adjusted Cox
PH model, this comorbidity group exhibited a 95% higher risk of stroke compared to
participants with neither condition. The Kaplan–Meier survival curves demonstrated the
lowest stroke-free survival probability among individuals with both diabetes and depres-
sion, which aligned with the Cox regression findings. In addition, results from logistic
regression with stepwise selection further supported these observations. The interaction
term between diabetes and depression was statistically significant, suggesting a non-
additive relationship between the two conditions. Together, these findings indicate that
the comorbidity of diabetes and depression has a synergistic effect on stroke risk beyond
their individual contributions.

This is the first study to evaluate the joint effect of diabetes and depression on incident
stroke using Cox PH model for risk estimation and machine learning model for risk
prediction, supplemented by stepwise logistic regression. Both diabetes and depression
have been found independently associated with stroke. (Pan et al., 2011; Banerjee et
al., 2012) However, limited research have been conducted on joint effects of diabetes
and depression on incident stroke. One prior study by Ouk (Ouk et al., 2020) found
out prestroke diabetes and depression were associated with increased risks of post stroke
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outcomes (e.g.dementia/institutionalization), without addressing the impact on incident
stroke.

Several biological mechanisms may explain the synergistic effects of diabetes and
depression on stroke risk. Both diabetes and depression are associated with chronic low
grade systemic inflammtion (Pradhan et al., 2001; Dantzer et al., 2008), a key contributor
to atherosclerosis and cerebrovascular disease. Although diabetes and depression operate
through distinct biological pathways, they converge on several shared pathophysiological
endpoints related to stroke. In diabetes, hyperglycemia promotes oxidative stress, en-
dothelial dysfunction, and vascular remodeling (Brownlee, 2005). In contrast, depression
exerts its effects through neuroendocrine dysregulation, including hyperactivation of the
hypothalamic-pituitary-adrenal (HPA) axis, elevated cortisol levels, and increased sym-
pathetic nervous system activity (Gold et al., 2015; Musselman et al., 1998). Despite
their different origins, both conditions contribute to endothelial injury, thrombophilia,
and decreased vascular tone, which may act synergistically to accelerate the progression
of ischemic cerebrovascular events. These provide a biological basis for the statistically
significant interaction observed in this study. The joint effect of diabetes and depression
may amplify cerebrovascular vulnerability beyond the sum of their individual effects,
indicating a synergistic mechanism of increased stroke risk in comorbid individuals.

The machine learning model used in this study provided complementary insight into
stroke risk prediction. The model achieved a recall of 0.62, suggesting a moderate ability
to identify high risk individuals. Although the precision was low, the model may still be
useful for preliminary screening in populations with comorbid diabetes and depression.
The performance of the model is largely limited by class imbalance and the scope of
predictor variables. We need to optimize and validate in external datasets.

These findings emphasize the importance of early identification and management of
individuals with both depression and diabetes. As the comorbid population shows an
increased risk in stroke, they should be considered as a priority population for primary
stroke prevention. Early identification of depressive symptoms in diabetic patients, and
vice versa, may help circumvent subsequent stroke through prompt intervention. Inte-
grating mental health care into chronic disease management, especially in primary care
settings, could help improve management of high risk individuals.

There are several limitations of our study. First, the number of the incident stroke
events was relatively small. This results in class imbalance, limited statitical power, and
wider confidence intervals for some estimates. Second, depression was assessed using
CESD scale, a self-reported screening tool rather than clinical diagnosis, which may
introduce misclassification bias. Third, the study population consisted primarily of older
adults, which may limit the generalizability of the findings to younger population. Lastly,
this is an observational study, we cannot establish causal relationship between diabetes,
depression and stroke.

Despite these limitations, the strengths of the study include the use of a large, well
characterized prospective cohort and the integration of both traditional epidemiological
methods and machine learning approaches to evaluate hazard ratios and enhance risk
prediction. This enables a more comprehensive understanding of how diabetes and de-
pression contribute to stroke risk. Future research should include clinical diagnosis of
depression and evaluate predictive models using real-world data across diverse popula-
tions. Expanding the sample size and making the phenotypic data more detailed may
strengthen the predictive model performance, enhancing the applicability in a wider pub-
lic health setting.
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pression and risk of stroke morbidity and mortality: A meta-analysis and system-
atic review. JAMA, 306 (11), 1241–1249. https://doi.org/10.1001/jama.2011.1282

Sacco, S., Ornello, R., Ripa, P., Pistoia, F., Degan, D., Tiseo, C., et al. (2015). Metabolic
syndrome and stroke: A meta-analysis of prospective studies. Journal of the Amer-
ican Heart Association, 4 (2), e001180. https://doi.org/10.1161/JAHA.114.001180

Ouk, M., Wu, C. Y., Colby-Milley, J., Fang, J., Zhou, L., Shah, B. R., et al. (2020).
Depression and diabetes mellitus multimorbidity is associated with loss of inde-
pendence and dementia poststroke. Stroke, 51 (12), 3658–3668. https://doi.org/
10.1161/STROKEAHA.120.031068

van Dooren, F. E., Nefs, G., Schram, M. T., Verhey, F. R., Denollet, J., & Pouwer,
F. (2013). Depression and risk of mortality in people with diabetes mellitus: A
systematic review and meta-analysis. PLoS ONE, 8 (3), e57058. https://doi.org/
10.1371/journal.pone.0057058

Banerjee, C., Moon, Y. P., Paik, M. C., Rundek, T., Mora-McLaughlin, C., Vieira, J. R.,
et al. (2012). Duration of diabetes and risk of ischemic stroke: The northern man-
hattan study. Stroke, 43 (5), 1212–1217. https://doi.org/10.1161/STROKEAHA.
111.641381

Gallacher, K. I., McQueenie, R., Nicholl, B., Jani, B. D., Lee, D., & Mair, F. S. (2018).
Risk factors and mortality associated with multimorbidity in people with stroke
or transient ischaemic attack: A study of 8,751 uk biobank participants. Journal
of Comorbidity, 8, 1–10. https://doi.org/10.15256/joc.2018.8.140

Sanchez, E., Coughlan, G. T., Wilkinson, T., Ramirez, J., Mirza, S. S., Baril, A.-A., et
al. (2025). Association of plasma biomarkers with longitudinal atrophy and mi-
crovascular burden on mri across neurodegenerative and cerebrovascular diseases
[Advance online publication]. Neurology, 104 (7). https://www.neurology.org/

The ARIC Investigators. (1989). The atherosclerosis risk in communities (aric) study:
Design and objectives. American Journal of Epidemiology, 129 (4), 687–702. https:
//pubmed.ncbi.nlm.nih.gov/2646917

Wright, J. D., Folsom, A. R., Coresh, J., Sharrett, A. R., Couper, D., Wagenknecht,
L. E., & Heiss, G. (2021). The aric (atherosclerosis risk in communities) study:

22

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://wonder.cdc.gov/ucd-icd10-expanded.html
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1161/CIR.0000000000001052
https://doi.org/10.1016/j.amjms.2016.01.011
https://doi.org/10.1016/S0140-6736(10)60484-9
https://doi.org/10.1001/jama.2011.1282
https://doi.org/10.1161/JAHA.114.001180
https://doi.org/10.1161/STROKEAHA.120.031068
https://doi.org/10.1161/STROKEAHA.120.031068
https://doi.org/10.1371/journal.pone.0057058
https://doi.org/10.1371/journal.pone.0057058
https://doi.org/10.1161/STROKEAHA.111.641381
https://doi.org/10.1161/STROKEAHA.111.641381
https://doi.org/10.15256/joc.2018.8.140
https://www.neurology.org/
https://pubmed.ncbi.nlm.nih.gov/2646917
https://pubmed.ncbi.nlm.nih.gov/2646917


Jacc focus seminar 3/8. Journal of the American College of Cardiology, 77 (23),
2939–2959. https://doi.org/10.1016/j.jacc.2021.04.035

American Diabetes Association. (2021). Glycemic targets: Standards of medical care in
diabetes—2022. Diabetes Care, 44 (Suppl. 1), S73–S84. https://doi.org/10.2337/
dc22-S006

Kohout, F. J., Berkman, L. F., Evans, D. A., & Cornoni-Huntley, J. (1993). Two shorter
forms of the ces-d (center for epidemiological studies depression) depression symp-
toms index. Journal of Aging and Health, 5 (2), 179–193. https://doi.org/10.1177/
089826439300500202

Takeshita, J., Masaki, K. H., Ahmed, I., Chiemi, K., Petrovitch, H., Ross, W., & White,
L. R. (2002). Are depressive symptoms a risk factor for mortality in elderly
japanese american men? the honolulu-asia aging study. American Journal of Psy-
chiatry, 159 (7), 1127–1132. https://doi.org/10.1176/appi.ajp.159.7.1127

Rosamond, W. D., Folsom, A. R., Chambless, L. E., Wang, C.-P., McGovern, P. G.,
Howard, G., Cooper, L. S., Sorlie, P., & Prineas, R. J. (1999). Stroke incidence
and survival among middle-aged adults: 9-year follow-up of the atherosclerosis risk
in communities (aric) cohort. Stroke, 30 (4), 736–743. https://doi.org/10.1161/01.
STR.30.4.736

Graff-Radford, J., Simino, J., Kantarci, K., Mosley, T. H. J., Griswold, M. E., Windham,
B. G., & Knopman, D. S. (2017). Neuroimaging correlates of cerebral microbleeds:
The aric study (atherosclerosis risk in communities). Stroke, 48 (11), 2964–2972.
https://doi.org/10.1161/STROKEAHA.117.018336

Howard, G., Wagenknecht, L. E., Burke, G. L., et al. (1998). Cigarette smoking and
progression of atherosclerosis: The atherosclerosis risk in communities (aric) study.
JAMA, 279 (2), 119–124. https://doi.org/10.1001/jama.279.2.119

Aric visit5 medication instruction sheet. (2011). https : / / aric . cscc . unc . edu / aric9 /
sites/default/files/public/visitdocuments/v5/Manual%202%20Home%20and%
20Field%20Center%20Procedures.pdf

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical
Society: Series B (Methodological), 34 (2), 187–202. https://doi.org/10.1111/j.
2517-6161.1972.tb00899.x

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19 (6), 716–723. https : //doi . org/10 . 1109/TAC.1974 .
1100705

Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E., & Ridker, P. M. (2001). C-
reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.
JAMA, 286 (3), 327–334. https://doi.org/10.1001/jama.286.3.327

Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008).
From inflammation to sickness and depression: When the immune system subju-
gates the brain. Nature Reviews Neuroscience, 9 (1), 46–56. https://doi.org/10.
1038/nrn2297

Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism.
Diabetes, 54 (6), 1615–1625. https://doi.org/10.2337/diabetes.54.6.1615

23

https://doi.org/10.1016/j.jacc.2021.04.035
https://doi.org/10.2337/dc22-S006
https://doi.org/10.2337/dc22-S006
https://doi.org/10.1177/089826439300500202
https://doi.org/10.1177/089826439300500202
https://doi.org/10.1176/appi.ajp.159.7.1127
https://doi.org/10.1161/01.STR.30.4.736
https://doi.org/10.1161/01.STR.30.4.736
https://doi.org/10.1161/STROKEAHA.117.018336
https://doi.org/10.1001/jama.279.2.119
https://aric.cscc.unc.edu/aric9/sites/default/files/public/visitdocuments/v5/Manual%202%20Home%20and%20Field%20Center%20Procedures.pdf
https://aric.cscc.unc.edu/aric9/sites/default/files/public/visitdocuments/v5/Manual%202%20Home%20and%20Field%20Center%20Procedures.pdf
https://aric.cscc.unc.edu/aric9/sites/default/files/public/visitdocuments/v5/Manual%202%20Home%20and%20Field%20Center%20Procedures.pdf
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1001/jama.286.3.327
https://doi.org/10.1038/nrn2297
https://doi.org/10.1038/nrn2297
https://doi.org/10.2337/diabetes.54.6.1615


Gold, P. W., Machado-Vieira, R., & Pavlatou, M. G. (2015). Clinical and biochemical
manifestations of depression: Relation to the neurobiology of stress. Neural Plast.,
2015, 581976. https://doi.org/10.1155/2015/581976

Musselman, D. L., Evans, D. L., & Nemeroff, C. B. (1998). The relationship of depres-
sion to cardiovascular disease: Epidemiology, biology, and treatment. Archives of
General Psychiatry, 55 (7), 580–592. https://doi.org/10.1001/archpsyc.55.7.580

24

https://doi.org/10.1155/2015/581976
https://doi.org/10.1001/archpsyc.55.7.580

