Higher-order Interaction Matters: Dynamic Hypergraph Neural Networks for Epidemic Modeling 公开

Liu, Songyuan (Spring 2025)

Permanent URL: https://etd.library.emory.edu/concern/etds/dr26z0055?locale=zh
Published

Abstract

The ongoing need for effective epidemic modeling has driven advancements in capturing the complex dynamics of infectious diseases. Traditional models, such as Susceptible-Infected-Recovered, and graph-based approaches often fail to account for higher-order interactions and the nuanced structure pattern inherent in human contact networks. This study introduces a novel Human Contact-Tracing Hypergraph Neural Network framework tailored for epidemic modeling called EpiDHGNN, leveraging the capabilities of hypergraphs to model intricate, higher-order relationships from both location and individual level. Both real-world and synthetic epidemic data are used to train and evaluate the model. Results demonstrate that EpiDHGNN consistently outperforms baseline models across various epidemic modeling tasks, such as source detection and forecast, by effectively capturing the higher-order interactions and preserving the complex structure of human interactions. This work underscores the potential of representing human contact data as hypergraphs and employing hypergraph-based methods to improve epidemic modeling, providing reliable insights for public health decision-making.

Table of Contents

1 Introduction 1

2 Background 5

2.1 Mechanistic Epidemic Modeling . . . . . . . . . . . . . . . . . . . . . 5

2.2 Graphs for Epidemic Modeling . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Hypergraphs for Epidemic Modeling . . . . . . . . . . . . . . . . . . . 8

3 Formulation 9

3.1 Hypergrpah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Dynamic Hypergrpah . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Epidemic Modeling Tasks . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Source Detection . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.2 Infection Forecasting . . . . . . . . . . . . . . . . . . . . . . . 11

4 Method 12

4.1 HGNN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Temporal Convolution Module . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Contact Pattern Awareness Module . . . . . . . . . . . . . . . . . . . 14

4.4 EpiDHGNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Experiments 17

5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

i

5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 RQ1 - Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 RQ2 - Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.5 RQ3 - Module Effectiveness . . . . . . . . . . . . . . . . . . . . . . . 22

5.6 RQ4 - Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion 25

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.1 Hypergraph SIR . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1.2 Alternative Model Selection . . . . . . . . . . . . . . . . . . . 26

6.1.3 Human Contact Data Simulation . . . . . . . . . . . . . . . . 26

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Appendix 28

A.1 Hypergraph SIR Simulation . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography 31

About this Honors Thesis

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
关键词
Committee Chair / Thesis Advisor
Committee Members
最新修改

Primary PDF

Supplemental Files