Goals Unhindered: How spatially selective disinhibition drives new important memories. Restricted; Files Only

Jeong, Nuri (Summer 2023)

Permanent URL: https://etd.library.emory.edu/concern/etds/5425kc22k?locale=en
Published

Abstract

Animals rely on quickly identifying and remembering the most important locations for successful goal-directed spatial navigation. Developing new spatial memories rapidly requires orchestrated firing activity of excitatory pyramidal cells in the hippocampus, but the mechanisms underlying new goal learning at precise locations are not fully understood. Inhibitory interneurons, including those that directly inhibit the somas of pyramidal cells, are known to modulate excitatory firing but this inhibitory modulation is typically thought to follow and depend on excitatory inputs. According to this view, inhibition supports excitatory reorganization during spatial learning by preventing hyperexcitation and suppressing low-firing activity to increase the signal-to-noise ratio of spatial coding. Distinct from this view, we tested a novel hypothesis that spatially selective reduction in inhibition would drive learning-associated excitatory reorganization at specific locations to serve goal-directed navigation. Spatially selective disinhibition, could drive excitatory reorganization for new learning and therefore gate enhanced information transfer at specific locations most pertinent to learning. We reasoned that such gating would occur at important locations such as rewarded areas. To test our hypothesis, we simultaneously recorded from many single neurons in mouse hippocampal subregion CA3, a region known to be important for developing new spatial memories, during rapid learning of new reward locations in virtual reality environments. We found a spatially selective reduction in firing rates of most interneurons when mice approached learned reward zones. This inhibitory reduction could not be explained by position-related changes in speed or licking behavior, nor was the timing or magnitude of the reduction consistent with simple balancing of changes in excitatory activity. To test the causal role of reductions in interneuron activity in learning, we optogenetically disrupted the normal reduction in inhibition at goal locations in new environments. Consistent with our hypothesis, goal location-specific stimulation of a small subset of CA3 parvalbumin interneurons, which provide perisomatic inhibition onto pyramidal cells, disrupted new goal learning without affecting performance in the familiar environment. Learning impairment was accompanied by deficits in the goal-relevant spatial information and sharp wave ripple activity. These results highlight a novel inhibitory gating mechanism for new goal-specific spatial learning.

Table of Contents

Introduction ......................................................................................................................................................................................................................................................... 1

Chapter 1 ............................................................................................................................................................................................................................................................. 4

Abstract ............................................................................................................................................................................................................................................................... 4

Main Text ............................................................................................................................................................................................................................................................. 4

Figures ............................................................................................................................................................................................................................................................... 16

Chapter 2 ........................................................................................................................................................................................................................................................... 20

Abstract ............................................................................................................................................................................................................................................................. 20

Introduction ....................................................................................................................................................................................................................................................... 20

Results ............................................................................................................................................................................................................................................................... 23

Discussion .......................................................................................................................................................................................................................................................... 36

Materials and Methods ........................................................................................................................................................................................................................................ 39

Figures ............................................................................................................................................................................................................................................................... 52

Supplementary Figures ........................................................................................................................................................................................................................................ 63

Supplementary Text ............................................................................................................................................................................................................................................ 83

Chapter 3 ........................................................................................................................................................................................................................................................... 92

Figure ................................................................................................................................................................................................................................................................ 97

Appendix A BrainWAVE: A Flexible Method for Noninvasive Stimulation of Brain Rhythms across Species ................................................................................................................ 98

Abstract ............................................................................................................................................................................................................................................................. 98

Introduction ....................................................................................................................................................................................................................................................... 99

Results ............................................................................................................................................................................................................................................................. 102

Discussion ........................................................................................................................................................................................................................................................ 106

Materials and Methods ...................................................................................................................................................................................................................................... 110

Figures ............................................................................................................................................................................................................................................................. 119

Extended Data .................................................................................................................................................................................................................................................. 128

Appendix B A rapid and generalizable goal-directed spatial learning paradigm ...................................................................................................................................................... 136

Abstract ........................................................................................................................................................................................................................................................... 136

Introduction ..................................................................................................................................................................................................................................................... 136

Results ............................................................................................................................................................................................................................................................. 137

Discussion ........................................................................................................................................................................................................................................................ 141

Materials and Methods ...................................................................................................................................................................................................................................... 143

Figures ............................................................................................................................................................................................................................................................. 149

References ........................................................................................................................................................................................................................................................ 154

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Subfield / Discipline
Degree
Submission
Language
  • English
Research Field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified Preview image embargoed

Primary PDF

Supplemental Files