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Abstract

Strong u-invariant and Period-Index Bounds
By Shilpi Mandal

Let K be a field. The u-invariant of K is the maximal dimension of anisotropic
quadratic forms over K. For example, the u-invariant of C is 1, for F a non-real
global or local field the u-invariant of F is 1, 2, 4, or 8, etc. Considerable progress has
also been made, particularly in the computation of the u-invariant of function fields
of p-adic curves due to Parimala and Suresh in [PS10], [PS14], and by Harbater,
Hartmann, and Krashen regarding the u-invariants in the case of function fields of
curves over complete discretely valued fields in [HHK09]. Over a finitely generated
field extension in m variables over a p-adic field, any quadratic form in more than
2m+2 variables has a nontrivial zero was shown by Leep in [Lee13].

For a central simple algebra A over a field K, there are two major invariants, viz.,
period and index. For a field K, the Brauer-l-dimension of K for a prime number l,
is the smallest natural number d such that for every finite field extension L/K and
every central simple L-algebra A (of period a power of l), we have that index(A)
divides period(A)d.

If K is a number field or a local field, then classical results from class field
theory tell us that the Brauer-l-dimension of K is 1. This invariant is expected to
grow under a field extension, bounded by the transcendence degree. For F a field
finitely generated and of transcendence degree 2 over an algebraically closed field,
de Jong in [dJ04] showed that Brdim(F ) = 1. Michael Artin conjectured in [Art06]
that Brdim(k) = 1 for every C2 field. Some recent works in this area include that
of Saltman [Sal97], Lieblich [Lie11], Harbater-Hartmann-Krashen [HHK09, HHK14]
for K a complete discretely valued field, in the good characteristic case. In the bad
characteristic case, for such fields K, Parimala-Suresh have given some bounds in
[PS14].

In this manuscript, I will present similar bounds for the strong u-invariant and
the Brauer-l-dimension of a complete non-Archimedean valued field K with residue
field κ.
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Chapter 1

Introduction

My research is in algebra and algebraic arithmetic geometry, particularly focusing

on topics like Galois cohomology, Brauer group, and Berkovich theory. My methods

have primarily involved the use of tools and techniques from quadratic form theory,

algebraic geometry, and ideas from rigid analytic geometry in order to obtain results

in algebra and field arithmetic. In my graduate work, I have been looking closely at

ultrametric fields through invariants like the universal invariant or the u-invariant

and the period-index bound.

Non-Archimedean or rigid-analytic geometry is an analogue of complex analytic

geometry over non-Archimedean fields. Tate introduced and formalised it in the

1960s to understand elliptic curves over a p-adic field by means of a uniformisation

similar to the familiar description of an elliptic curve over C as a quotient of the

complex plane by a lattice. These spaces developed using rings of convergent power

series as opposed to polynomial rings used in algebraic geometry, were much better

behaved, admitting, for example, a suitable GAGA principle. It has since gained

the status of a foundational tool in algebraic and arithmetic geometry; several other

approaches have been found by Raynaud, Berkovich, and Huber. In recent years,

it has become even more prominent with the work of Scholze and Kedlaya in p-

adic Hodge theory, as well as the non-Archimedean approach to mirror symmetry

proposed by Kontsevich.
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An important variation, and the one that is my principal focus of study for re-

search, is in the form of Berkovich’s k-analytic spaces, developed in the late 1980s.

An advantage offered by Berkovich spaces was that it became possible to work di-

rectly with the topology of the space itself, as opposed to the ‘Grothendieck topology’

used in Tate’s rigid analytic geometry, a feat made possible by constructively adding

additional points to rigid spaces. Presently, Berkovich spaces find profound uses in

non-Archimedean analogues for potential theory [BR10], mirror symmetry [KS06],

[Nic18], and in the case of my PhD work, to give period-index bounds for complete

ultrametric fields [Man24].

My research objective is to use the strength of algebraic and geometric struc-

tures/methodologies like local-to-global principles, patching over fields, etc., to better

understand complete non-Archimedean valued (ultrametric) fields. Detailed sum-

maries of my past and current projects, as well as potential directions for future

research, are included in the upcoming chapters. Chapters 5 and 6 details the work

in strong u-invariant and period-index bound for complete ultrametric fields, Ap-

pendix A details work on number field counting and a “twisted” variant of Malle’s

conjecture, and Appendix B describes work on non-Archimedean differential algebra

and the efforts to classify all the valuations of a particular differential ring.

1.1 The Initiation

Let k be a field with char(k) ̸= 2. The u-invariant of k, denoted by u(k), is the

maximal dimension of anisotropic quadratic forms over k. We say that u(k) = ∞

if there exist anisotropic quadratic forms over k of arbitrarily large dimension. For

example, u-invariant of an algebraic closed field K, u(K) = 1; u(R) = ∞; for k a

finite field, u(k) = 2, etc. The u-invariant is a positive integer if it is finite. A key

area of research in the theory of quadratic forms is to find all the possible values this

invariant can take for a fixed or varying field. For example, it has been established in

the literature (see [Lam05, Chapter XI, Proposition 6.8]) that the u-invariant cannot
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take values 3, 5, and 7. See [Lam05, Chapter XIII, Section 6], for more open problems

about this invariant. Considerable progress has also been made, particularly in the

computation of the u-invariant of function fields of p-adic curves due to Parimala and

Suresh in [PS10], [PS14], and by Harbater, Hartmann, and Krashen regarding the

u-invariants in the case of function fields of curves over complete discretely valued

fields in [HHK09].

Harbater, Hartmann, and Krashen defined the strong u-invariant of K, denoted

by us(K), as the smallest real number m such that, u(E) ≤ m for all finite field

extensions E/K, and u(E) ≤ 2m for all finitely generated field extensions E/K of

transcendence degree 1. We say that us(K) = ∞ if there exist such field extensions E

of arbitrarily large u-invariant. In [HHK09, Theorem 4.10], the same authors prove

that for K a complete discretely valued field, whose residue field K̃ has characteristic

unequal to 2, us(K) = 2us(K̃).

Let k be a complete non-Archimedean valued field with residue field k̃ such that

char(k̃) ̸= 2. Let
√

|k∗| denote the divisible closure of the value group |k∗|. In

[Meh19b], Mehmeti shows that if dimQ
√

|k∗| = n, then us(k) ≤ 2n+1us(k̃), and if

|k∗| is a free Z-module with rankZ|k∗| = n, then us(k) ≤ 2nus(k̃). Mehmeti used

field patching in the setting of Berkovich analytic geometry to prove a local-global

principle, and provides applications to quadratic forms and the u-invariant. The

results she obtained generalise those of [HHK09].

Our main result concerning the u-invariant of a complete non-Archimedean (ul-

trametric) field is the following theorem.

Theorem 1.1.1 (Theorem 5.4.1). Let k be a complete ultrametric field, with char(k̃) ̸=

2. Suppose that dimQ(
√
| k∗ |) = n is finite. Then u(k) ≤ 2nu(k̃).

Corollary 1.1.2 (Theorem 5.4.3). Let k be a complete ultrametric field, with char(k̃) ̸=

2. Suppose the dimQ(
√

|k∗|) = n is finite. Let C be a curve over k and F = k(C)

the function field of C. Then u(F ) ≤ 2n+1us(k̃).
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Given a field k, recall the definitions of period and index of a central simple

algebra. The period (or exponent) of a central simple k-algebra A is the order of

class of A in the Brauer group of k. The index of A is the degree of the division

algebra DA that lies in the class of A (i.e., A is a matrix ring over DA). The period

and index always have the same prime factors, and the period always divides the

index [GS17, Proposition 4.5.13].

The period-index problem asks whether all central simple algebras A over a given

field k satisfy ind(A) | per(A)d for some fixed exponent d depending only on k. In the

spirit of [PS14], we make the following definition. Let k be any field. For a prime l,

define the Brauer l-dimension of k, denoted by Brldim(k), to be the smallest integer

d ≥ 0 such that for every finite extension L of k and for every central simple algebra

A over L of period a power of l, ind(A) divides per(A)d. The Brauer dimension of

k, denoted by Brdim(k), is defined as the maximum of the Brauer l-dimension of k

as l varies over all primes. It is expected that this invariant should increase by one

upon a finitely generated field extension of transcendence degree one.

Saltman proved some results in this direction, including the fact that the index

divides the period squared for function fields of p-adic curves [Sal97]. Then Har-

bater, Hartmann, and Krashen in [HHK09, Theorem 5.5] show that for k a complete

discretely valued field, its residue field k̃, F the function field of a curve over k,

and l ̸= char(k̃), they prove that if Brldim(k̃) ≤ d and Brldim(k̃(T )) ≤ d + 1, then

Brldim(F ) ≤ d+ 2.

Using [Meh19b] we get the following as a direct consequence.

Theorem 1.1.3 (Theorem 6.4.1). Let k be a complete ultrametric field with dimQ(
√

|k∗|) =

n is finite. Let C be a curve over k and F = k(C) the function field of the curve.

Let A be a central simple algebra over F and let V (F ) be the set of all non-trivial

rank 1 valuations of F . Then ind(A) is the maximum of the set {ind(A ⊗ Fv)} for

v ∈ V (F ).
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Our main results concerning the Brauer dimension are the following theorems.

Theorem 1.1.4 (Theorem 6.5.1). Let k be a complete ultrametric field. Let l be a

prime such that l ̸= char(k̃). Suppose dimQ(
√
|k∗|) = n is finite. If the Brldim(k̃) =

d, then Brldim(k) ≤ d+ n.

Theorem 1.1.5 (Theorem 6.5.3). Let k be a complete ultrametric field. Let l be a

prime such that l ̸= char(k̃). Suppose dimQ(
√
|k∗|) = n is finite. Let C be a curve

over k and F = k(C) the function field of C. Suppose there exist an integer d such

that Brldim(k̃) ≤ d and Brldim(k̃(T )) ≤ d+ 1. Then the Brldim(F ) ≤ d+ 1 + n.

Remark: Note that if k is a complete discretely valued field, then n = 1. Theorem

1.1.4 now gives that Brldim(k) ≤ d + 1, which is a classical result [GS17, Corollary

7.1.10]. In the same case, Theorem 1.1.5 now implies that if l ̸= char(k̃), then

Brldim(F ) ≤ d+ 2, which is found in [HHK09, Corollary 5.10].

1.2 The Plan

We start with some preliminaries and necessary background in Chapters 2 and

3, where we talk about the known results on local-global principles from [HHK09]

and [Meh19b].

In Chapter 4, we prove the main decomposition lemma, which we then use in

Chapter 5 to prove that for a complete ultrametric field k with residue field char-

acteristic char(k̃) ̸= 2 and dimQ(
√

|k∗|) = n, u(k) ≤ 2nu(k̃). We further prove the

result about Brldim(k) ≤ Brldim(k̃) + n in Chapter 6.

Using the results from Chapters 5 and 6, we prove our results on the strong

u-invariant and Brauer l-dimension of function fields of curves over complete ultra-

metric fields.
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Conventions. Unless stated otherwise, throughout this manuscript, we use the

Berkovich approach to non-Archimedean analytic geometry, which is one of the sev-

eral possible approaches to non-Archimedean analytic geometry. A Berkovich ana-

lytic curve will be a separated analytic space of pure dimension 1.

A valued field is a field endowed with a non-archimedean absolute value. For any

valued field k, we denote the residue field by k̃.

The empty set is considered to be connected.

A Berkovich analytic space which is reduced and irreducible is called integral.

Thus, an integral affinoid space is an affinoid space whose corresponding affinoid

algebra is an integral domain.

Throughout this document, unless otherwise mentioned, we work over a complete

valued base field k.
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Chapter 2

Preliminaries

This thesis is written in a comfortable style by preference, in the hope that it is

an easy read for anyone possessing some knowledge of commutative and homological

algebra, a handful of algebraic geometry jargon (mainly to understand Berkovich

theory), some fundamental theorems about central simple algebras, definitions and

properties of algebraic groups, and the resolve to chase diagrams. Additionally, we

give ample references, which we hope will fill in the missing details in the manuscript

that are sought by the keen reader.

Here is a very, very rough framework of the theory of quadratic forms and central

simple algebras, which is a topic that might or might not be covered in a first-year

PhD course. We hope the reader, if uninitiated in these topics, will still be able to

proceed with the rest of this manuscript and progress meaningfully.

2.1 Quadratic forms

An excellent reference for an introduction to this subject matter would be the

book [Sch12].

Definition 1. Let k be a field of characteristic different from 2 and V a finite-

dimensional vector space over k. We say q : V → k is a quadratic form if

(i) q is a quadratic map, i.e., q(λv) = λ2q(v) for each λ ∈ k and v ∈ V .
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(ii) The associated polar form bq : V × V → k, such that (u, v) mapping to

q(u+ v)− q(u)− q(v)

2
, is bilinear. We notice here that bq is symmetric by

definition.

Such a pair (V, q) is called a quadratic space.

Any quadratic form over a field k of characteristic ̸= 2 can be diagonalised and

written as q := ⟨a1, a2, . . . , an⟩, for ai ∈ k. That is, there exists a basis of vectors

ei ∈ V such that q(ei) = ai and bq(ei, ej) = 0 for i ̸= j.

Definition 2. The orthogonal sum of two quadratic forms (V, q) and (V ′, q′) over

k, denoted by (V, q) ⊥ (V ′, q′), is the quadratic form q ⊥ q′ : V × V ′ → k such that

(v, v′) 7→ q(v) + q′(v′).

An isomtery between quadratic spaces (V, q) and (V ′, q′) is a k-linear isomorphism

φ : V → V ′ such that q′(φ(v)) = q(v) for all v ∈ V .

Definition 3. A quadratic form q is said to be non-degenerate (or regular) if b̃q :

V → V ∗, induced by bq, is injective (and hence an isomorphism since V is finite

dimensional). It is called isotropic if there is a non-zero x ∈ V such that q(x) = 0,

and anisotropic otherwise.

A subspace W of V is called totally isotropic if bq(x, y) = 0 for all x, y ∈ W .

Corollary 2.1.1. All maximal totally isotropic subspaces of (V, q) have the same

dimension.

Example 2.1.2. Let H denote the two-dimensional quadratic form ⟨−1, 1⟩, called

the hyperbolic plane. For n ∈ N, let Hn denote the orthogonal sum of n hyperbolic

planes, also known as a hyperbolic space.

The common dimension of maximal totally isotropic subspaces of a regular quadratic

form (V, q) is called the Witt index of (V, q).
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Theorem 2.1.3 (Witt Decomposition). Let (V, q) be a quadratic space, with Witt

index m. Then there exists an orthogonal direct sum decomposition,

V = Hm ⊥ V1,

where V1 is anisotropic. The form V1 is uniquely determined up to isometry.

Two non-degenerate quadratic forms q1 and q2 are said to be Witt equivalent (or

similar), if there exist integers n,m such that q1 ⊥ Hn ≃ q2 ⊥ Hm. The above-

mentioned results tell us that every non-degenerate quadratic form q is similar to an

anisotropic form qan, which is uniquely determined up to isometry.

Define W (k) as the set of isomorphism classes of non-degenerate quadratic forms

modulo Witt equivalence. This set is an abelian group, with the group operation cor-

responding to the orthogonal direct sum of forms. The Witt group of K, W (K) can

also be given a commutative ring structure by using the tensor product of quadratic

forms. This is sometimes called the Witt ring of K.

2.2 Central simple algebras

A great reference for an introduction to this topic would be the book [GS17].

Definition 4. A central simple algebra over a field k is a finite-dimensional associa-

tive k-algebra A, with center k and no non-trivial two-sided ideals.

The notion of central simple algebra over a field generalises to that of an Azumaya

algebra over a commutative ring. The following theorem is due to Azumaya (over

a local ring), Auslander and Goldman (over an arbitrary commutative ring), and

Grothendieck (over a scheme).

Theorem 2.2.1 (Wedderburn Structure Theorem). Let A be a central simple al-

gebra over a field k. Then there exists an integer n ≥ 1 and a central division
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algebra D over k such that A ≃ Mn(D). Moreover, D is uniquely determined up to

isomorphism.

Proof. See for instance [GS17, p. 22].

Notation 1. For any algebra A over a field k and any field extension K/k, we write

AK for the K-algebra obtained from A by extending scalars to K:

AK = A⊗k K.

Theorem 2.2.2 (Wedderburn). Let A be an algebra over a field k. Then A is central

simple if and only if there is a field K, containing k, such that AK ≃ Mn(K) for

some n.

Proof. See, for instance, [Sch12, Chapter 8].

Corollary 2.2.3. If A is a central simple k-algebra, its dimension over k is a square.

Definition 5. Let K over k be a field extension such that AK ≃ Mn(K) for some

n, are called splitting fields of A. If K is a splitting field of A, we also say that A

splits over K or K splits A.

Definition 6. Let A be a central simple algebra over a field k. We define the degree

of A, denoted degk(A) or simply deg(A), to be the integer
√
dimk(A).

2.2.1 The Brauer group

To gain an understanding of the finite-dimensional central division algebras over

a field k, it is best to consider the more general central simple algebras over k. This

is because central simple algebras are closed under the tensor product, while central

division algebras in general are not. For example, if H is the Hamiltonian quaternion

algebra over R, then H⊗R H ≃M4(R).

If A is a central simple algebra over k, then by Wedderburn’s Structure Theorem,

we have a k-algebra isomorphism A ≃Mn(D), for some integer n ≥ 1 and some finite
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dimensional division algebra D over k, which is uniquely determined up to k-algebra

isomorphism. This motivates the following equivalence relation.

Definition 7. Let A ≃ Mn(DA) and B ≃ Mm(DB) be two central simple algebras

over a field k, where DA, DB are the associated central division algebras, respectively.

We say A is similar to B, denoted by A ∼ B, if there is a k-algebra isomorphism

DA ≃ DB.

This ∼ is an equivalence relation on the set of central simple algebras over k, and

let [A] denote the equivalence class of A under this relation.

Definition 8. For any k-algebras A, the opposite algebra, Aop, is defined by

Aop = {aop | a ∈ A},

with the operations defined as follows:

• aop + bop = (a+ b)op,

• aopbop = (ba)op,

• α · aop = (α · a)op,

for all a, b ∈ A and α ∈ k.

The tensor product gives a binary operation on the set of equivalence classes of

central simple algebras, defined as [A] · [B] := [A ⊗k B], which makes it into an

abelian group.

Definition 9. The Brauer group of a field k is the set of equivalence classes of central

simple k-algebras under the equivalence relation defined above. Denote this group

by Br(k).

The identity element of this abelian group (Br(k), ·) is the class of k, [k], and the

inverse element is [A]−1 = [Aop], for all classes [A] ∈ Br(k).
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Remark 2.2.4. There is a one-to-one correspondence between the set of finite-dimensional

central division algebras over k and the set of elements of Br(k).

Theorem 2.2.5. The Brauer group is a torsion abelian group.

Notation 2. We denote the n-torsion subgroup of Br(k) by nBr(k).

Definition 10. Let A be a central simple algebra over a field k. Let DA be the

central division algebra for which A ≃ Mn(DA). Define the index of A, denoted by

ind(A), to be deg(DA).

Definition 11. The period (or exponent) of a central simple k-algebra A, denoted

by per(A), is the order of its class [A] in Br(k).

Theorem 2.2.6 (Brauer). Let A be a central simple k-algebra. Then the period of

A divides the index of A. Moreover, the period and the index have the same prime

factors.

Proof. See [GS17, Proposition 4.5.13].

Definition 12 (Azumaya algebra). Let R be a commutative ring. An R-algebra A

is called an Azumaya algebra if A is finitely generated and projective (equivalently,

locally free) as an R-module, such that the map A⊗R A
op → EndR(A) which sends

a⊗ b ∈ A⊗R A
op to the A-endomorphism x 7→ axb is an isomorphism.

Theorem 2.2.7. Let A be an algebra over a commutative ring R and let AS :=

S⊗RA for a homomorphism of rings R → S. The following are equivalent conditions.

(i) The map A⊗R A
op → EndR(A) is an isomorphism.

(ii) For every algebraically closed field k and a homomorphism R → k, Ak ≃

Matn(k).

(iii) For every maximal ideal m ⊂ R, let k = R/m; the ring Ak is a central simple

algebra over k.
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Two Azumaya R-algebras are Morita equivalent if there exists finitely generated

projective R modules M and N such that A ⊗ EndR(M) ≃ B ⊗ EndR(N) as R-

algebras.

Morita equivalence classes of Azumaya algebras over R form a group under tensor

product, which is called the Brauer group of R, denoted by Br(R).

2.3 Severi-Brauer varieties

A reference for an introduction to this topic would be Chapter 5 of [GS17] and

Chapter I, §1 of [KMRT98].

Definition 13. Let n be a positive integer. A Severi-Brauer variety of dimension

n − 1 over a field k is a k-variety X such that there exists a field extension k ⊂ K

and an isomorphism of K-varieties X ×k K ∼= Pn−1
K . Such varieties are also called

twisted forms of Pn−1
k .

There is a natural bijection between the isomorphism classes of Severi-Brauer

varieties over a field k and the isomorphism classes of central simple k-algebras.

A twisted form of P1
k is a smooth, projective, geometrically integral curve C of

genus 0. Any smooth plane conic is a twisted form of P1
k. The automorphism group

of projective space Pn−1
k is the algebraic group PGLn,k. The group PGLn(k) is the

automorphism group of the matrix algebraMn(k). Galois descent then gives a bijec-

tion between the isomorphism classes of twisted forms of Pn−1
k and the isomorphism

classes of twisted forms of Mn(k), which are precisely the central simple algebras of

degree n over k.

Thus, we get a canonical bijection of pointed sets

H1(k,PGLn,k) ∼= {central simple algebras over k of degree n}/iso

∼= {Severi-Brauer varieties over k of dimension n− 1}/iso
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and a map of pointed sets H1(k,PGLn,k) → Br(k), which sends a central simple

algebra A of degree n to its class [A] ∈ Br(k). For a central simple algebra of degree

n, there exists a Severi-Brauer variety XA of dimension n − 1, which is uniquely

determined up to isomorphism of k-schemes [Jah03, Theorem 5.1].

For a Severi-Brauer variety X of dimension n− 1, we denote by [X] ∈ Br(k) the

image of the isomorphism class of X under this map.

Theorem 2.3.1. Let X be a variety over a field k. The following properties are

equivalent:

(i) X is a Severi-Brauer variety of dimension n− 1.

(ii) There is an isomorphism X̄ ∼= Pn−1
k̄

.

(iii) There is an isomorphism Xs ∼= Pn−1
ks .

(iv) There is a central simple k-algebra A of degree n such that X ∼= XA.

The central simple algebra A in (iv) is well-defined up to isomorphism. If X = XA,

then [X] = [A] ∈ Br(k).

Let F be a field and A be a central simple F -algebra of degree n. Let I ⊆ A be a

right ideal of A. Then the F -dimension of I, denoted by dimF (I) is divisible by the

degree of A, deg(A). The quotient dimF (I)/deg(A) is called the reduced dimension

of the ideal.

Definition 14. For any integer i, we write SBi(A) for the i-th generalised Severi-

Brauer variety of the right ideals in A of reduced dimension i.

In particular, SB0(A) = Spec(F ) = SBdeg(A)(A) and SBi(A) = ϕ for i outside of

the interval [0, deg(A)]. The variety SB1(A) is the usual Severi-Brauer variety of A.

In the same setup let E/F be a field extension and if AE denotes the algebra

A ⊗F E, then the E-points of SBi(A) are in bijection with the right ideals in AE

which are of reduced dimension i and are direct summands of AE.
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Also, SBi(A)(E) ̸= ϕ if and only if ind(AE) divides i. Since AE is a central

simple algebra over E, we have AE
∼= Mm(D) for some E-division algebra D and

some m ≥ 1. Now, the right ideals of reduced dimension i in AE are in natural

bijection with the subspaces of Dm of D-dimension i/ind(AE). Thus, writing DA

for the F -division algebra in the class of A, the F -linear algebraic group GL1(A) =

GLm(DA) acts transitively on the points of the F -scheme SBi(A).
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Chapter 3

Patching and Local-Global

Principles

In this chapter, we will discuss a patching setup first developed by Harbater and

Hartmann in [HH10], and then refined and expanded by Harbater, Hartmann, and

Krashen in [HHK09], [HHK11], and [HHK14]. We will also discuss patching in the

setup of the Berkovich theory of rigid analytic geometry, as seen in the PhD thesis

of Vlerë Mehmeti [MEH19a].

3.1 Introduction to field patching

This section aims to fix notation and discuss vector space patching problems. Let

I denote an indexing set with relations. Throughout, let F = {Fi}i∈I denote a finite

inverse system of fields with inclusions as morphisms. We call Fj an overfield of Fi

if there is an inclusion Fi ⊂ Fj in F . Let F = lim
−→

F .

We want to study when the data of an algebraic object (eg, a vector space) over

F is equivalent to the data of a collection of algebraic objects over Fi, together with

an isomorphism between them over common overfields. Specifically, we want to be

able to think of F as a cover of F . We need to make some assumptions on F before

proceeding.
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3.1.1 Necessary definitions

Definition 15. A factorisation inverse system over a field F is a finite inverse system

of fields such that:

1. F is the inverse limit.

2. The index set I can be partitioned as I = Iv ⊔ Ie such that:

(i) For any k ∈ Ie, there are exactly two elements i, j ∈ Iv such that i, j > k.

(ii) These are the only relations in I.

Let’s consider a very basic example of a factorisation inverse system.

Example 3.1.1. Let F1, F2, and F = F1 ∩F2 be sub-fields of a given field F0. Then

F = {Fi}i∈I , with I = {0, 1, 2} is a factorisation inverse system with F = lim
←
Fi.

Pictorially, we get

F

F1 F2

F0

In this case, Ie = {0}, Iv = {1, 2}.

If F = {Fi}i∈I is a factorisation inverse system, then for each index k ∈ Ie there is

an ordered triple (lk, rk, k), where lk, rk ∈ Iv and lk, rk > k. In fact, the factorisation

system is a finite multi-graph with an orientation for each (lk, rk, k), see [HHK14,

Section 2.1]. Collect these triples (lk, rk, k) in a set SI .

Example 3.1.2. Consider F = {F0, F1, F2, F3, F4, F5} with the following field inclu-

sions
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F

F2 F3

F4

F1F1

F5F0

In this example, Ie = {0, 4, 5} and Iv = {1, 2, 3}.

3.1.2 Patching problem

Patching is a principle that allows the study of algebraic objects over a field F

by studying corresponding objects over extension fields of F . Think of F to be a

cover of F , then a patching problem consists of data over F that would give rise to

an object over F .

Let’s start with vector spaces, one of the easiest algebraic objects to study. Let

VECT(F ) denote the category of finite-dimensional vector spaces over F .

Definition 16. Let F = {Fi}i∈I be a factorisation inverse system over a field F .

A vector space patching problem for F is given by a collection of finite dimensional

Fi-vector spaces Vi, together with Fk-vector space isomorphisms µk : Vi ⊗Fi
Fk →

Vj ⊗Fj
Fk, whenever (i, j, k) ∈ SI . Denote this by V = ({Vi}i∈Iv , {µk}k∈Ie).

Now consider two different vector space patching problems V = ({Vi}i∈Iv , {µk}k∈Ie),V ′ =

({V ′i }i∈Iv , {µ′k}k∈Ie). We can now talk of a morphism of patching problems from

V → V ′ – it is a collection of Fi-linear transformations Vi → V ′i for all i ∈ Iv that

are compatible with the isomorphisms µk, µ
′
k.

This allows us to define the category of vector space patching problems, denoted

by PP(F). Because of the way we have done the construction, it’s an easy exercise

to see that,

PP(F) ≃
∏

(i,j,k)∈SI

VECT(Fi)×VECT(Fk) VECT(Fj).
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We also have a canonical functor,

β : VECT(F ) → PP(F)

V 7→ ({V ⊗F Fi}i∈Iv , {αk}k∈Ie),

where αk is the canonical isomorphism between (V ⊗F Fi)⊗Fi
Fk ≃ (V ⊗F Fj)⊗Fj

Fk.

Definition 17. A solution to a vector space patching problem V is an F -vector

space V , such that β(V ) is isomorphic to V .

3.2 Patching over Berkovich curves

This section is dedicated to discussing and proving that patching can be applied

to an analytic curve. To do this, we follow closely the deliberations in [MEH19a]

and [HHK09]. We will discuss the main patching results.

The purpose of this section is to discuss a matrix decomposition result under

conditions which generalise those of the HHK setup in [HHK09, §3, Theorem 3.2].

As a consequence, a generalisation of vector space patching on analytic curves is

obtained. We will state lemmas and propositions as required, without proof. We

refer the reader to [MEH19a] for an in-depth treatment of the topic.

3.2.1 Necessary definitions

Definition 18. An absolute value on a field k is a function | · |: k → R≥0 such that:

a. | 1 |= 1,

b. for x ∈ k, | x |= 0 if and only if x = 0,

c. for all x, y ∈ k, | xy |=| x || y |,

d. for all x, y ∈ k, | x− y |≤| x | + | y |.
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We will say that (k, | · |) is a field with an absolute value.

If the absolute value satisfies the following stronger condition

for all x, y ∈ k, | x− y |≤ max{| x |, | y |},

then we call | · | a non-Archimedean or ultrametric absolute value on k. In this case,

we say that (k, | · |) is a non-Archimedean valued (or ultrametric) field.

An absolute value which is not ultrametric is called Archimedean.

Let | · | be an absolute value on k. The field k is said to be complete with respect

to | · |, if it is complete with respect to the metric induced on k. One can now

define the completion (k̂, | · |) of (k, | · |) by using the Cauchy sequence construction.

Then (k̂, | · |) is complete. A field k equipped with a non-Archimedean valuation

| · | : k → R≥0 is called a non-Archimedean field or an ultrametric field.

Recall that given an abelian group G ⊂ R×, its divisible closure is the group

{a ∈ R× : ∃n ∈ Z, an ∈ G}, which we will denote by
√
G.

Notation 3. For a field k with an absolute value | · |, denote by | k |:= {r ∈ R≥0 :

∃a ∈ k, | a |= r}. Set | k× |= {r ∈| k |: r ̸= 0}. This is a multiplicative subgroup of

R>0. Denote by
√
| k× | its divisible closure.

Definition 19. Let A be a ring. A semi-norm on A is a function | · |: A → R≥0

such that:

a. | 0 |= 0, | 1 |= 1,

b. for all x, y ∈ k, | xy |≤| x || y |,

c. for all x, y ∈ k, | x− y |≤| x | + | y |.

If the condition b is strengthened to for all x, y ∈ k, | xy |=| x || y |, we will say

that | · | is a multiplicative semi-norm on A.

If ker | · |= {0}, then | · | is a norm on A. A multiplicative semi-norm, which is

also a norm, is called a multiplicative norm.
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Let (A, | · |) be a normed ring. It is complete with respect to | · | if any Cauchy

sequence in A has a limit in A, in which case, A is said to be a Banach ring. In

Berkovich’s theory of rigid analytic geometry, Banach rings play a role analogous to

commutative rings in algebraic geometry.

The rings considered in this manuscript are commutative, with unity. We will

now define the Berkovich analogue of the affine spectrum.

Definition 20. Let (A, || · ||) be a semi-normed ring. A semi-norm | · | on A is said

to be bounded if there exists a positive real number c, such that | · |≤ c|| · ||.

Consider two semi-normed rings (A, ||·||A) and (B, ||·||B). A morphism φ : A→ B

is called bounded if there exists a real number c > 0, such that for any x ∈ A,

||φ(x)||B ≤ c · ||x||A.

The morphism φ is said to be admissible if the quotient semi-norm on A/ ker(φ)

induced by ||.||A is the same as the semi-norm induced on Im(φ) by ||.||B.

Definition 21 (The Berkovich Spectrum). Let (A, || · ||) be a Banach ring. The

Berkovich spectrum of A, denoted by M(A), is the set of all bounded multiplicative

semi-norms on A.

Endow M(A) with the coarsest topology such that the function v : M(A) →

R≥0, | · |7→| f |, is continuous for all f ∈ A.

Convention: For a point x of the space M(A), we will also use the notation | · |x

when treating it as a semi-norm on A.

For a Banach ring A, the points of M(A) are the equivalence classes of bounded

morphisms A→ K, where K is a complete ultrametric field.

Lemma 3.2.1 (Theorem 1.2.1, [Ber90]). Let A be a Banach Ring. Then, M(A) is

a non-empty compact space.

The fact that M(A) is compact is one of the key differences with the algebraic

setting. The spectra of certain Banach rings form the building blocks of Berkovich

spaces.
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An important example of a K-algebra is the following:

Example 3.2.2. Let n ∈ N and r1, r2, . . . , rn ∈ Rn
>0. Let

K{r−1T} = K{r−11 T1, . . . , r
−1
n Tn} := {

∑
u∈Nn

auT
u : au ∈ K, lim

|u|→+∞
|au|ru = 0},

where for any u ∈ Nn, |u| := u1 + u2 + · · ·+ un.

When r1 = r2 = · · · = rn = 1, the K-algebra is now called the Tate affinoid

algebra K{T}.

Definition 22. A Banach K-algebra A is called a K-affinoid algebra if there ex-

ist n ∈ N and r = (r1, r2, . . . , rn) ∈ Rn
>0, and a surjective admissible morphism

K{r−1T} ↠ A.

The Banach algebra A is called a strict K-affinoid algebra if there exists n ∈ N,

and a surjective admissible morphism K{T} ↠ A.

Affinoid algebras are to Berkovich theory what finite type algebras are to algebraic

geometry. Throughout this subsection, let (k, | · |k) be a complete ultrametric field.

Convention: A k-affinoid space is the Berkovich spectrum of a k-affinoid algebra.

Let ψ : A→ B be a bounded morphism of Banach rings, and let ψ′ : M(B) → M(A)

denote the induced continuous morphism.

A morphism X → Y of k-affinoid spaces is induced by a bounded k-linear mor-

phism AY → AX of corresponding k-affinoid algebras.

Definition 23. Let A be a k-affinoid algebra, and X the corresponding k-affinoid

space. An affinoid domain in X is a pair (V,AV ), such that:

1. V is a closed subset of X, and AV is a k-affinoid algebra;

2. there exists a bounded morphism ϕ : A→ AV , such that ϕ′(M(AV )) ⊂ V ⊂ X;

3. the following universal property is satisfied: for any bounded k-linear morphism

φ : A → B such that φ′(M(B)) ⊂ V , where B is a K-affinoid algebra for
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some complete ultrametric field extension K/k, there exists a unique bounded

morphism AV → B such that the following diagram commutes.

B

A AV

Proposition 3.2.3 (Proposition 2.2.3, [Ber90]). Suppose k is non-trivially valued.

Let X be a strict k-affinoid space. Then the strict k-affinoid domains in X form a

basis of neighbourhoods of the topology on X.

A morphism ϕ : Y → X of k-analytic spaces is called separated if the canonical

induced morphism Y → Y ×X Y is a closed immersion. A good k-analytic space is

a locally ringed space (Y,OY ), where each point has a neighbourhood isomorphic to

a k-affinoid space. A good k-analytic space Y is called separated if the canonical

morphism Y → M(k) is separated.

Definition 24. A k-analytic space is called a k-analytic curve if it is separated and

of pure dimension 1.

For a Banach ring A and x ∈ M(A), the kernel of |.|x is closed and a prime

ideal in A. Thus x induces a semi-norm ||.||x on the domain A/ ker |.|x, and for

any u, v ∈ A such that |u − v|x = 0, then |u|x = |v|x. Let ũ be the image of u in

A/ ker |.|x, then |u|x = ||ũ||x. This implies that the quotient semi-norm in A/ ker |.|x

is a multiplicative norm, which means it can be extended to Frac(A/ ker |.|x), the

field of fractions of A/ ker |.|x.

Definition 25. Let A be a Banach ring. Let x ∈ M(A) and complete the field

Frac(A/ ker |.|x) with respect to the quotient norm. This completion, denoted by

H(x), is called the complete residue field of x.

Let k be an ultrametric field and | · | be the non-Archimedean valuation on

this field. Suppose that dimQ
√

|k∗| (i.e., the rational rank of |k∗|) is finite, say
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n = dimQ(
√
|k∗|), and residue field characteristic not 2. Then for any k-analytic

space and any of its points x, the field H(x) also satisfies them.

Remark 3.2.4. If k is a complete non-Archimedean valued field and A is a Banach

algebra over k, then for any x ∈ M(A), we have a canonical isometric embedding of

k ↪→ H(x). This implies that H(x) is also a complete non-Archimedean valued field.

There is a full classification of points on a curve C. Let C be a k-analytic curve.

For any x ∈ C, define sx := trdegk̃H̃(x) and tx := dimQ | H(x)× | /(| k× | ⊗ZQ).

HereH(x) is the completed residue field of x; k̃, H̃(x) are the residue fields of k,H(x),

respectively. We know from [Ber93, Lemma 2.5.2] that for points of a good k-analytic

space X, dim(X) = supx∈X(sx + tx). This tells us that for any x ∈ C, sx + tx ≤ 1.

Fix an algebraic closure k̄ of k. The absolute value of k extends uniquely to k̄. Now

denote by ̂̄k the completion of k̄ with respect to this absolute value.

Definition 26. The point x ∈ C is called

(a) type 1, if H(x) ⊆ ̂̄k; remark that sx = tx = 0;

(b) type 2, if sx = 1;

(c) type 3, if tx = 1;

(d) type 4, if sx = tx = 0 and x is not of type 1.

Abhyankar points of a good k-analytic space X are the points x ∈ X for which

sx + tx = dim(X). So the thing to note here is that type 2 and 3 points are the

Abhyankar points of C. Also, rigid points are type 1 points (but not vice-versa unless

k is algebraically closed or trivially valued).

Definition 27. A finite cover U of a k-analytic curve is called nice if:

1. the elements of U are connected affinoid domains with only type 3 points in

their topological boundaries;
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2. for any different U, V ∈ U , U ∩ V = ∂U ∩ ∂V , or equivalently, U ∩ V is a finite

set of type 3 points;

3. for any two different elements of U , neither is contained in the other.

We will now define the sheaf of meromorphic functions, which heavily resembles

the complex setting.

Definition 28. Let X be a good k-analytic space. Let SX be the presheaf of

functions onX, which associates to any analytic domain U the set {analytic functions

on U whose restriction to any affinoid domain in it is not a zero-divisor}. Let M−be

the presheaf on X that associates to any analytic domain U the ring SX(U)
−1OX(U).

the sheafification MX of the presheaf M− is the sheaf of meromorphic functions on

X.

When there is no risk of ambiguity, we will simply denote O, respectively M , for

the sheaf of analytic, respectively meromorphic functions on X.

If X is a good k-analytic space, then for any x ∈ X, MX,x is the total ring of

fractions of OX,x. In particular, if OX,x is a domain, then MX,x = Frac(OX,x).

Before going further into the Berkovich theory analogue of the analytification

functor from classical algebraic geometry, let’s take a moment to discuss a funda-

mental example of Berkovich spaces (as a topological space). This next example was

originally defined and explored in [Ber90, Section 1.5].

Example 3.2.5. (The analytic affine space) Let A be a Banach ring and let An,an
k

define thew following set

An,an
k := {multiplicative semi-norms on A[T1, T2, . . . , Tn] that are bounded on A}.

Now give the set An,an
k the coarsest topology such that the map An,an

k → R≥0, which

sends x 7→ |p|x, is continuous for all p ∈ A[T1, T2, . . . , Tn].
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This topological space An,an
k is called the n-dimensional analytic affine space over

A. This space has neat topological properties, for more details see [Poi10, Theorem

1.1.13].

Definition 29. Let k be a complete ultrametric field. Let X be a scheme of locally

finite type over k. The Berkovich Analytification of X, denoted by Xan, is a good

k-analytic space together with a morphism of k-locally ringed spaces Xan → X.

This morphism represents the functor which sends any good k-analytic space Y to

Hom(Y,X), where Hom(·, ·) represents the morphisms in the category of k-locally

ringed spaces.

Let k be a complete ultrametric field (aka. complete non-Archimedean valued

field). A field extension l over k is called a complete ultrametric field extension if l

is complete with respect to an absolute value that extends the absolute value on k.

Theorem 3.2.6 ([Ber90]). Let X be a scheme of locally finite type over k. The

Berkovich analytification Xan of X exists.

1. For any complete ultrametric field extension l/k, Xan(l) ≃ X(l). Furthermore,

the canonical morphism φ : Xan → X is surjective and induces a bijection

between the rigid points of Xan and the closed points of X.

2. For any x ∈ Xan, the canonical morphism φx : OXan,φ(x) → OX,x is faithfully

flat. Moreover, if x in Xan is a rigid point, then φx indices an isomorphism of

completions ̂OXan,φ(x) → ÔX,x.

Let’s quickly discuss how the space Xan is constructed. If X = An
k for some

n ∈ N, then the Berkovich analytification is An,an
k , and the canonical map is a kernel

map φ : An,an
k → An

k such that x 7→ ker(| · |x). This permits the construction of

analytifications of closed subschemes of An
k , viz., for any finitely generated k-algebra

A, the analytification of X = Spec(A) is

Xan = (Spec(A))an := {multiplicative semi-norms on A that extend the norm on k}.
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The canonical map φ : Xan → X is still the kernel map. If I is the ideal sheaf

corresponding to X as a Zariski closed subset of An,an
k , then the analytic structure

on X is given by OX := OAn,an
k

/φ∗I. In the general case when X is any locally finite

type scheme over k, we get Xan and the canonical map φ by glueing together the

analytifications and the canonical maps of any open affine cover of X.

3.2.2 A local-global principle over Berkovich curves

Let k be a complete non-Archimedean valued field. Let C/k be a normal irre-

ducible projective algebraic curve with function field F . We shall discuss local-global

principles of certain homogeneous spaces defined over F from an analytic point of

view. Unless mentioned otherwise, we assume that
√
| k× | ≠ R>0.

If a linear algebraic group G acts on a variety H over a field F , we will say that

G acts transitively on the points of H if for every field extension E of F the induced

action of the group G(E) on the set H(E) is transitive.

Following [HHK09], we have the definition -

Definition 30. Let k be a field. Let X be a k-variety and G a linear algebraic group

over k. We say that G acts strongly transitively on X if G acts on X and, for any

field extension L/k, either X(L) = ϕ or G(L) acts transitively on X(L).

We can start by discussing some patching results over nice covers. Before that,

we need to recall the following definition from [MEH19a].

Definition 31. [MEH19a, Definition 3.1.6] Let C be a k-analytic curve. Let D be

a nice cover of C. The function TD : D → {0, 1} is called a parity function for D if

it satisfies the following:

for any different U, V ∈ D such that U ∩ V ̸= ϕ, then TD(U) ̸= TD(V ).

Proposition 3.2.7. [MEH19a, Proposition 3.2.2] Let D be P1,an
k or a connected

affinoid domain of P1,an
k . Let D be a nice cover of D and TD a parity function for
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D. Let G/M (D) be a connected rational linear algebraic group. Then, for any

(gs)s∈SD ∈
∏
s∈SD

G(M ({s})), there exists (gU)U∈D
∏
U∈D

G(M (U)) satisfying: for any

s ∈ SD, if U0, U1 ∈ D contain s and TD(U0) = 0, then gs = gU0 · g−1U1
in G(M ({s})).

Proposition 3.2.8. [MEH19a, Proposition 3.2.3] Let Y be an integral strict k-

affinoid curve. Set K = M (Y ). Let G/K be a connected rational linear algebraic

group. For any open cover V of Y , there exists a nice refinement U of V with a

parity function TU such that for any given (gy)y∈SU ∈
∏
y∈SU

G(M ({y})), there exists

(gU)U∈U
∏
U∈U

G(M (U)) satisfying: for any y ∈ SU , if U ′, U ′′ ∈ U contain y and

TU(U
′) = 0, then gy = gU ′ · g−1U ′′ in G(M ({y})).

Lemma 3.2.9. [MEH19a, Lemma 3.2.4] For any point s of type 3 in D, M ({s})⊗M (D)

M (Y ) =
∏

x∈f−1(s)

M ({x}).

Proposition 3.2.10. [MEH19a, Proposition 3.2.5] Let Y be a normal irreducible

strict k-affinoid curve. Set K = M (Y ). Let X/K be a variety and G/K a connected

rational linear algebraic group acting strongly transitively on X. The following local-

global principles hold:

• X(K) ̸= ϕ if and only if X(Mx) ̸= ϕ for all x ∈ Y ;

• for any open cover P of Y , X(K) ̸= ϕ if and only if X(M (U)) ̸= ϕ for all

U ∈ P.

Theorem 3.2.11. [MEH19a, Theorem 3.2.9] Suppose that k is non-trivially valued.

Let Y be a normal irreducible k-affinoid curve. Set K = M (Y ). Let X/K be a vari-

ety and G/K a connected rational linear algebraic group acting strongly transitively

on X. The following local-global principles hold:

• X(K) ̸= ϕ if and only if X(Mx) ̸= ϕ for all x ∈ Y ;

• for any open cover P of Y , X(K) ̸= ϕ if and only if X(M (U)) ̸= ϕ for all

U ∈ P.



29

Theorem 3.2.12. [Meh19b, Theorem 3.11] Let k be a complete ultrametric field. Let

C be an irreducible normal projective k-analytic curve. Set F = M (C). Let X/F

be a variety and G/F a connected rational linear algebraic group acting strongly

transitively on X. The following local-global principles hold:

• X(F ) ̸= ϕ if and only if X(Mx) ̸= ϕ for all x ∈ C;

• for any open cover P of C, X(F ) ̸= ϕ if and only if X(M (U)) ̸= ϕ for all

U ∈ P.

Now, Theorem 3.2.12 can be applied to the projective variety X defined by a

quadratic form q over F . In [HHK09, Theorem 4.2], HHK show that for a regular

quadratic form q over F , if char(F ) ̸= 2, SO(q), the special orthogonal group of

q, acts strongly transitively on X when dim(q) ̸= 2. So in that case, we can take

G = SO(q).

Because of the relation of Berkovich points to valuations of the function field of

a curve, as a result of Theorem 3.2.12, we will obtain a local-global principle with

respect to completions. Recall that an irreducible compact analytic curve is either

projective or affinoid.

Corollary 3.2.13. [Meh19b, Corollary 3.18] Let k be a complete ultrametric valued

field. Let C be a compact irreducible normal k-analytic curve. Set F = M (C). Let

X/F be a variety and G/F a connected rational linear algebraic group acting strongly

transitively on X. The following local-global principles hold:

(1) if C is affinoid and
√
| k× | ̸= R>0, then X(F ) ̸= ϕ if and only if X(Fv) ̸= ϕ

for all v ∈ VO(C)(F );

(2) if C is projective, X(F ) ̸= ϕ if and only if X(Fv) ̸= ϕ for all v ∈ V (F ).

Corollary 3.2.14. [Meh19b, Corollary 3.19] Let k be a complete non-Archimedean

valued field. Let C be a compact irreducible normal k-analytic curve. Set F = M (C).

Suppose that char(F ) ̸= 2. Let q be a quadratic form over F of dimension different

from 2. The following local-global principles hold:
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(1) if C is affinoid and
√

| k× | ≠ R>0, then q is isotropic over F if and only if it

is isotropic over all completions Fv, for all v ∈ VO(C)(F ), of F ;

(2) if C is projective, q is isotropic over F if and only if it is isotropic over all

completions Fv, for all v ∈ V (F ), of F .

Remark 3.2.15. For any finitely generated field extension F/k of transcendence de-

gree 1, there exists a unique normal projective k-algebraic curve Calg with function

field F . Let C be the Berkovich analytification of Calg. Then M (C) = F , so the

local-global principles apply to any such field F .

One can draw a comparison between the local-global principles proved by Mehmeti

in [MEH19a, Theorem 3.2.12] and the one proven by HHK in [HHK09, Theorem

3.7]. More precisely, the overfields appearing in [HHK09] can be interpreted in the

Berkovich setting, to show that [HHK09, Theorem 3.7] can be obtained as a conse-

quence of Theorem 3.2.12. For a ‘fine’ enough model, one can also prove the converse.

We will refer the reader to Chapter 3, Section 3 of [MEH19a] for the comparison of

overfields.

In this manuscript, we use field patching in the setting of Berkovich analytic

geometry. By patching over analytic curves, Mehmeti proved a local-global principle

and provided applications to quadratic forms and the u-invariant.

We will use in the upcoming chapters the following main result due to Vlerë

Mehmeti on the local-global principle in Berkovich theory.

Theorem 3.2.16 ([Meh19b]). Let k be a complete ultrametric field. Let C be a

normal irreducible projective k-algebraic curve. Denote by F the function field of

C. Let X be an F -variety and G a connected rational linear algebraic group over F

acting strongly transitively on X.

Let V (F ) be the set of all non-trivial rank 1 valuations of F which either extend

the valuation of k or are trivial when restricted to k.
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If F is a perfect field or X is a smooth variety, then

X(F ) ̸= ϕ if and only if X(Fv) ̸= ϕ for all v ∈ V (F ),

where Fv denotes the completion of F with respect to v.
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Chapter 4

Complete Ultrametric Fields

Let M ⊂ R∗ be a subgroup and let
√
M := {a ∈ R∗| az ∈ M for some z ∈ Z̸=0}

be the divisible closure of M . It is a Q-vector space. Suppose dimQ(
√
M) is finite.

For a prime l, set M l = {ml|m ∈M}.

Let n = dimQ(
√
M). There exists a Q-basis z1, z2, . . . , zn of

√
M . By definition

of
√
M , there exist non-zero integers α1, α2, . . . , αn such that zα1

1 , zα2
2 , . . . , zαn

n are in

M . Let ti := zαi
i ∈ M . Then t1, . . . , tn is also a basis. Thus, for any t ∈ M , there

exist unique p1, p2, . . . , pn ∈ Q such that

t =
n∏

i=1

ti
pi .

Definition 4.0.1. Let t ∈ M . Let t =
n∏

i=1

ti
si/ri for

si
ri

∈ Q with gcd(si, ri) = 1 for

i = 1, 2, . . . , n. Let r be the lcm of ri, i = 1, 2, . . . , n. We will say that r is the order

of t.

Let k be an ultrametric field and | · | be the non-Archimedean valuation on

k. Suppose that dimQ
√
|k∗| (i.e., the rational rank of |k∗|) is finite, say n =

dimQ(
√

|k∗|), and residue field characteristic not 2.

In particular, from the above discussion we get that when M = |k∗|, there exist

π1, π2, . . . , πn ∈ k∗ with |πi| = ti such that for any t ∈
√
|k∗|, there exist unique
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p1, p2, . . . , pn ∈ Q such that

t =
n∏

i=1

|πi|pi =
n∏

i=1

tpii .

Let us fix such elements π1, π2, . . . , πn of k∗.

We use the following notation throughout this document.

Notation 4. For any valued field E, let E◦ denote the ring of integers, E◦◦ the

corresponding maximal ideal, and Ẽ the residue field.

Lemma 4.0.2. Let k be a field and m,n be positive integers. Suppose m is coprime

to n. Let a ∈ k∗. Then there exists an integer m′ such that a = amm′ ∈ k∗/(k∗)n.

Proof. Since m and n are coprime, there exists m′, n′ ∈ Z such that mm′ + nn′ = 1.

Hence a = amm′+nn′
= amm′ ∈ k∗/(k∗)n.

Theorem 4.0.3 (Main Decomposition Lemma). Let k be an ultrametric valued field,

dimQ(
√

|k∗|) = n is finite, and l a prime such that char(k̃) ̸= l. Let a1, a2, . . . , as ∈

k∗, there exist elements c1, c2, . . . , cn in k∗ such that any ai = ui

n∏
j=1

c
µij

j (bi)
l, µij ∈ Z,

0 ≤ µij ≤ l − 1 , bi ∈ k, and ui are units in k◦.

Proof. Let us fix elements π1, π2, . . . , πn in k∗ such that {ti = |πi|} is a basis of
√

|k∗|.

Since ai ∈ k∗,|ai| ∈
√
|k∗|. So there exist unique p1, p2, . . . , pn ∈ Q such that,

|ai| =
n∏

j=1

|πj|pij =
n∏

j=1

t
pij
j = tri11

n∏
j=2

t
rij
j , where rij ∈ Q.

Let yi1 be the highest power of l that divides the denominator of ri1. Then we

can write |ai| = t
xi1

lyi1zi1
1

n∏
j=2

t
rij
j , where xij, yi1, zi1 ∈ Z, and rij ∈ Q. Thus, |azi1i | =

t
xi1/l

yi1

1

n∏
j=2

t
sij
j , where sij ∈ Q.

From Lemma 4.0.2, there exists z′i1 such that ai ≡ a
zi1z

′
i1

i ( mod (k∗)l). Since

l does not divide zi1, it also does not divide z′i1. It now follows that |azi1z
′
i1

i | =

t
xi1z

′
i1

lyi1

1

n∏
j=2

t
sij
j = t

x̂i1/l
yi1

1

n∏
j=2

t
sij
j , where x̂i1 ∈ Z and l ∤ x̂i1.
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Without loss of generality, we can say that any ai ∈ k∗ has |azi1z
′
i1

i | = t
xi1/l

yi1

1

n∏
j=2

t
rij
j ,

where rij ∈ Q. Note that gcd(xi1, l
yi1) = 1.

Case(i): Suppose yi1 = 0 for all i. So, |ai| = txi1
1

n∏
j=2

t
rij
j . Considering the element

π−xi1
1 ai ∈ k∗, |π−xi1

1 ai| =
n∏

j=2

t
rij
j , where rij ∈ Q. Choose c1 := π1, so for all i, then

|π−xi1
1 ai| =

n∏
j=2

t
rij
j . From here, the choices for cj are clear.

Case(ii): Suppose yi1 ≥ 1 for some i. Without loss of generality, say y11 =

maxi{yi1} ≥ 1. So, |a1| = t
x11/ly11

1

n∏
j=2

t
r1j
j . We also know that l ∤ x11, so we can

choose x′11, x
′′
11 ∈ Z such that l ∤ x′11 and x11x

′
11 + ly11+1x′′11 = 1.

So, a1 ≡ a
x′
11

1 ( mod (k∗)l), implying |ax
′
11

1 | = t
x11x′

11/l
y11

1

n∏
j=2

t
r1jx

′
11

j . Now consider

the exponent of t1:

x11x
′
11

ly11
=

1− ly11+1x′′11
ly11

=
1

ly11
− lx′′11.

So |a1| ≡ |ax
′
11

1 | ≡ t1/l
y11

n∏
j=2

t
λij

j ( mod (k∗)l). Without loss of generality, say |a1| =

t
1/ly11

1

n∏
j=2

t
r1j
j and |a2| = t

x21/ly21

1

n∏
j=2

t
r2j
j . Now consider the element |a−x21ly11−y21

1 a2| =

t
−ly11−y21

ly11
+

x21
ly21

1

n∏
j=2

t
λj

j , where λj ∈ Q.

Consider again the exponent of t1:

−x21ly11−y21
ly11

+
x21
ly21

= 0.

So for x21l
y11−y21 ∈ Z, we have |a−x21ly11−y21

1 a2| =
n∏

j=2

t
λj

j , where λj ∈ Q. Choose

c1 := a1. So for all i, |a−xi1l
y11−yi1

1 ai| =
n∏

j=2

t
λij

j , where λij ∈ Q.

Continuing this process, we get c2, . . . , cn, bi ∈ k∗ and µij ∈ Z such that

|aibℓi |=|
n∏

j=1

c
µij

j | .
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Since for any u ∈ k∗, u is a unit in the valuation ring of k if and only if |u |= 1, we

have

ai = uib
ℓ
i

∏
j

c
µij

j

for some units ui ∈ k◦, the valuation ring of k, bi ∈ k∗ and µij ∈ Z.
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Chapter 5

Strong u-invariant

5.1 Introduction

Definition 5.1.1. Let k be a field with char(k) ̸= 2. The u-invariant of k, denoted

by u(k), is the maximal dimension of anisotropic quadratic forms over k. We say

that u(k) = ∞ if there exist anisotropic quadratic forms over k of arbitrarily large

dimension.

Example 5.1.2. u-invariant of an algebraic closed field K, u(K) = 1.

Example 5.1.3. u(R) = ∞.

Example 5.1.4. For k a finite field, u(k) = 2.

The u-invariant is a positive integer if it is finite. A key area of research in the

theory of quadratic forms is to find all the possible values this invariant can take

for a given field. For example, it has been established in the literature (see [Lam05,

Chapter XI, Proposition 6.8]) that the u-invariant cannot take values 3, 5, and 7.

See [Lam05, Chapter XIII, Section 6], for more open problems about this invariant.

Considerable progress has also been made, particularly in the computation of the

u-invariant of function fields of p-adic curves due to Parimala and Suresh in [PS10],

[PS14], and by Harbater, Hartmann, and Krashen regarding the u-invariants in the

case of function fields of curves over complete discretely valued fields in [HHK09].
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Harbater, Hartmann, and Krashen make the following definition:

Definition 5.1.5. The strong u-invariant of K, denoted by us(K), as the smallest

real number m such that, u(E) ≤ m for all finite field extensions E/K, and u(E) ≤

2m for all finitely generated field extensions E/K of transcendence degree 1.

We say that us(K) = ∞ if there exists such field extension E of arbitrarily

large u-invariant. In [HHK09, Theorem 4.10], the same authors prove that for K a

complete discretely valued field, whose residue field K̃ has characteristic away from

2, us(K) = 2us(K̃).

The following discussion can be found in Commutative Algebra by Bourbaki

[Bou98, Chap. 6, §10, n◦2]. For an abelian group Γ, define the rational rank of Γ,

denoted by rat.rank(Γ), to be the dimQ(Γ ⊗Z Q). The rational rank is an element

of N ∪ {+∞}. If Γ′ is a subgroup of Γ, then since Q is a flat Z-module, we have

that rat.rank(Γ) = rat.rank(Γ′) + rat.rank(Γ/Γ′). The rational rank of a group Γ is

zero if and only if Γ is a torsion group. If Γ is the value group of a valuation, then

its rational rank is zero if and only if the valuation is the trivial valuation. Also, if

the field L is an algebraic extension of the valued field k, then the quotient group

|L∗|/|k∗| is a torsion group, and the residue field L̃ is an algebraic extension of k̃

[Vaq06, Proposition 1.16].

5.2 Review of literature: Complete discretely val-

ued fields

Kaplansky asked if the u-invariant of a field is always a power of 2. It is well

known in the literature that the u-invariant does not take the values 3, 5, 7. In the

1990s, Merkurjev constructed examples of fields k with u(k) = 2m for any m ≥ 1 in

[Mer92]. Since m = 3 was the first open case, this answered Kaplansky’s question

in the negative. It has been shown that the u-invariant could be odd. Izhboldin

proved in [Izh01] that there exist fields k with u(k) = 9, and then in [Vis07], Vishik
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has shown that there are fields k with u(k) = 2r + 1 for all r ≥ 3. Merkurjev’s,

Izhboldin’s and Vishik’s constructions yield fields k, which are not of arithmetic

type, i.e., they are not finitely generated over a number field or a p-adic field. It is

still an interesting question whether u(k) is a power of 2 if k is of arithmetic type.

Theorem 5.2.1 (Theorem 4.10,[HHK09]). For k a complete discretely valued field,

whose residue field k̃ has characteristic unequal to 2, us(k) = 2us(k̃).

5.3 Review of literature: Complete non-Archimedean

valued fields

Let k be a complete non-Archimedean valued field with residue field k̃ and

char(k̃) ̸= 2. Let
√
|k∗| := {a ∈ R∗ : az ∈ |k∗| for some z ∈ Z̸=0} denote the

divisible closure of the value group |k∗|.

Theorem 5.3.1 ([Meh19b]). If dimQ
√
|k∗| = n is finite, then us(k) ≤ 2n+1us(k̃).

And if |k∗| is a free Z-module with rankZ|k∗| = n, then us(k) ≤ 2nus(k̃).

Mehmeti used field patching in the setting of Berkovich analytic geometry to

prove a local-global principle, and provides applications to quadratic forms and the

u-invariant. The results she obtained generalise those of [HHK09].

5.4 Results regarding strong u-invariant

Theorem 5.4.1. Let k be a complete ultrametric field with char(k̃) ̸= 2. Suppose

that dimQ(
√

| k∗ |) = n is finite. Then u(k) ≤ 2nu(k̃).

Proof. Given a quadratic form q = ⟨a1, . . . , as⟩ over k of dimension s > 2nu(k̃),

such that | ai |∈
√

| k∗ | for all i. From the main decomposition theorem, we have

elements c1, . . . , cn in k∗ such that each ai = ui

n∏
j=1

cj
λijb2i , for ui unit in (k◦)∗, bi ∈ k∗,

and λij ∈ {0, 1}.
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So there are 2n possibilities for
n∏

j=1

c
λij

j . Let’s call them θ1, θ2, . . . , θ2n . Thus each

ai ≡ uiθj( mod (L∗)2), for some j with 1 ≤ j ≤ 2n.

So after re-indexing, we have, ⟨a1, . . . , as⟩ ∼= ⟨u1, . . . , us1⟩θ1 ⊥ ⟨us1+1, . . . , us2⟩θ2 ⊥

· · · ⊥ ⟨us2n−1+1
, . . . , us2n ⟩θ2n , where all the si’s add up to s. Consequently, for any

θi as above, there exists a diagonal quadratic form σθi with coefficients in (k◦)∗ such

that q is k-isometric to ⊥σ∈Q θi · σθi .

Since s > 2nu(k̃), there exists i such that dim(σθi) = dim(⟨usi+1, . . . , usi+1
⟩) =

si+1 − si > u(k̃). Thus σθi is isotropic over k̃. So σθi is isotropic over k. Thus q is

isotropic over k, making u(k) ≤ 2nu(k̃).

Remark 5.4.2. If the value group | k∗ | is a finitely generated free module of rank n,

then the above result is a consequence of Pumplün, [Pum09, Theorem 4].

This gives us a refinement of the results on u-invariant from Mehmeti’s paper

[Meh19b].

Recall the discussion regarding the rational rank of abelian groups from Section

5.1. In our situation, consider a complete ultrametric valued field k. Let L be a

valued field extension of k. Let |L∗|, |k∗| be the value groups of L and k, respec-

tively. We thus have dimQ(
√

|L∗|) = dimQ(
√
|k∗|) + dimQ(

|L∗|
|k∗| ⊗Z Q). If L is an

algebraic extension of k, then the quotient group |L∗|/|k∗| is a torsion group. Thus

dimQ(|L∗|/|k∗| ⊗Z Q) = 0, which implies that the two divisorial closures
√

|L∗| and√
|k∗| have the same dimension over Q.

Theorem 5.4.3. Let k be a complete ultrametric field with char(k̃) ̸= 2. Suppose

dimQ(
√
| k∗ |) = n is finite. Let C be a curve over k and F = k(C) the function field

of the curve. Let q be a quadratic form over F with dimension d. If d > 2n+1us(k̃),

then q is isotropic. In particular, u(F ) ≤ 2n+1us(k̃).

Proof. Let V (F ) be the set of all non-trivial rank 1 valuations of F which either

extend the valuation of k or are trivial when restricted to k. Let Fv denote the
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completion of F with respect to v. We will first show that for a quadratic form q

over F with dim(q) > 2n+1us(k̃), q is isotropic over Fv for all v ∈ V (F ). Then we

will apply Corollary 3.19 from [Meh19b] to say that q is isotropic over F .

Since we want to say that q is isotropic over Fv for all v ∈ V (F ), we have two

cases. If v ∈ V (F ) is such that v restricted to k is the trivial valuation, then Fv is

a discrete valued field. Let F̃v be the residue field of Fv. By Springer’s theorem on

non-dyadic complete discrete valuation fields (see [Lam05], VI.1.10 and XI.6.2(7)),

we have u(Fv) = 2u(F̃v). Since F̃v is a finite extension of k, F̃v is a complete

ultrametric field with residue field
˜̃
Fv a finite field extension of k̃. Using the fact

that F̃v is an algebraic extension of k, then the quotient group |F̃v

∗
|/|k∗| is a torsion

group. Thus dimQ(|F̃v

∗
|/|k∗|⊗ZQ) = 0, which in turn implies that the two divisorial

closures

√
|F̃v

∗
| and

√
|k∗| have the same dimension over Q. It then follows from

Theorem 5.4.1 that u(F̃v) ≤ 2nu(
˜̃
Fv) ≤ 2nus(k̃). Thus, u(Fv) ≤ 2n+1us(k̃).

In the case that v restricted to k is the valuation on k, then F̃v is an extension

of k̃ of transcendence degree ≤ 1. Let s = dimQ

( | F ∗v |
| k∗ |

⊗Z Q
)
and t = tr degk̃(F̃v).

By Abhyankar’s inequality [Abh56], we have 0 ≤ s+ t ≤ 1.

Suppose t = 0. Then F̃v is a finite extension of k̃, and hence u(F̃v) ≤ us(k̃).

Since t = 0 and 0 ≤ s + t ≤ 1, we have s ≤ 1. When s = 0, the discussion before

Theorem 5.4.3 tells us that, dimQ(
√

|F ∗v |) = dimQ(
√

|k∗|) + dimQ(
|F ∗

v |
|k∗| ⊗Z Q) =

dimQ(
√

|k∗|) + s. Thus dimQ(
√

|F ∗v |) = dimQ(
√
|k∗|) = n. From Theorem 5.4.1,

we thus have u(Fv) ≤ 2nu(F̃v) ≤ 2nus(k̃). When s = 1, again the same discussion

implies that, dimQ(
√

|F ∗v |) = dimQ(
√

|k∗|)+s. Thus dimQ(
√
|F ∗v |) = n+1. Applying

Theorem 5.4.1 again, we have u(Fv) ≤ 2n+1u(F̃v) ≤ 2n+1us(k̃).

For the case when t = 1 and s = 0, the extension F̃v over k̃ is finitely generated

of transcendence degree 1. Thus, u(F̃v) ≤ 2us(k̃). Once again applying Theorem

5.4.1, we get that u(Fv) ≤ 2nu(F̃v) ≤ 2n+1us(k̃).

Now applying 3.2.16, we get that q is isotropic over F . This proves the claim in

the theorem that u(F ) ≤ 2n+1us(k̃).
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Corollary 5.4.4. Let k be a complete ultrametric field with char(k̃) ̸= 2. Suppose

dimQ(
√
| k∗ |) = n is finite. Then us(k) ≤ 2nus(k̃).

Proof. Let K/k be a finite field extension. Then K is an ultrametric field and

K̃/k̃ is a finite extension. Let q be a K-quadratic form of dimension d > 2nus(k̃).

Since char(k̃) ̸= 2, we may assume q to be diagonal. Further, dimQ(
√

|K∗|) =

dimQ(
√

|k∗|) = n is finite. This equality follows from the discussion before Theorem

4.1, and noting that since K is a finite extension of k, the quotient group |K∗|/|k∗|

is torsion. Then applying Theorem 5.4.1, we have u(K) ≤ 2nu(K̃) ≤ 2nus(k̃).

Let C be a curve over k and F = k(C) the function field of C. Then it follows from

Theorem 5.4.3 that u(F ) ≤ 2n+1us(k̃). Then by the definition of strict u-invariant,

we have that us(k) ≤ 2nus(k̃).

One of the next steps is going to be to try to prove equalities in all of the

above results. In a recent arXiv upload (independently from the work done in this

manuscript), Becher-Daans-Mehmeti in [BDM25] show a more general result on the

u-invariant of function fields in one variable over a henselian valued field with arbi-

trary value group and with residue field of characteristic different from 2.
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Chapter 6

Brauer l-dimension

6.1 Introduction

Definition 6.1.1. Let A be a central simple algebra over a field k. The period (or

exponent) of A is the order of the class of A in the Brauer group of k.

Definition 6.1.2. Let A be a central simple algebra over a field k. The index of A

is the degree of the division algebra D that lies in the class of A (i.e., A is a matrix

ring over D).

The period and index always have the same prime factors, and the period always

divides the index [GS17, Proposition 4.5.13].

The period-index problem asks whether all central simple algebras A over a given

field k satisfy ind(A) | per(A)d for some fixed exponent d depending only on k. In the

spirit of [PS14], we make the following definition. Let k be any field. For a prime l,

define the Brauer l-dimension of k, denoted by Brldim(k), to be the smallest integer

d ≥ 0 such that for every finite extension L of k and for every central simple algebra

A over L of period a power of l, ind(A) divides per(A)d. The Brauer dimension of

k, denoted by Brdim(k), is defined as the maximum of the Brauer l-dimension of k

as l varies over all primes. It is expected that this invariant should increase by one

upon a finitely generated field extension of transcendence degree one.
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Saltman proved some results in this direction, including the fact that the index

divides the period squared for function fields of p-adic curves [Sal97]. Harbater, Hart-

mann, and Krashen in [HHK09, Theorem 5.5] consider a complete discretely valued

field k, its residue field k̃, F the function field of a curve over k, and l ̸= char(k̃).

They prove that if Brldim(k̃) ≤ d and Brldim(k̃(T )) ≤ d+1, then Brldim(F ) ≤ d+2.

In 2006, Michael Artin conjectured in [Art06] that Brdim(k) = 1 for every C2 field.

In the same paper, he also proved that Br2dim(k) = Br3dim(k) = 1 for such fields.

6.2 Review of literature: Complete discretely val-

ued fields

Let k be a p-adic field and let K over k be a finitely generated field exten-

sion of transcendence degree 1. For such fields K, Saltman in [Sal97] showed that

Brldim(K) = 2 for every prime l ̸= p. This is known as the good characteristic case.

More generally, if k is a complete discretely valued field with residue field k̃ such

that Brldim(k̃) ≤ d for all primes l ̸= char(k̃), then Brldim(k) ≤ d + 1 for all l ̸=

char(k̃), which is a classical result [GS17, Corollary 7.1.10].

Let F be the function field of a curve over a complete discretely valued field k,

with residue field k̃. One of the long-standing period-index questions is to compute,

or even show the finiteness of, Brldim(F ).

In the good characteristic case, i.e., when char(k̃) ̸= l, suppose there exists d ∈ N

such that the Brauer l-dimension of the of the residue field, Brldim(k̃) ≤ d and the

Brauer l-dimension of the function field for every curve C over k̃, Brldim(k̃(C)) ≤

d+ 1. Then Brldim(F ) ≤ d+ 2, by Harbater-Hartmann-Krashen [HHK09].

In the bad characteristic case, i.e., when char(k̃) = l. The Brauer l-dimension,

Brldim(F ) was again shown to be at most 2 when k is an l-adic field, by the work of

Parimala and Suresh in [PS14]. In fact, in the same paper, they also investigate the

Brauer l-dimension of function fields whose residue fields are not necessarily perfect
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and obtain a more general result. Combining the results of Saltman and Parimala-

Suresh, we can now conclude that the Brauer dimension of the function field of a

curve over a p-adic field is equal to 2.

6.3 Necessary results from literature

We will need the following theorem (stated here without proof) to develop the rest

of the manuscript. As in Milnor’s Algebraic K-Theory, let L be an arbitrary field,

n a positive integer with a non-zero image in L. The K-theory of L forms a graded

anti-commutative ring ⊕i≥0Ki(L) with K0(L) ∼= Z, K1(L) ∼= GL1(L). Denote by (a)

for an element of K1(L) that corresponds with a ∈ L∗, such that (a) + (b) = (ab).

Multiplying (a), (b) ∈ K1(L) yields an element of K2(L) that is written as (a, b).

One calls (a, b) a Steinberg symbol, or simply, a symbol.

In the literature, there are two descriptions of the main theorem of Merkurjev

and Suslin, one with Galois cohomology and one with Brauer groups. Let µn be the

n-th roots of unity in an algebraic closure L̄ of L and denote by Ls the separable

closure of L in L̄. Now consider µn as a module for the absolute Galois group

Gal(Ls/L). By Hilbert Theorem 90, the Galois cohomology group H1(L, µn) is

isomorphic with k2(L) := K1(L)/nK1(L) (see [GS17, Section 8.4]). Using a theorem

of Matsumoto, and the product structures in K-theory and some Galois cohomology,

it gives the following homomorphism called the Galois symbol or the norm-residue

homomorphism

αL,n : k2(L) → H2(L, µ⊗2n ).

The Merkurjev-Suslin theorem now simply reads

Theorem 6.3.1 (Merkurjev-Suslin). For all L, n as above, and the n-th roots of

unity contained in L, αL,n is an isomorphism.

Recall the definition of a cyclic algebra over a field. For a positive integer n, let L

be a field in which n is invertible such that L contains a primitive n-th root of unity
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ω. For nonzero elements a and b of L, the associated cyclic algebra is the central

simple algebra of degree n over L defined by

(a, b)ω = L⟨x, y⟩/(xn = a, yn = b, xy = ωyx).

We know from literature that the n-torsion of the Brauer group, nBr(L) is iso-

morphic with H2(L, µn) [CTS21, Section 1.3.4]. If µn ⊂ L, then µn ≃ µ⊗2n ; thus,

nBr(L) is isomorphic with H2(L, µ⊗2n ). So, we find that αL,n : k2(L) → nBr(L) sends

the coset of the symbol (a, b) to the class of the the cyclic algebra (a, b)ω, where ω

is the primitive n-th root of unity in L. We thus get the following corollary, which

conveys the surjectivity of αL,n.

Corollary 6.3.2. Let µn ⊂ L and let A be a central simple algebra over L, with

[A] ∈ nBr(L). Then A is similar to a tensor product of cyclic algebras (ai, bi)ω,

ai, bi ∈ L∗.

The case n = 2 is actually Merkurjev’s theorem.

To define a cyclic algebra over a commutative ring R, let n be an invertible

positive integer in R. Suppose R contains a primitive n-th root of unity ω. For

a, b ∈ R∗, the associated cyclic algebra is an Azumaya algebra of degree n over R

defined by

(a, b)ω = R⟨x, y⟩/(xn = a, yn = b, xy = ωyx).

6.4 Preliminary results

The next theorem follows from the proof of Harbater, Hartmann, and Krashen’s

Theorem 5.1 in [HHK09] and Mehmeti’s Corollary 3.19 in [Meh19b].

Theorem 6.4.1. Let k be a complete, non-trivially valued ultrametric field and sup-

pose dimQ(
√
|k∗|) = n is finite. Let C be a normal irreducible projective k-algebraic

curve. Denote by F the function field of C. Let A be a central simple algebra over
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F and let V (F ) be the set of all non-trivial rank 1 valuations of F . Then ind(A) is

the maximum of the set {ind(A⊗ Fv)} for v ∈ V (F ).

Proof. Let n be the degree of A. Then GL1(A) is a Zariski open subset of An2

F . So,

it is a rational connected linear algebraic group.

For 1 ≤ i ≤ n, let SBi(A) be the i-th generalised Severi-Brauer variety of A.

Then GL1(A) acts transitively on the points of SBi(A).

Further if E is a field extension of F , then SBi(A)(E) ̸= ϕ if and only if ind(AE)

divides i [KMRT98, Proposition 1.17]. So, the local-global principle proved by

Mehmeti in [Meh19b] implies that ind(A) | i if and only if ind(A ⊗ Fv) | i for

each v ∈ V (F ). Thus, ind(A) = maxv∈V (F ) {ind(A⊗ Fv)} as claimed.

We also record here the following well-known result.

Proposition 6.4.2. Let R be a complete local domain with field of fractions F and

residue field k. Let A be an Azumaya algebra over R. Then

ind(A⊗R F ) ≤ ind(A⊗R k).

Proof. Note that A ⊗R k is a central simple algebra over k. Let n = ind(A ⊗R k).

Then there exists a separable field extension L/k of degree n such that (A⊗Rk)⊗L ≃

Mn(L) [GS17, Proposition 2.25]. Since L/k is a finite separable extension, L = k(α)

for some α ∈ L. Let f(x) ∈ k[X] be the monic minimal polynomial of α over k.

Let g(X) ∈ R[X] be a monic polynomial of degree n which maps to f(X) in k[X].

Since f(X) is irreducible in k[X], g(X) is irreducible in R[X]. Let S = R[X]/(g(X))

and E = F [X]/(g(X)). Since R is a complete local ring, S is also a complete local

ring with residue field L. By [Mil80, I, Proposition 4.5], every complete local ring

is Henselian. Since the map Br(S) → Br(L) is injective [Mil80, IV, Corollary 2.13]

and (A ⊗R S) ⊗S L ≃ (A ⊗R k) ⊗k L is a matrix algebra, A ⊗R S represents the

trivial element in Br(S). Hence (A ⊗R F ) ⊗ E is a matrix algebra. In particular

ind(A⊗R F ) ≤ [E : F ] = n.
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Theorem 6.4.3. Let k be an ultrametric field such that dimQ(
√
| k∗ |) = n is finite.

Let k̃ be the residue field of k, k◦ the valuation ring, and l such that l ̸= char(k).

Let µl ⊂ k. Let A ∈ lBr(k). Then there exists a1, a2, . . . , an and b1, b2, . . . , bn in k;

A0 ∈ lBr(k
◦) such that

A = A0 ⊗
n∏

i=1

(ai, bi)l.

Proof. Let A ∈ lBr(k). Merkurjev-Suslin’s theorem implies that A =
m∏
i=1

(αi, βi)l

for some m ∈ N. By Theorem 4.0.3, there exists c1, c2, . . . , cn in k∗ such that αi =

ui
∏
c
rij
j and βi = vi

∏
c
sij
j , where rij and sij are integers and ui, vi are units.

So,

(αi, βi) = (ui
∏

c
rij
j , vi

∏
c
sij
j ) = (ui, vi)⊗

∑
(ui, c

sij
j )⊗

∑
(c

rij
j , vi)⊗

∑
(
∏

c
rij
j , c

sij
j ).

Let
∏
c
rij
j = di. So we get that

(αi, βi) = (ui, vi)⊗
∑

(ui, c
sij
j )⊗

∑
(c

rij
j , vi)⊗

∑
(di, c

sij
j )

= (ui, vi)⊗
∑

(u
sij
i , cj)⊗

∑
(v
−rij
i , cj)⊗

∑
(d

sij
i , cj),

the last equality coming from properties of symbols, i.e., (α, βj) = (αj, β) and

(α, β) = −(β, α) = (β−1, α). Now, combining the terms, we get the following equality

(αi, βi) = (ui, vi)⊗
n∑

j=1

(u
sij
i v

−rij
i d

sij
i , cj).

Let xj = u
sij
i v

−rij
i d

sij
i in k∗. Thus, we have A =

m∏
i=1

(
(ui, vi)⊗

n∑
j=1

(xj, cj)
)
.

Let A0 = ⊗(ui, vi)k◦ . Since each cyclic algebra (ui, vi)k◦ is an Azumaya algebra

over k◦, A0 ∈ Br(k◦) and we thus have A = A0 ⊗
n∏

i=1

(ai, bi).

Once again, recall the discussion regarding the rational rank of abelian groups
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from Section 5.1. In our situation, consider a complete ultrametric valued field k.

Let L be a valued field extension of k. Let |L∗|, |k∗| be the value groups of L and

k, respectively. We thus have dimQ(
√

|L∗|) = dimQ(
√
|k∗|) + dimQ(

|L∗|
|k∗| ⊗Z Q). If L

is an algebraic extension of k, then the quotient group |L∗|/|k∗| is a torsion group.

Thus dimQ(|L∗|/|k∗|⊗ZQ) = 0, which implies that the two divisorial closures
√

|L∗|

and
√
|k∗| have the same dimension over Q.

6.5 Results regarding Brauer l-dimension

Theorem 6.5.1. Let k be a complete ultrametric field. Suppose dimQ(
√
|k∗|) = n

is finite. Let l be a prime such that l ̸= char(k̃) and µl ⊂ k. Then the Brldim(k) ≤

Brldim(k̃) + n.

Proof. Consider the l-torsion of Br(k), denoted by lBr(k). Then for a given A ∈

lBr(k), by Theorem 6.4.3, there exists A0 ∈ lBr(k
◦) and c1, c2, . . . , cn ∈ k∗ such that

(A − A0) ⊗ k( l
√
c1, l

√
c2, . . . , l

√
cn) is split. Let L be the field k( l

√
c1, l

√
c2, . . . , l

√
cn).

Then the algebra (A− A0)⊗ L is split.

This implies that ind(A) divides ind(A0)l
n. Since k◦ is complete, it follows

from Proposition 6.4.2 that ind(A0) ≤ ind(A0 ⊗k◦ k̃), hence divides Brldim(k̃). So,

Brldim(k) ≤ Brldim(k̃) + n.

Corollary 6.5.2. Let k be a complete ultrametric field. Suppose dimQ(
√

|k∗|) = n is

finite. Let l be a prime such that l ̸= char(k̃). Then the Brldim(k) ≤ Brldim(k̃) + n.

Proof. Let A ∈ lBr(k). Let ρl be the l-th primitive root of unity. So, the degree

of the extension k(ρl) over k is at most l − 1, i.e., l ∤ [k(ρl) : k]. Thus, ind(A) =

ind(A ⊗ k(ρl)) and per(A) = per(A ⊗ k(ρl)), by [PP82], Propositions 13.4(vi) and

14.4b(v). Hence, the corollary follows from Theorem 6.5.1.
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Theorem 6.5.3. Let k be a complete ultrametric field. Suppose dimQ(
√

|k∗|) = n

is finite. Let l be a prime such that l ̸= char(k̃). Let C be a curve over k and

F = k(C) the function field of the curve. Suppose there exist an integer d such that

Brldim(k̃) ≤ d and Brldim(k̃(t)) ≤ d+ 1. Then the Brldim(F ) ≤ d+ 1 + n.

Proof. Let V (F ) be the set of all non-trivial rank 1 valuations of F which either

extend the valuation of k or are trivial when restricted to k. Let Fv denote the

completion of F with respect to v.

If v ∈ V (F ) is such that v restricted to k is the trivial valuation, then Fv is a

discrete valued field. Let F̃v be the residue field of Fv. Since F̃v is a finite exten-

sion of k, it is a complete ultrametric field with residue field
˜̃
Fv a finite extension

of k̃. By the definition of Brldim, we have that Brldim(
˜̃
Fv) ≤ Brldim(k̃). Note

that Fv is a complete discretely valued field, thus Brldim(Fv) ≤ Brldim(F̃v) + 1,

which follows from [HHK09, Theorem 5.5]. Now utilising the fact that F̃v is an

algebraic extension of k, the quotient group |F̃v

∗
|/|k∗| is a torsion group. Thus,

dimQ(|F̃v

∗
|/|k∗| ⊗Z Q) = 0, which in turn implies that the two divisorial closures√

|F̃v

∗
| and

√
|k∗| have the same dimension over Q. Applying Theorem 6.5.1 to

F̃v, we have that Brldim(F̃v) ≤ Brldim(
˜̃
Fv) + n. Putting it all together gives

Brldim(Fv) ≤ Brldim(F̃v)+1 ≤ Brldim(
˜̃
Fv)+n+1 ≤ Brldim(k̃)+n+1 ≤ d+n+1.

In the case that v restricted to k is the valuation on k, then F̃v is an extension

of k̃ of transcendence degree ≤ 1. Let s = dimQ

( | F ∗v |
| k∗ |

⊗Z Q
)
and t = tr degk̃(F̃v).

By Abhyankar’s inequality [Abh56], we have 0 ≤ s+ t ≤ 1.

Suppose t = 0. Then F̃v is a finite extension if k̃. Thus, Brldim(F̃v) ≤ Brldim(k̃).

Since t = 0 and 0 ≤ s + t ≤ 1, we have s ≤ 1. When s = 0, the discussion at the

beginning of this section implies that dimQ(
√

|F ∗v |) = dimQ(
√
|k∗|) + dimQ(

|F ∗
v |
|k∗| ⊗Z

Q) = dimQ(
√

|k∗|) + s. Thus dimQ(
√

|F ∗v |) = dimQ(
√

|k∗|) = n. Applying Theorem

6.5.1 now gives that, Brldim(Fv) ≤ Brldim(F̃v) + n ≤ Brldim(k̃) + n ≤ d + n.

When s = 1, once again the discussion at the beginning of this section tells us that,

dimQ(
√

|F ∗v |) = dimQ(
√

|k∗|) + s. Thus dimQ(
√
|F ∗v |) = n + 1. By Theorem 6.5.1,
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Brldim(Fv) ≤ Brldim(F̃v) + dimQ(
√
|F ∗v |) ≤ Brldim(k̃) + n+ 1 ≤ d+ n+ 1.

For the case when t = 1 and s = 0, the extension F̃v over k̃ is finitely generated

of transcendence degree 1, i.e., F̃v is a finite extension of k̃(T ). So, Brldim(F̃v) ≤

Brldim(k̃(T )). By Theorem 6.5.1, Brldim(Fv) ≤ Brldim(F̃v) + n ≤ Brldim(k̃(T )) +

n ≤ d+ 1 + n.

Thus for all v ∈ V (F ), we have Brldim(Fv) ≤ d + n + 1. From Theorem 6.4.1,

we see that Brldim(F ) ≤ Brldim(Fv), proving the claim of the theorem.

6.6 Future directions

In the future, we hope to develop specialised methods for the bad characteristic

case, i.e., give a bound for Brldim(k) when char(k̃) = l. In particular, try to adapt

the techniques from [PS14], which are based on bounding Brldim(k) in terms of the

l-rank of the residue field k̃.
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Appendix A

Embedding Problem

I am working with Brandon Alberts, Helen Grundman, Amanda Tucker, and

Alexander Slamen on a project that aims at counting number fields. The archetypal

question in number field counting asks

Question 1. Given a fixed number field K and a numerical invariant inv(L/K) of

finite extensions of K, what is the asymptotic behaviour of the counting function

N(K;X) = #{L/K | inv(L/K) < X} as X → ∞?

Classically, one takes the absolute discriminant as the invariant inv(L/K) =

|NK/Q(disc(L/K))| since a theorem of Hermite [Neu99] tells us N(K;X) < ∞ for

every X. This counting function is often subdivided further into functions Nd(K;X),

which count only those extensions of degree d. Folklore conjectures assert that

Nd(K;X) ∼ cd,KX as X → ∞ for some positive constant cd,K . Classical work of

Davenport and Heilbronn [DH71] shows that N3(Q;X) ∼ 1
3ζ(3)

X.

The link between cycle types in the Galois group of the Galois closure L̃/K

and powers of primes in disc(L/K) [Mal02] motivates a further stratification of our

count. Indeed, we often consider Nd(K,G;X), which counts those degree d exten-

sions whose Galois closures have Galois group G. Class field theoretic techniques

of Mäki [M8̈5] and Wright [Wri89] give precise asymptotics for Nd(K,G;X) with G

abelian. Motivated by these works and the heuristic that led us to count by Galois

https://sites.google.com/view/brandon-alberts/
https://www.brynmawr.edu/inside/people/helen-g-grundman
https://people.math.rochester.edu/faculty/abeeson/
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group, Gunter Malle conjectured a general form for Nd(K,G;X) [Mal04].

Conjecture 1 (Malle’s Strong Conjecture). There are constants a(G), b(K,G) ∈

Z>0, c > 0 such that Nd(K,G;X) ∼ cX1/a(G) log(X)b(K,G)−1 as X → ∞. Moreover,

the constants a(G), b(K,G) have explicit formulas.

Despite known issues with the power of the logarithm [Kl5], the conjecture

has proven massively influential in number field counting. It is known to be true

for abelian groups [M8̈5, Wri89] and in many non-abelian cases [Bha05, Bha10,

CDyDO02, Wan21].

This project considers a further stratification of Malle’s conjecture. In the spirit

of [CDyDO02, Wan21] one can split up a count of extensions L/K by considering all

possible (strict) intermediate extensions L/M/K and counting the possible exten-

sions L/M , M/K. More concretely, following the setup of [Alb21], if we fix a normal

subgroup T ◁G with G/T = B (for “top” and “bottom”) any Galois extension L/K

with Galois group G can be split as L/LT/K where L/LT has Galois group T and

LT/K has Galois group B. Now one can count the number of L/K by considering

all choices for LT and computing the “twisted” counts

N(M/K, T◁G;X) = #{L/K | Gal(L/K) ≃ G, LT =M, |NK/Q(disc(L/K))| < X}.

Conditional on the existence of a G-extension L/K with LT = M , Alberts proves a

Galois correspondence between such extensions L′/K, (L′)T =M and crossed homo-

morphisms Z1(Gal(K/K), T ), where T carries a Galois action that factors through

Gal(M/K) [Alb21, Lemma 1.3], hence the use of the word “twisted”. He then pro-

poses the following twisted version of Malle’s conjecture

Conjecture 2 (Twisted Malle Conjecture). There exist constants a(T ), b(K,T,G) ∈

Z>0, c > 0 such that N(M/K, T ◁ G;X) ∼ cX1/a(T ) log(X)b(K,T,G)−1 as X → ∞.

Moreover, the constants a(T ), b(K,T,G) have explicit formulas.

Alberts–O’Dorney prove this conjecture when T is abelian (and thus a Galois
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module) in [AO21] using class field theory type results. Lacking an analogue of class

field theory, no such progress has been made when T is non-abelian. We consider

this conjecture in the case G = D8 (the dihedral group of 16 elements), T a normal

subgroup isomorphic to D4, K = Q, and M an arbitrary quadratic field. In our

motivating example, the center N = Z(D8) ∼= C2 is a central subgroup of T ∼= D4,

and we are proving the following

Expected Theorem. Conjecture 2 is true for D4 ⊴ D8 over Q, i.e., there exist

constants a(D4), b(Q, D4, D8) in Z>0, c(Q, D4, D8) > 0 such that

N(M/Q, D4 ◁D8;X) ∼ c(Q, D4, D8) X
1/a(D4) log(X)b(Q,D4,D8)−1

as X → ∞. Moreover, the constants a(D4), b(Q, D4, D8) have explicit formulas.

Our approach is based on local-to-global principles in embedding problems — we

do the twisted count by counting the number of solutions to a twisted embedding

problem. In an embedding problem, one is given N ◁G and a G/N -extension M/Q

and asked to find aG-extension L/M/Q. By the Galois correspondence, this amounts

to lifting a surjection Gal(Q/Q) → G/N to a surjection Gal(Q/Q) → G. Results

in homological algebra show that for particular choices of central kernel N ⊆ Z(G),

such a lift exists if and only if it exists locally everywhere [Ser92]. In the twisted

setting, these problems become about lifting crossed homomorphisms, leading to the

natural question

Question 2. Does our twisted embedding problem obey a local-to-global principle?

More generally, is there a local-to-global principle for twisted central embedding

problems?

Using a lemma of Alberts [Alb21, Lemma 1.3], we have found that there is a

crossed local-to-global principle for central extensions of groups with a Galois action.

Moreover, we have evidence that the solubility of the corresponding local embed-

ding problems is dictated by values of Legendre symbols with modulus equal to the
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discriminant of the T/N -extension. Simple transformations translate these solubil-

ity conditions into indicator functions detecting solutions to embedding problems,

so by summing over possible T/N -discriminants, we count all solutions. Such sums

of characters closely match those considered by Fouvry–Klüners in their work on

4-ranks of the class groups [FK07], which suggests that similar sieving techniques

can be used to determine the asymptotic growth rate of N(M/Q, D4 ◁D8;X).

We will then sum over all the choices for the intermediate extension M/Q, which

satisfies

N(Q, D8;X) =
∑
M/Q

Gal(M/Q)≃C2

N(M/Q, D4 ◁D8;X).

Being able to add these together would lead to new results for Malle’s conjecture, as

this would be the first non-abelian twisted count in the literature, with the Galois

group acting on T by a nontrivial outer automorphism of D4.

A.0.1 Future Directions

Recalling that our interest in twisted counts stemmed from a desire to break

Malle’s conjecture into pieces to later be summed together, a crucial considera-

tion will be – What error terms appear in the asymptotic N(M/Q, D4 ◁ D8;X) ∼

cX1/a(D4) log(X)b(Q,D4,D8)−1? What can be said in general about desired error terms

in twisted counts? Since if the error terms are too large they may overpower the

predicted main term when summed.

Another relevant question to consider is – Can the twisted Malle’s conjecture be

verified with T ⊆ Z2(G), the second term in the lower central series for G? The

upshot here is that T∩Z(G) is a central subgroup of T and T/T∩Z(G) ⊆ Z(G/Z(G))

is abelian, so T is “one central embedding problem” away from an abelian extension.
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Appendix B

Non-Archimedean Differential

Algebraic Geometry

This project is related to attacking properness from a non-Archimedean/tropical

point of view. This is with Sreejani Chaudhury and Taylor Dupuy. Famously,

the degree map on polynomials (or rather its negative) can be thought of as the

valuation at infinity of P1. In connection with the Kolchin-Schmidt Conjecture on

differential homogeneous polynomials, there is a notion of differential degree. The

example we are interested in is K{x} = K[x, x′, x′′, . . . ], where K is a differential

field. So, K{x} is the set of polynomials in all these indeterminates, with the natural

derivations (each polynomial involves only a finite number of indeterminates). The

differential degree of a differential polynomial is the smallest d such that f(x
y
)yd

is an element of K{x, y}. The negative of differential degree defines a valuation

v : K({x}) → Z ∪ {∞}. We have been wondering about the geometry of this

valuation and wanted to see what other things we could find.

We have found a number of interesting valuations. First, the negative of the

differential degree is definitely a valuation – it satisfies a certain compatibility con-

dition appearing in the model theory literature (see van den Dries–Achenbrenner

[AvdDvdH17]), and we can figure out what its residue field and completion are.

Second, since maximal rank valuations come from term orderings, it turns out that

https://sites.google.com/view/sreejanichaudhury/home?authuser=0
https://tdupu.github.io/index.html
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the special term ordering used by Mourtada and his collaborators (see [Mou23])

has a valuation with special properties. This property is different from the previ-

ous property, and it is almost like a morphism of semi-rings, which is a differential

morphism. This property was more or less isolated in some foundational papers for

“Tropical Differential Algebraic Geometry”– the way they state it is for power-series

rings (viewed as differential rings) and the way we have it for higher rank valuations

associated with terms orderings seems to say this is something that can work “for

generic points” too.

We are piecing together these new examples in [CDM24]. We know a little bit

about what sort of subsets of the “full Riemann-Zariski space” (of the coordinate

ring of the arc scheme for A1, say) one of our compatibility conditions needs to

satisfy but can’t say anything conclusive about properness/non-properness of such a

space yet. We have made some progress on specialising and generalising valuations in

these examples. We have also started thinking a little bit about how these valuations

fit into the perspective of tropicalisation as polytopes coming from changes in the

initial ideal (Kapranov’s Theorem [MS21, Theorem 3.1.3]) as we vary the ordering

and what this has to do with the Fundamental Theorem of Tropical Differential

Algebraic Geometry [AGT16], (Trop(V (I)) = V (Trop(I)).

B.0.1 Future Directions

We are looking forward to exploring the “compatibility” conditions that we need

for valuations onK{x} to be agreeable with the differential operator. More generally,

is it possible to comment about the Riemann-Zariski spaces of all valuations for a

differential ring? In particular, what does the space of all valuations look like in the

case of K{x ?
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