Zero-Cycles on Torsors under Linear Algebraic Groups Público

Gordon-Sarney, Reed (2017)

Permanent URL: https://etd.library.emory.edu/concern/etds/gb19f668n?locale=pt-BR
Published

Abstract

Let k be a field, let G be a smooth connected linear algebraic group over k, and let
X be a G-torsor. Totaro asked: if X admits a zero-cycle of positive degree d, does X have a
closed etale point of degree dividing d? We give a positive answer in two cases:
1. G is an algebraic torus of rank at most 2 and char(k) is arbitrary, and
2. G is an absolutely simple adjoint group of type A1 or A2n and char(k) is not 2.
We also give the first known examples where Totaro's question has a negative answer.
In particular, we exhibit failures via tori over number fields, p-adic fields, and complete
discrete valuation fields with global residue fields of characteristic not 2 and show that
Totaro's question has a negative answer in general for tori of all ranks at least 3.

Table of Contents

1 Introduction.........................................................................1

2 Fundamental Objects.............................................................4
2.1 Central Simple Algebras......................................................4
2.1.1 The Brauer Group............................................................4
2.1.2 Splitting Fields................................................................5
2.1.3 Involutions.....................................................................6
2.2 Linear Algebraic Groups......................................................6
2.2.1 Algebraic Tori.................................................................7
2.2.2 Adjoint Groups of Type An................................................8
2.2.3 Torsors and Zero-Cycles...................................................9

3 Galois Cohomology..............................................................10
3.1 Finite Group Cohomology...................................................10
3.2 Profinite Group Cohomology.................................................12
3.3 Some Important Maps.......................................................14
3.4 Some Important Computations...........................................15
3.5 Totaro's Question, Revisited...............................................17

4 Totaro's Question for Tori of Low Rank....................................18
4.1 Lemmata........................................................................19
4.2 Technical Results..............................................................24
4.3 Proof of Theorem 4.0.1.....................................................34
4.3.1 Rank 1 Tori...................................................................35
4.3.2 Rank 2 Tori...................................................................36
4.4 del Pezzo Surfaces...........................................................41

5 Totaro's Question for Adjoint Groups of Types A1 and A2n..........44
5.1 Lemmata........................................................................45
5.2 Proof of Theorem 5.0.4.....................................................48

6 Negative Answers to Totaro's Question...................................52
6.1 Examples over p-adic Fields..............................................53
6.2 Examples over Other Discrete Valuation Fields......................58

Bibliography.........................................................................63

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Palavra-chave
Committee Chair / Thesis Advisor
Committee Members
Última modificação

Primary PDF

Supplemental Files