Strong u-invariant and Period-Index Bounds Open Access

Mandal, Shilpi (Summer 2025)

Permanent URL: https://etd.library.emory.edu/concern/etds/br86b544b?locale=en
Published

Abstract

Let K be a field. The u-invariant of K is the maximal dimension of anisotropic quadratic forms over K. For example, the u-invariant of C is 1, for F a non-real global or local field the u-invariant of F is 1, 2, 4, or 8, etc. Considerable progress has also been made, particularly in the computation of the u-invariant of function fields of p-adic curves due to Parimala and Suresh, and by Harbater, Hartmann, and Krashen regarding the u-invariants in the case of function fields of curves over complete discretely valued fields. Over a finitely generated field extension in m variables over a p-adic field, any quadratic form in more than 2^{m+2} variables has a nontrivial zero was shown by Leep.

For a central simple algebra A over a field K, there are two major invariants, viz., period and index. For a field K, the Brauer-l-dimension of K for a prime number l, is the smallest natural number d such that for every finite field extension L/K and every central simple L-algebra A (of period a power of l), we have that index(A) divides period(A)^d.

If K is a number field or a local field, then classical results from class field theory tell us that the Brauer-l-dimension of K is 1. This invariant is expected to grow under a field extension, bounded by the transcendence degree. Some recent works in this area include that of Harbater-Hartmann-Krashen for K, a complete discretely valued field, in the good characteristic case. In the bad characteristic case, for such fields K, Parimala-Suresh have given some bounds.

In this dissertation, I will present similar bounds for the strong u-invariant and the Brauer-l-dimension of a complete non-Archimedean valued field K with residue field k and for function fields of curves over such fields.

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Central simple algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 The Brauer group . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Severi-Brauer varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Patching and Local-Global Principles . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Introduction to field patching . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Necessary definitions . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Patching problem . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Patching over Berkovich curves . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Necessary definitions . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 A local-global principle over Berkovich curves . . . . . . . . . 27

4 Complete Ultrametric Fields . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Strong u-invariant . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Review of literature: Complete discretely valued fields . . . . . . . . . 37

5.3 Review of literature: Complete non-Archimedean valued fields . . ... …. 38

5.4 Results regarding strong u-invariant . . . . . . . . . . . . . . . . . . . 38

6 Brauer l-dimension . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Review of literature: Complete discretely valued fields . . . . . . . . . 43

6.3 Necessary results from literature . . . . . . . . . . . . . . . . . . . . . 44

6.4 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5 Results regarding Brauer l-dimension . . . . . . . . . . . . . . . . . . 48

6.6 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix A Embedding Problem. . . . . . . . . . . . . . . . . . . . . . . . .  51

A.0.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 54

Appendix B Non-Archimedean Differential Algebraic Geometry .. . . . . . . . . 55

B.0.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . 57

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files