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Abstract

Higher-order Interaction Matters: Dynamic Hypergraph Neural Networks for
Epidemic Modeling
By Songyuan Liu

The ongoing need for effective epidemic modeling has driven advancements in capturing
the complex dynamics of infectious diseases. Traditional models, such as Susceptible-
Infected-Recovered, and graph-based approaches often fail to account for higher-
order interactions and the nuanced structure pattern inherent in human contact
networks. This study introduces a novel Human Contact-Tracing Hypergraph Neural
Network framework tailored for epidemic modeling called EpiDHGNN, leveraging
the capabilities of hypergraphs to model intricate, higher-order relationships from
both location and individual level. Both real-world and synthetic epidemic data
are used to train and evaluate the model. Results demonstrate that EpiDHGNN
consistently outperforms baseline models across various epidemic modeling tasks, such
as source detection and forecast, by effectively capturing the higher-order interactions
and preserving the complex structure of human interactions. This work underscores
the potential of representing human contact data as hypergraphs and employing
hypergraph-based methods to improve epidemic modeling, providing more reliable
insights for public health decision-making.
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Chapter 1

Introduction

Since the onset of the COVID-19 pandemic, there has been a growing interest in

studying epidemiological models[25, 22, 8]. Understanding and managing infection

outbreaks is crucial for public health. Traditional mechanistic models like Susceptible-

Infected-Recovered (SIR), which mathematically describe the transmission mechanisms

of infectious diseases, often suffer from limitations of oversimplified or fixed assumptions,

leading to sub-optimal predictive power and inefficiency in capturing complex epidemic

patterns [27, 10]. (Section 2.1)

Motivated by these limitations, sequential models such as GRU [7] and LSTM [31]

are used to model temporal relations in a data-driven manner. Compared to mechanis-

tic models, sequential models have demonstrated superior performance in forecasting

infection counts. However, these models often struggle to incorporate spatial depen-

dencies, such as human mobility patterns and geographical distributions, which play a

crucial role in epidemiology modeling [22]. Mobility data captures how individuals

move and interact across different locations, influencing disease transmission dynamics

beyond simple temporal trends. To enhance the ability to capture both spatial and

temporal information, graph-based approaches have emerged as a popular tool in epi-

demic research. Graph Neural Networks (GNNs) [30, 21] have become popular for their

1
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ability to model human mobility patterns. They achieve this by representing nodes as

regions and weighted edges as mobility volume, effectively capturing movement be-

tween locations. Through a message-passing mechanism, GNNs enable nodes to share

information with their neighbors, allowing for a more comprehensive understanding of

mobility patterns. Additionally, by leveraging dynamic graph modeling and dynamic

GNNs, they can further represent changes in human movement over time, enhancing

their ability to model relational dynamics within mobility networks. [32, 24, 10]

Despite the utility of GNN-based methods, they primarily focus on pair-wise

interactions and therefore neglect the higher-order interactions that are inherent in

actual human contact networks [28, 13, 3]. Specifically, higher-order interactions refer

to interactions or contacts that involve more than two individuals simultaneously in

the context of epidemic modeling [18]. For example, public transportation, workplaces,

and schools are shared spaces where groups of people interact following higher-order

transmission dynamics. As illustrated in Figure 1.1, while standard graphs can model

these interactions by representing individuals as nodes and forming fully connected

subgraphs for each group, this approach is often inefficient and obscures the true

higher-order structure. In contrast, hypergraphs provide a more natural and explicit

way to represent higher-order interactions through hyperedges, eliminating the artificial

clique. Additionally, hypergraphs can model overlapping interactions by representing

locations as hyperedges, encompassing multiple individuals simultaneously. These

enhancements can lead to more accurate and interpretable modeling of epidemics than

standard graphs [28, 13, 5].

As illustrated in Figure 1.1, a fundamental limitation of prior graph-based ap-

proaches lies in their inability to simultaneously preserve both individual-level and

location-level information, as well as their failure to capture higher-order interactions.

These shortcomings significantly hinder the accurate modeling of real-world human

contact patterns, which are essential for understanding and predicting the spread of
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Figure 1.1: Illustration of how various graph encoding methods can be employed to
capture complex interactions. Hypergraphs, in particular, offer significant advantages
over traditional graphs by retaining both individual-level and location-level information,
while also capturing higher-order interactions. This enriched representation facilitates
a more nuanced understanding of epidemic dynamics.

infectious diseases. To address this, we propose EpiDHGNN, a novel framework

that models human contact data as dynamic hypergraphs. This approach enables the

encoding of complex, higher-order interactions and supports a richer, more granular

representation of epidemic dynamics. The major contributions of this paper are

threefold:

(1) We propose a novel method to model human contact as dynamic hypergraphs,

which encodes nodes as individuals and hyperedges as locations, leveraging both

granular level information and higher-order interactions.

(2) We develop EpiDHGNN, a model tailor-made for epidemic modeling with a

self-supervised contact-pattern awareness module, capturing the higher-order

interactions and contact patterns that are inherent in human contacts.

(3) Extensive experiments are conducted to demonstrate the superiority of encoding

human contact as hypergraphs, as well as the effectiveness of our proposed models

in various epidemic tasks.

Our preliminary results indicate that EpiDHGNN significantly improve the perfor-

mance of epidemic models by capturing higher-order interactions. This advancement

holds the potential to enhance infection control strategies in healthcare environments,
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ultimately contributing to better public health outcomes.



Chapter 2

Background

2.1 Mechanistic Epidemic Modeling

In the past, when data was not sufficiently recorded, scientists were unable to build

empirical models that successfully captured the dynamics of epidemics. Empirical

models rely heavily on accurate and comprehensive data to make predictions and

understand patterns. In contrast, mechanistic models[20, 11] are designed to capture

the underlying complexity of infections and the recovery processes of various diseases,

even with limited data. Among mathematical models of infectious disease spread,

compartmental models are among the most foundational and widely used. One of the

most prominent examples is the Susceptible-Infectious-Recovered (SIR) model [15].

This model segments the total population N into three compartments: S(t) for

the number of susceptible individuals, I(t) for infectious individuals, and R(t) for

recovered (and immune) individuals, such that S(t) + I(t) + R(t) = N , assuming a

closed population with no births or deaths.

The dynamics of the SIR model are governed by the following system of ordinary

differential equations:

dS

dt
= −β

SI

N

5
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dI

dt
= β

SI

N
− γI

dR

dt
= γI

Here, the parameter β represents the transmission rate, capturing the likelihood

of disease spread per contact between susceptible and infectious individuals, while γ

denotes the recovery rate, corresponding to the inverse of the average infectious period.

The ratio R0 =
β
γ
defines the basic reproduction number, a critical threshold quantity

indicating whether an infection will spread (R0 > 1) or die out (R0 < 1). The SIR

model’s ability to incorporate core epidemiological mechanisms in a mathematically

tractable form makes it especially valuable for analyzing and forecasting epidemic

progression. However, traditional compartmental models like SIR suffer from two major

limitations. First, they rely on strong assumptions about the underlying infection

dynamics. The SIR model, for example, simplifies disease progression into only two

parameters: the transmission rate β and the recovery rate γ. While this simplification

makes the model analytically tractable, it limits its flexibility and generalizability

across different infectious diseases, especially those with more complex transmission

mechanisms, latent periods, reinfections, or varying recovery trajectories. Such rigid

parameterization can fail to capture the heterogeneity present in real-world epidemics.

Second, the SIR model is not inherently data-driven. It typically requires predefined

parameters that are either estimated from limited historical data or assumed based

on prior knowledge. In contrast, modern data-driven approaches—such as machine

learning models or neural networks—can automatically learn complex patterns directly

from large-scale epidemic or clinical data. These models not only tend to achieve better

predictive performance but also offer greater adaptability to diverse and dynamic

epidemiological contexts. Moreover, recent advances in interpretable AI have enabled

some data-driven models to provide insights comparable to, or even more nuanced

than, traditional mechanistic frameworks.
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2.2 Graphs for Epidemic Modeling

Recent advancements in dynamic graph modeling have underscored the utility of such

models in epidemic source detection and spread prediction. Initially developed for

traffic forecasting, dynamic graph models have been rapidly adapted to epidemiologi-

cal contexts, where nodes represent geographical locations.[22, 10, 29] Furthermore,

Lokhov et al. introduced a dynamic message-passing (DMP) inference algorithm

tailored for the SIR (Susceptible-Infected-Recovered) model to estimate the origin of

an epidemic outbreak.[23] This algorithm iteratively transmits messages along network

edges, updating each node’s state probabilities based on the states of its neighbors.

However, the algorithm operates on static graphs, thereby overlooking the inherent

dynamics of contact networks in human societies.

Furthermore, due to the lack of publicly available data, synthetic graph construction

allows epidemic models to be trained on data that closely approximates real-world

conditions. The Erdős-Rényi (ER) model [12] generates a graph by connecting each

pair of n nodes with a fixed probability p. The Barabási-Albert (BA) model [4]

constructs scale-free networks where new nodes are more likely to connect to highly

connected existing nodes. The Stochastic Block Model (SBM) [17] divides nodes into

blocks (or communities), effectively capturing the community structures frequently

present in real-world networks. More recently, to mimic real-life scenarios where people

do not have equal probabilities to visit any place in a city, but rather that they will

focus a small number of places, Higham etc. [16] proposes a Gilbert Graph Model

that generates new graphs based on an established random graph. Each model offers

unique features that can be tailored to the specific properties of the network being

studied, ensuring that epidemic models are trained on data that closely resembles

real-world conditions.
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2.3 Hypergraphs for Epidemic Modeling

Similar to graphs, hypergraphs can also be utilized in the aggregation stage of SIR

models [16, 9, 33]. In the pathogen propagation function proposed by Hypergraph-

HeterSIS [3], the infection state of each node is first aggregated to hyperedge, which is

then followed by a nonlinear function f to remove linearity. The result is then mapped

back to node level to provide the next step update. The method has been shown

that hypergraph-based approaches are better at capturing the structural differences

in contact networks and improving the accuracy of infection dynamics modeling.

However, these approaches are based on variable calibration, therefore neglecting the

higher-level representation generated through deep learning approaches [13, 6, 2].



Chapter 3

Formulation

3.1 Hypergrpah

A hypergraph is a higher-order representation of a graph where an edge can connect

any number of vertices. Formally, a hypergraph G = (V, E ,X) consists of a set of nodes

V , a set of hyperedges E , where each hyperedge is a subset of V , and a feature matrix

X ∈ R|V |×d, where each row encodes the node feature. The hypergraph structure can

be described by an incidence matrix H ∈ R|E|×N , where Hi,j = 1 only when the node

vi is incident to the edge ej.

3.2 Dynamic Hypergrpah

A dynamic hypergraph is an extension of a hypergraph that evolves over time, consisting

of a sequence of hypergraphs observed over T discrete time stamps. Formally, a

dynamic hypergraph is represented as G(0:T ) = {G(0), G(1), . . . , G(T )}, where each

hypergraph G(t) = (V (t), E (t),X(t)) denotes the hypergraph at time stamp t ∈ [0 : T ].

Here, V (t) is the set of nodes, E (t) is the set of hyperedges, and X(t) denotes the node

features at time t. It is worth noting that both the graph structure and node features

are dynamic, since in some works, dynamic graphs have static features.

9
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3.3 Epidemic Modeling Tasks

Consider an input of a dynamic hypergraph G(0:T ) = {G(0), . . . , G(T )}, where each

node represents an individual and each hyperedge represents a location. At an

arbitrary time stamp t, the nodes in a hyperedge e(t) ∈ E (t) represent a single

contact between these entities. Each hypergraph G(t) is associated with an individual

state matrix X(t) ∈ RN×d, where d is the feature dimension of the individual. For

example, in the SIR setting, d can consist of three dimensions, which correspond to

the {Suspected, Infected,Recovered} status of a specific individual.

Additionally, we define three time stamps to clarify the time interval of our

downstream epidemic tasks. [0 : tsh] where tsh stands for Time Stamp Hidden; [tsh :

ks] where ks stands for Known Time Stamp; [ks : ps] where ps stands for Prediction

Time Stamp. The three time stamps are ordered such that 0 ≤ tsh ≤ ks ≤ ps ≤ T .

Note that for a time stamp t ∈ T , when t < tsh, only contact hypergraph can be

observed. When tsh ≤ t ≤ ks, both contact hypergraph and individual state can

be observed. When t > ps, neither contact hypergraph nor individual state can be

observed. An illustration of the three time stamps is shown in Figure 4.1.

This setup aligns closely with real-life epidemic monitoring and response workflows.

In practice, detailed individual-level data such as infection states often become available

only after some delay due to testing and reporting lags, which corresponds to the

interval from tsh to ks where such information is accessible. Earlier periods (t < tsh)

typically rely on structural data like contact patterns from mobile sensing or location

tracking, while individual health statuses remain unobserved. As the outbreak unfolds

beyond ps, data collection often lags behind real-time events due to limitations

in surveillance infrastructure or data privacy concerns, making future observations

inaccessible for immediate analysis. This temporal partitioning, therefore, reflects

the partial and delayed nature of real-world epidemic data, making it a practical

framework for modeling and forecasting tasks.
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3.3.1 Source Detection

The source detection task focuses on identifying the initial node responsible for

the spread of an epidemic, often referred to as ”patient zero.” Given the dynamic

hypergraph G(0:ks), or its incidence matrix H(0:ks), and the corresponding state matrix

X(tsh:ks), we aim to infer the likelihood distribution over all nodes at the initial time

stamp T = 0 using a model f parametrized by weight θ. Mathematically, we are

interested in using fθ to estimate the distribution:

fθ(H
(0:ks),X(tsh:ks)) ≈ p(X(0)|H(0:ks),X(tsh:ks)).

This task leverages both the structural properties of the hypergraph and the temporal

evolution of the feature maps to backtrack the probable origin of the epidemic. The

node labels ydetect are extracted from specific columns of X(0) that represent the

infection state — for example, the ”infected” column in the case of the SIR model.

To optimize the model, we’ll use weighted binary cross-entropy loss between the

predictions and node labels ydetect, where w1 =
|V |

|ydetect=1| and w0 =
|V |

|ydetect=0|

Ldetect(θ) = − 1

|V |
∑
v∈V

[w1ydetect log(fθ) + w0(1− ydetect) log(1− fθ)],

3.3.2 Infection Forecasting

Forecasting tasks in epidemics are usually defined as finding the total number of

infections and recoveries in a range of future time stamps. This is because previous

approaches encode nodes as areas, neglecting the individual level information. On the

other hand, when using human contact hypergraphs, we can deduce a more fine-grained

forecasting on an individual level. Therefore, we treat our forecast task as a binary

node classification task, where we are interested in using a model g parametrized by θ
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to estimate the distribution:

gθ(H
(0:ks),X(tsh:ks)) ≈ p(X(ks+1,ps)|H(0:ks),X(tsh:ks))

Similar to source detection, we’ll use the binary cross-entropy loss between the

predictions and node labels yforecast. The labels are extracted from specific columns of

X(ks+1:ps) that represent the infection state, similar to source detection label extraction.

Lforecast(θ) = − 1

|V |
∑
v∈V

[yforecast log(gθ) + (1− yforecast) log(1− gθ)],



Chapter 4

Method

In this section, we will formulate our proposed model EpiDHGNN, which serves as

fθ and gθ defined in section 3.3. Here we define t ∈ Tinterest where Tinterest is the

corresponding input interval for H defined in section 3.3.1 and 3.3.2.

Temporal 

Convolution
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HE3

HE4

0 0 1
0 1 0

1 0 0

Infection State / Feature

Known Hypergraph Known Hypergraph & Infection State Prediction Horizon

0 0 0
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HyperConv
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Figure 4.1: Model Architecture of proposed EpiDHGNN model. The arrows in the
top left corner refers to the three time stamps defined in section 3.3, where [0 : tsh]
is the black interval, [tsh : ks] is the orange interval, and [ks + 1 : ps] is the green
interval. All individual state is masked to 0 in [0 : tsh] as shown in the top left black
module. Corresponding inputs for source detection and forecast defined in section
3.3.1 and 3.3.2 is then feed to the model as input. The light blue HyperConv module
in defined in section 4.1; the dark blue temporal convolution module is defined in 4.2;
and the contact pattern awareness module is defined in section 4.3.
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4.1 HGNN Module

Hypergraph Neural Network [13] (HGNN) is designed to map the original node features

to a more refined feature space that captures higher-order neighbor information.

Different from traditional GNN, HGNN is performing node-edge-node convolution.

Specifically, one convolution layer is defined as:

Xl+1,t
edge = D−1

e HtD−1/2
v Xl,t

nodeΘ (4.1)

Xl+1,t
node = D−1/2

v HtWD−1
e HtD−1/2

v Xl,t
nodeΘ (4.2)

where X0,t
node is the individual state matrix, Xl,t is the feature matrix after lth con-

volution, Θ are the learnable parameters, Ht is the incidence matrix, D are degree

matrices for normalization, and W is the optional diagonal hyperedge weight matrix at

time stamp t ∈ the input interval of specifc task. Through HGNN, the embeddings

used for final outputs not only contain higher-order neighbor information, but also

location information. Stacking L layers of convolution layers will allow aggregation

to capture L distance away neighbors. After the convolution has been applied to all

time steps, we will concatenate all features along the temporal dimension:

X L
node = [XL,t0

node|X
L,t1
node, ...], X L

edge = [XL,t0
edge|X

L,t1
edge, ...] ,∀ t ∈ Tinterest (4.3)

4.2 Temporal Convolution Module

The temporal convolution, proposed by Lea etc. [19] and applied in dynamic graphs

by Guo etc. [14] It operates by performing standard convolution on the temporal

dimension. In analogy with image convolution, where spatial information is processed

across width and height dimensions, the temporal convolution in our framework treats

time as the width dimension, individuals as the length dimension, and the feature
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channels obtained from the hypergraph convolution layer as the depth (or channels).

Formally, the temporal convolution operation is defined as:

X̂node = σ
(
Φk

temporal ⊛ X L
node

)
(4.4)

where ⊛ denotes the convolution operation, Φtemporal is the convolution kernel with size

k refining the learned representations across time steps, C is the features’ dimension,

N is the number of individuals, and T is the number of time steps, and σ is the

non-linear activation function. This temporal convolution module enables the model

to efficiently capture multi-channel temporal dependencies in epidemic progression

by considering the dynamic evolution of infection states. As a result, the model

progressively learns representations of disease spread patterns.

4.3 Contact Pattern Awareness Module

In a societal setting, human interactions occur with varying probabilities based on

social structures and daily routines. For instance, individuals are highly likely to

engage in frequent interactions with family members or colleagues at home or in

the workplace, while social encounters with friends or individuals sharing similar

interests may occur less frequently, such as on a weekly or monthly basis in clubs or

shopping centers. Given this structured nature of human interactions, incorporating

contact pattern prediction can enhance the accuracy of epidemic modeling by providing

insights into both predictions and back-tracing.

To leverage this information, we propose a self-supervised Contact Pattern Aware-

ness Module, designed to predict human interactions within the epidemic framework.

Given a sequence of k hypergraphs {Gt}t0+k−1
t=t0 starting from a randomly selected time

step t0, the module aims to reconstruct the hypergraph at the final time step, Gt0+k,

using information from the preceding k − 1 hypergraphs. Successful reconstruction
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contributes additional structural knowledge about human contact patterns to the

learned node embeddings, thereby improving performance in subsequent epidemic

forecasting tasks.

To effectively capture these patterns, we utilize both the individual embeddings and

location embeddings obtained from Section 4.1. These embeddings are then processed

using the temporal convolution framework introduced in Section 4.2, enabling the

model to extract temporal dependencies. Finally, the refined embeddings are passed

through a fully connected layer to produce a confidence score for contact prediction.

Mathematically, this operation is formulated as:

s = σ(MLP (Φk
pattern ⊛ (X L

node) ∗ Φk
pattern ⊛ (X L

edge))) (4.5)

where s is the output confidence score of the individual-location contact, ∗ represents

element-wise multiplication, MLP stands for multilayer perceptron, and σ represents

the sigmoid activation function. To ensure class balance, the module will be optimized

based on binary cross-entropy loss between positive contacts and randomly selected

negative contacts of equal size:

Lpattern = − 1

N

N∑
i=1

[yi log si + (1− yi) log(1− si)] , (4.6)

where yi ∈ {0, 1} is the ground-truth label indicating whether a contact exists, and si

is the predicted confidence score.

4.4 EpiDHGNN

The proposed EpiDHGNN follows an encoder-decoder paradigm, designed to model

epidemic dynamics by integrating spatial, temporal, and contact pattern information.

As illustrated in Figure 4.1, EpiDHGNN effectively captures the evolution of infection
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states through hypergraph structure and temporal dependencies.

Given an input sequence of dynamic hypergraphs H0:ks and the corresponding

patient state features Xtsh:ks, the model first encodes node representations using

hypergraph convolution (Section 4.1) to extract higher-order spatial dependencies.

These embeddings are then refined through temporal convolution (Section 4.2) to

capture progression patterns over time. After the temporal convolution, we added a

layer of residual connection of the initial individual state without the spatial processing.

The encoded embeddings are then used for task-specific prediction, such as epidemic

forecasting or source detection, with the loss function defined accordingly in Section 3.3.

In addition to task-specific learning, EpiDHGNN incorporates the self-supervised

Contact Pattern Awareness Module (Section 4.3) to enhance embedding quality by

reconstructing human interaction patterns. This module optimizes the pattern loss

Lpattern, enforcing structural consistency in the learned representations. To balance

predictive accuracy and structural awareness, we introduce a weighting hyperparameter

α that controls the trade-off between the task-specific loss and the pattern loss. The

final objective function is:

L = α Ltask + (1− α) Lpattern. (4.7)

By jointly optimizing for both epidemic prediction and contact pattern consis-

tency, EpiDHGNN ensures robust and generalizable representations, leading to more

reliable epidemic modeling. This synergy between hypergraph structure, temporal

dependencies, and self-supervised contact prediction enables EpiDHGNN to outper-

form traditional GNN-based epidemic models, particularly in capturing complex and

dynamic transmission pathways.



Chapter 5

Experiments

In this section, we perform analysis on the datasets and conduct experiments to

evaluate the proposed model. We will focus on the following research questions:

• RQ1: Does EpiDHGNN outperforms baseline dynamic graph models in various

epidemic tasks?

• RQ2: Does the contact pattern awareness module facilitate the overall perfor-

mance of EpiDHGNN?

• RQ3: Is contact patterns successfully captured? To what aspect of the task

does the module helps the most?

• RQ4: Beyond individual-level prediction, can EpiDHGNN capture population-

level infection dynamics over time?

5.1 Data Description

We assess the performance of baseline models and our proposed model on both graphs

and hypergraphs settings. Because of the privacy nature of human contact data, we

used both real-world and synthetic data. The University of Virginia UVA dataset

18
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includes an extensive collection of clinical metadata sourced from the Epic-based SQL

database at the UVA hospital. The interactions are derived from Electronic Healthcare

Records (EHRs), which document the timing and locations of encounters between

patients and healthcare workers (HCWs). We utilized the real-world infection case

calibrated pathogen parameters provided by Anand etc. [3] to retrieve the patient

infection states through simulations.

Table 5.1: Dataset Summary

Metric UVA EpiSim

# Individuals 2,500 10,000
# Locations 500 11
# Time Steps 169 47
# Contacts 94,134 664,177

The EpiSim dataset is derived on the Mobility Intervention of Epidemic’s Simulator[1].

The simulator is composed of two components. The Human Mobility Model simulates

individual movement from 8 A.M. to 10 P.M., with each simulation step representing

one hour. On weekdays, an individual moves from a residential area to a working area

at time Td ∼ U(a, b) and stays there for Tw ∼ U(c, d) hours. After work, they may

visit a nearby commercial area before returning home. On weekends, individuals may

visit a commercial area at Te ∼ U(g, h) with probability Pe, staying for Tm ∼ U(i, j)

hours before returning home. The Disease Transmission Model considers two types of

contacts: acquaintance and stranger contacts. Each individual has a fixed number

of acquaintance contacts in both their residential and working areas, with the sizes

drawn from uniform distributions Kr ∼ U(m,n) and Kw ∼ U(o, p). At each timestep,

there is a probability Pa of infection from an infected acquaintance. Additionally,

individuals encounter strangers in the same location, with a probability Ps of infection

per timestep. The parameters of the simulator have been calibrated with the Covid-19

R0 provided by WHO. The statistics for both datasets are shown in Table 5.1.
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5.2 Setup

In our experiment, we utilize a 2-layer HGNN to capture neighborhood information.

We perform a grid search over key hyperparameters, including hidden dimensions,

learning rate, weight decay, kernal size, and α. During training, we employ the ADAM

optimizer with weight decay and gradient clipping activated to stabilize gradient

updates and prevent exploding gradients. Models are trained for up to 100 epochs,

with early stopping activated if the validation loss does not improve for 10 consecutive

epochs. The experiments are conducted on a single NVIDIA Tesla V100 GPU with

16 GB of memory. Training time per epoch averages around 5 seconds. To enhance

reproducibility, random seeds are fixed for data splitting, model initialization, and

optimization processes.

5.3 RQ1 - Performance

Table 5.2: Experiment Result of Source Detection Task on UVA Dataset. Best
performance under each setting is bolded and equal performance is underlined.

TSH MRR Hit@1 Hit@3

STGCN
5 0.491 ± 0.056 0.300 ± 0.036 0.650 ± 0.057

10 0.462 ± 0.064 0.315 ± 0.074 0.633 ± 0.024

20 0.427 ± 0.033 0.175 ± 0.023 0.596 ± 0.078

ASTGCN
5 0.501 ± 0.026 0.300 ± 0.078 0.650 ± 0.052

10 0.486 ± 0.046 0.250 ± 0.082 0.667 ± 0.022

20 0.416 ± 0.029 0.205 ± 0.058 0.650 ± 0.032

MSTGCN
5 0.618 ± 0.026 0.417 ± 0.029 0.767 ± 0.076

10 0.561 ± 0.026 0.350 ± 0.050 0.733 ± 0.058

20 0.442 ± 0.029 0.150 ± 0.058 0.700 ± 0.052

EpiDHGNN
5 0.704 ± 0.033 0.517 ± 0.076 0.917 ± 0.029

10 0.662 ± 0.005 0.500 ± 0.000 0.783 ± 0.029

20 0.582 ± 0.031 0.350 ± 0.000 0.765 ± 0.050

Our experimental results for both source detection and forecasting are presented

in Table 5.2, Table 5.3, and Table 5.4, respectively, with the best performance under
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Table 5.3: Experiment Result of Source Detection Task on EpiSim Dataset. Best
performance under each setting is bolded and equal performance is underlined.

TSH MRR Hit@1 Hit@3

STGCN
5 0.242 ± 0.075 0.145 ± 0.052 0.282 ± 0.035

10 0.129 ± 0.039 0.100 ± 0.103 0.195 ± 0.052

20 0.111 ± 0.047 0.089 ± 0.000 0.163 ± 0.017

ASTGCN
5 0.226 ± 0.036 0.167 ± 0.033 0.333 ± 0.042

10 0.141 ± 0.067 0.100 ± 0.027 0.133 ± 0.014

20 0.118 ± 0.087 0.076 ± 0.031 0.100 ± 0.087

MSTGCN
5 0.333 ± 0.029 0.167 ± 0.000 0.400 ± 0.058

10 0.213 ± 0.058 0.100 ± 0.026 0.200 ± 0.000

20 0.192 ± 0.016 0.089 ± 0.100 0.193 ± 0.029

EpiDHGNN
5 0.401 ± 0.074 0.200 ± 0.100 0.500 ± 0.100

10 0.218 ± 0.037 0.133 ± 0.058 0.167 ± 0.058

20 0.219 ± 0.061 0.100 ± 0.100 0.200 ± 0.100

Table 5.4: Experiment Result of Forecast Task. Best Performance under each setting
is bolded.

UVA EpiSim

PS F1 AUROC F1 AUROC

STGCN
5 0.526 ± 0.022 0.714 ± 0.035 0.632 ± 0.036 0.816 ± 0.029

10 0.343 ± 0.028 0.688 ± 0.010 0.473 ± 0.025 0.692 ± 0.043

20 0.398 ± 0.031 0.655 ± 0.031 0.195 ± 0.073 0.593 ± 0.010

ASTGCN
5 0.544 ± 0.038 0.731 ± 0.060 0.624 ± 0.030 0.801 ± 0.005

10 0.376 ± 0.013 0.692 ± 0.012 0.489 ± 0.014 0.712 ± 0.009

20 0.367 ± 0.009 0.652 ± 0.011 0.154 ± 0.045 0.612 ± 0.025

MSTGCN
5 0.721 ± 0.063 0.846 ± 0.013 0.869 ± 0.084 0.895 ± 0.010

10 0.401 ± 0.041 0.647 ± 0.012 0.502 ± 0.042 0.729 ± 0.020

20 0.358 ± 0.024 0.617 ± 0.065 0.223 ± 0.035 0.658 ± 0.056

EpiDHGNN
5 0.712 ± 0.023 0.837 ± 0.019 0.918 ± 0.042 0.957 ± 0.065

10 0.576 ± 0.012 0.750 ± 0.008 0.612 ± 0.001 0.874 ± 0.017

20 0.454 ± 0.007 0.685 ± 0.008 0.298 ± 0.080 0.779 ± 0.071

each setting highlighted in bold. We evaluated the models under diverse conditions to

assess their robustness. For source detection, we masked timesteps of varying lengths

(5, 10, and 20) to examine the models’ ability to backtrack across different scenarios.

Similarly, we tested forecasting performance using prediction horizons of 5, 10, and

20 timesteps. In most settings, EpiDHGNN outperforms the majority of baseline
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graph-based models, underscoring the advantages of hypergraph-based approaches in

epidemic modeling through capturing the high-order contact interaction.

5.4 RQ2 - Ablation

We conducted an ablation study on the contact pattern awareness module to investigate

Question 2. As shown in Table 5.5, removing this module led to a noticeable decline in

performance, indicating its crucial role in capturing individual contact patterns. The

results suggest that incorporating individual contact behaviors enhances the model’s

ability to encode social interactions more effectively, aligning with societal norms. This

highlights the importance of modeling personalized contact dynamics in improving

the overall predictive capability of our approach.

Table 5.5: Ablation study on contact pattern awareness module.

UVA EpiSim

Setting MRR Hit@1 MRR Hit@1

Detection

w/o CT module
tsh-5 0.692 ± 0.050 0.483 ± 0.104 0.381 ± 0.027 0.167 ± 0.058

tsh-10 0.644 ± 0.032 0.467 ± 0.058 0.204 ± 0.020 0.100 ± 0.000

tsh-20 0.558 ± 0.014 0.323 ± 0.029 0.197 ± 0.006 0.100 ± 0.100

w/ CT module
tsh-5 0.704 ± 0.033 0.517 ± 0.076 0.401 ± 0.074 0.200 ± 0.100

tsh-10 0.662 ± 0.005 0.500 ± 0.005 0.218 ± 0.037 0.133 ± 0.058

tsh-20 0.582 ± 0.031 0.350 ± 0.058 0.219 ± 0.061 0.100 ± 0.092

F1 AUROC F1 AUROC

Forecast

w/o CT module
ps-5 0.709 ± 0.004 0.830 ± 0.003 0.891 ± 0.003 0.912 ± 0.007

ps-10 0.571 ± 0.008 0.747 ± 0.006 0.513 ± 0.007 0.824 ± 0.005

ps-20 0.439 ± 0.008 0.680 ± 0.004 0.253 ± 0.006 0.724 ± 0.009

w/ CT module
ps-5 0.712 ± 0.023 0.837 ± 0.019 0.918 ± 0.042 0.957 ± 0.006

ps-10 0.576 ± 0.012 0.750 ± 0.008 0.612 ± 0.001 0.874 ± 0.004

ps-20 0.454 ± 0.007 0.685 ± 0.008 0.298 ± 0.080 0.779 ± 0.071
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5.5 RQ3 - Module Effectiveness

To investigate whether the contact pattern is successfully captured, we evaluate the

module’s performance in predicting contact existence at the location level. Specifi-

cally, locations are divided into four quantiles based on their contact intensity. For

example, in the EpiSim dataset, households exhibit lower contact intensity compared

to recreational locations. For each quantile, we report the prediction accuracy along

with the overall accuracy in Table 5.6. The results suggest that the overall contact

pattern is successfully reconstructed. While the UVA dataset shows little correlation

between contact intensity and accuracy, the EpiSim dataset exhibits a strong negative

correlation. This observation aligns with the underlying assumptions of our dataset.

The UVA dataset includes hospital contacts, which may fluctuate due to patient

movement, whereas in the EpiSim dataset, locations with low contact intensity likely

correspond to households, where visits occur with high frequency and regularity.

Table 5.6: Contact Pattern Prediction. The quantiles are ranked by the total number
of interactions made in a location.

UVA EpiSim

Quantile Range F1 Range F1

1 [:6] 0.795 ± 0.009 [:616] 0.997 ± 0.002

2 [6:11] 0.773 ± 0.012 [616:1788] 0.852 ± 0.004

3 [11:19] 0.809 ± 0.006 [1788:1847] 0.82 ± 0.002

4 [19:] 0.841 ± 0.018 [1847:] 0.639 ± 0.005

Overall — 0.804 ± 0.011 — 0.827 ± 0.003

We further investigate the influence of the hyperparameter α, selecting values

from 0.3, 0.5, 0.7, 0.9, 1.0, to assess its impact on overall model performance. Lower

values of α were not considered, as α = 0.3 already exhibited significantly diminished

performance, failing to effectively capture the model’s main task. As shown in

Figure 5.1, our results indicate that α has little correlation with the final performance,

suggesting that it can be treated as a tunable hyperparameter for future studies.

Additionally, we observe that the model with a high timestep hidden state (TSH20)
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consistently outperforms other configurations when incorporating α. This suggests that

integrating contact pattern information is particularly beneficial for tasks requiring a

longer temporal memory, as it helps the model better capture long-term dependencies

in contact patterns. These findings highlight the importance of tuning α based on

specific task requirements while reinforcing the advantage of incorporating contact-

aware representations for long-horizon forecasting.
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Figure 5.1: Visualization of Alpha’s impact on source detection performance

5.6 RQ4 - Generalizability

While we have demonstrated EpiDHGNN’s ability to forecast an individual’s proba-

bility of infection in Question 1, its effectiveness at the population level—a key focus

of prior work—has yet to be established. To address this, we aggregated the daily

sum of infected individuals to generate population-level data across various prediction

horizons. As shown in Figure 5.2, EpiDHGNN accurately captures short-term infection

dynamics and effectively tracks broader fluctuations at longer time steps, albeit with

reduced precision.
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Chapter 6

Conclusion

6.1 Future Work

6.1.1 Hypergraph SIR

Although the hypergraph SIR simulation leverages higher-order node interactions, the

key operation HTβSH can inherently be approximated by a weighted graph. This

implies that the simulation does not fully exploit the unique information encoded in

hypergraphs that cannot be captured by graphs. Specifically, the linearity of the HTH

operation limits the model’s ability to represent complex higher-order interactions. In

the work of H2ABM [5], a non-linear activation function f is introduced during training,

effectively breaking the linear constraints of HTH and enabling more expressive

modeling of hypergraph structures. However, this approach is incompatible with

our current simulation methodology due to the constraints of our SIR framework,

which relies on the linear structure of the HTβSH operation for efficient epidemic

propagation modeling. A promising alternative could involve developing a hybrid

simulation approach that integrates non-linear transformations with the existing linear

operation.
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6.1.2 Alternative Model Selection

The current EpiDHGNN’s temporal and spatial layers are implemented using HGNN

and temporal convolution layers, respectively. However, the model’s structure is

designed to allow flexible substitutions of these layers, providing opportunities to

explore and integrate alternative architectures. Future work will investigate other

promising candidates, such as the All-Set model[6], which has reported state-of-the-art

performance in various hypergraph-based tasks, will be considered for the spatial

layer. These substitutions aim to enhance the model’s capability and performance

further. By experimenting with these advanced alternatives, future studies can seek to

identify the most effective configurations for improving the accuracy and robustness

of the THGNN in capturing complex temporal and spatial dependencies in epidemic

modeling and source detection tasks.

6.1.3 Human Contact Data Simulation

It has been shown in the paper that human contact data plays a crucial role in research,

particularly in fields such as epidemiology, where understanding interaction patterns

is vital for accurate modeling and prediction. Due to the highly private nature of

human contact data and its scarcity, developing algorithms that effectively capture

realistic human contact patterns is essential. Such algorithms must balance complexity

and privacy, ensuring simulations are representative while safeguarding individual

identities. Additionally, since modeling human contact on a global scale is impractical,

simulations over smaller, well-defined groups—such as universities, companies, or

communities—are preferred. These simulations should incorporate factors like social

clustering (e.g., friend zones), geographic considerations (e.g., different locations), and

temporal dynamics to better mirror real-world interaction patterns. By generating

accurate synthetic datasets that replicate these nuances, researchers can conduct

experiments and validate models, advancing our understanding of human contact and
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their broader implications.

6.2 Summary

In summary, this study introduced the EpiDHGNN framework, demonstrating its

ability to effectively capture the complex dynamics of epidemic spread through higher-

order interactions in human contact networks. By leveraging hypergraphs and deep

learning, our model significantly improved performance in both epidemic forecasting

and source detection tasks. Through rigorous experimentation on both real-world and

synthetic datasets, the study validated the advantages of modeling human contact as

a dynamic hypergraph, highlighting the importance of higher-order relationships in

disease transmission modeling. By continuing to refine EpiDHGNN and improving

data-driven epidemic simulations, the study aims to contribute to more effective

infectious disease forecasting and mitigation strategies, ultimately informing public

health interventions.



Appendix A

Appendix

A.1 Hypergraph SIR Simulation

Due to the highly private nature of epidemic data, which is often not accessible for

public research, existing works rely on simulated data generated by models such as

SIR[26] and TimeGeo[22]. Inspired by the work of [3], hypergraphs serve as a more

accurate approach to predict future infections in epidemic settings. Therefore, we will

adapt the hypergraph further to a ”discrete stochastic hypergraph SIR simulation”.

Specifically, for all nodes, we define a state matrix S ∈ ZT∗N∗3 and a pathegen matrix

P ∈ RT∗N∗3, where the three columns of both matrices respectively represent:

• Susceptible individuals and probability at time t

• Infected individuals and probability at time t

• Recovered individuals and probability at time t

Pathogen Probability Updates

At each timestep t, Pt+1 is updated for each node based on the incidence matrix Ht

of the hypergraph G(t) and the current state St. The new infections for node i at time

29
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t is calculated as:

new infectionsi,t+1 =
N∑
j=1

(
H⊤

t β · St,i,1Ht

)
ij

which aggregates the contributions of infected nodes j to susceptible node i through

the hypergraph structure. β ∈ R|E| is the infection hyperparameter assigned to each

hyperedge at random.

The probability of new recoveries for node i is given by:

new recoveriesi,t+1 = γ · Pi,t

where γ is a real number hyperparameter defining the recovery rate of the virus. The

state probabilities for each node are updated as follows:

Pt,i,0 = Pt−1,i,0 − new casesi,t (A.1)

Pt,i,1 = Pt−1,i,1 + new casesi,t − new recoveriesi,t (A.2)

Pt,i,2 = Pt−1,i,2 + new recoveriesi,t (A.3)

The discrete state matrix S is updated stochastically based on the pathogen matrix

P

Susceptible Nodes If node i is susceptible at time t− 1:

P (Node i becomes infected at t) = Ii(t)

The state update is:

Si(t) =


[0, 1, 0], if U < Pi,1(t)

[1, 0, 0], otherwise
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where U ∼ U(0, 1) is a uniform random variable.

Infected Nodes If node i is infected at time t− 1:

P (Node i recovers at t) = Pi,2(t) · (1− δ)

P (Node i becomes susceptible at t) = Pi,2(t) · δ

where δ is the probability of re-infection. The state update depends on two independent

random variables U, V ∼ U(0, 1):

• If U < Pi,2(t):

– If V < 1− δ, Si(t) = [0, 0, 1] (recovered).

– Else, Si(t) = [1, 0, 0] (susceptible).

• Else, Si(t) = [0, 1, 0] (remains infected).

Recovered Nodes If node i is recovered at time t− 1:

Si(t) = [0, 0, 1]

The ”discrete stochastic hypergraph SIR simulation” process captures the proba-

bilistic nature of disease transmission and recovery while leveraging the hypergraph

structure for higher-order interactions, providing a realistic simulation of epidemic

dynamics.
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the origin of an epidemic with a dynamic message-passing algorithm. Phys. Rev.

E, 90(1):012801, 2014. doi: 10.1103/PhysRevE.90.012801.

[24] Mingjie Qiu, Zhiyi Tan, and Bing-Kun Bao. Msgnn: Multi-scale spatio-

temporal graph neural network for epidemic forecasting. Data Min-

ing and Knowledge Discovery, 38(4):2348–2376, May 2024. ISSN 1573-

756X. doi: 10.1007/s10618-024-01035-w. URL http://dx.doi.org/10.1007/

s10618-024-01035-w.
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