Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all
forms of media, now or hereafter known, including display on the world wide web. I understand
that I may select some access restrictions as part of the online submission of this thesis or
dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain
the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Nuri Jeong Date



Goals Unhindered: How spatially selective disinhibition drives new important memories.

By

Nuri Jeong
Doctor of Philosophy

Graduate Division of Biological and Biomedical Science
Neuroscience

Annabelle C. Singer
Advisor

Joseph R. Manns
Committee Member

Matthew J. Rowan
Committee Member

Samuel J. Sober
Committee Member

Lary C. Walker
Committee Member

Accepted:

Kimbertly Jacob Arriola, Ph.D, MPH
Dean of the James T. Laney School of Graduate Studies

Date



Goals Unhindered: How spatially selective disinhibition drives new important memories.

Nuri Jeong
B.S., Thomas Jefferson University, 2014
B.S., Immaculata University, 2014

Advisor: Annabelle C. Singer, Ph.D.

An abstract of
a dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Graduate Division of Biological and Biomedical Science

Neuroscience
2023



Abstract

Goals Unhindered: How spatially selective disinhibition drives new important memories.
By Nuri Jeong

Animals rely on quickly identifying and remembering the most important locations for successful goal-
directed spatial navigation. Developing new spatial memories rapidly requires orchestrated firing
activity of excitatory pyramidal cells in the hippocampus, but the mechanisms underlying new goal
learning at precise locations are not fully understood. Inhibitory interneurons, including those that
directly inhibit the somas of pyramidal cells, are known to modulate excitatory firing but this inhibitory
modulation is typically thought to follow and depend on excitatory inputs. According to this view,
inhibition supports excitatory reorganization during spatial learning by preventing hyperexcitation and
suppressing low-firing activity to increase the signal-to-noise ratio of spatial coding. Distinct from this
view, we tested a novel hypothesis that spatially selective reduction in inhibition would drive learning-
associated excitatory reorganization at specific locations to serve goal-directed navigation. Spatially
selective disinhibition, could drive excitatory reorganization for new learning and therefore gate
enhanced information transfer at specific locations most pertinent to learning. We reasoned that such
gating would occur at important locations such as rewarded areas. To test our hypothesis, we
simultaneously recorded from many single neurons in mouse hippocampal subregion CA3, a region
known to be important for developing new spatial memories, during rapid learning of new reward
locations in virtual reality environments. We found a spatially selective reduction in firing rates of most
interneurons when mice approached learned reward zones. This inhibitory reduction could not be
explained by position-related changes in speed or licking behavior, nor was the timing or magnitude
of the reduction consistent with simple balancing of changes in excitatory activity. To test the causal
role of reductions in interneuron activity in learning, we optogenetically disrupted the normal
reduction in inhibition at goal locations in new environments. Consistent with our hypothesis, goal
location-specific stimulation of a small subset of CA3 parvalbumin interneurons, which provide
perisomatic inhibition onto pyramidal cells, disrupted new goal learning without affecting
performance in the familiar environment. Learning impairment was accompanied by deficits in the
goal-relevant spatial information and sharp wave ripple activity. These results highlight a novel
inhibitory gating mechanism for new goal-specific spatial learning.
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Introduction

We tend to remember the things that matter the most. The ability to store specific important information
into our memory thus helps us use our mental resources efficiently to serve our goals. Our memories of
everyday experiences develop much like how we learn about new environments when we move to a new
city. To navigate within an environment, we often use remembered cues (e.g., red brick house around the
corner) to tell us where we are in relation to places of importance (e.g., where we can get the best tacos in
town). As such, novel spatial learning, or learning in a new environment, has been studied as a model with
which we can understand the formation of new important memories. In goal-directed spatial learning, the
cues that predict target destinations take on important meaning over repeated exposure. Not surprisingly,
our brains have developed specialized teams of neurons to quickly identify and prioritize remembering
specific locations to serve goal-directed navigation.

Much of what we know about the neural mechanisms of spatial learning comes from
electrophysiological studies conducted in the hippocampus, where specialized excitatory neurons that fire
at specific locations of an environment were discovered in rodents (O’Keefe and Dostrovsky, 1971). These
excitatory neurons, or “place cells,” have been studied as an elegant example of how the brain develops an
internal model or “cognitive map” of external environments with which we interact (O’keefe and Nadel,
1978; Tolman, 1948). Place cells are thought to collectively represent the entire environment being learned
but they tend to represent more of the important locations like rewarded areas over less important ones.
Recently, goal-representing place cells, or pyramidal cells that fire specifically at goal locations, were found
to play a causal role in behavior around goal locations during goal-directed navigation (Robinson et al.,
2020). Likewise, groups of coactively firing excitatory neurons during the high-frequency oscillatory period
called sharp-wave ripples observed in the hippocampus are also biased to represent trajectories toward goals

(Pfeiffer and Foster, 2013). The importance of sharp-wave ripples for learning and memory is illustrated in



several studies that either perturbed or enhanced sharp-wave ripples artificially and found significant
impairment or improvement, respectively, of spatial memory performance (Fernandez-Ruiz et al., 2019;
Jadhav et al., 2012).

While the current hippocampal literature is dominated by findings from excitatory neurons and
excitatory population activity during sharp-wave ripples, they are an incomplete picture of the story, which
continues to be written and updated. Inhibitory interneurons, particularly those that express the calcium-
binding protein parvalbumin, are known to be important for regulating excitatory pyramidal cell firing and
generating sharp-wave ripples (Evangelista et al., 2020; Schlingloff et al., 2014). Previous models of
inhibitory roles in spatial learning posit that interneurons follow and respond to spatially modulated
excitatory inputs with little location selectivity themselves. It has been traditionally thought that inhibition
balances excitation and increases the signal-to-noise ratio of spatial coding by suppressing low responding

excitatory cells.

These traditional models are based on the assumptions that changes in inhibitory activity depend
on altered excitatory drive onto interneurons. These models have failed to address the mechanisms of
location-selective learning that may not necessarily be driven by major changes in excitatory activity. A
potential mechanism for new spatial learning may instead involve location-selective changes in inhibitory
activity that drive enhanced excitation at specific locations. This potential function of inhibitory
interneurons in spatial learning has not been examined in previous studies. As a result, it is not clear whether
inhibitory interneurons reorganize to show spatially selective firing patterns over learning. It is also unclear
whether inhibitory organization is necessary for learning-dependent excitatory reorganization and
ultimately, successful goal-directed navigational performance. Most electrophysiological studies of
hippocampal functions have been conducted in CA1, even though plasticity in CA3, the subregion upstream
of CAL, is known to be a critical driver of rapid learning of new information. These gaps in knowledge are

an important precursor to understanding how new specific information is learned to best serve our goals.



Recent studies with cell-type-specific targeting methods during awake behavior argue for an update
to our models of inhibitory functions in spatial learning and memory. For example, hippocampal
interneurons show spatial modulation and even refine place fields after initial formation, contrasting
previous studies of uniform spatial modulation in interneurons. In Chapter 1, we will review these recent
studies using cell-type-specific tools to examine inhibitory roles in local circuit computations during active
spatial navigation. In this Chapter, a peer-reviewed article published in Current Opinion in Neurobiology,
we focus on the hippocampal subregion CAL in which most prior work was conducted and discuss
limitations and unanswered questions. In Chapter 2, a manuscript under review, we will propose a novel
function of inhibitory interneurons, especially those that directly suppress excitatory firing, in learning
specific important locations in a new environment. In this Chapter, we focus on the subregion CA3, one
synapse away from CAL, because plasticity events in this region are known to be critical for rapid learning
of new information. Finally, in Chapter 3, we will summarize the new findings and discuss important

caveats of this work.



Chapter 1

This chapter is a published review article as it appears in Current Opinion in Neurobiology.

Learning from inhibition: Functional roles of hippocampal CALl inhibition in spatial

learning and memory

Abstract

Hippocampal inhibitory interneurons exert a powerful influence on learning and memory. Inhibitory
interneurons are known to play a major role in many diseases that affect memory, and to strongly influence
brain functions required for memory-related tasks. While previous studies involving genetic, optogenetic,
and pharmacological manipulations have shown that hippocampal interneurons play essential roles in
spatial and episodic learning and memory, exactly how interneurons affect local circuit computations during
spatial navigation is not well understood. Given the significant anatomical, morphological, and functional
heterogeneity in hippocampal interneurons, one may suspect cell-type specific roles in circuit computations.
Here we review emerging evidence of CA1 hippocampal interneurons’ role in local circuit computations
that support spatial learning and memory and discuss open questions about CAL interneurons in spatial

learning.

Main Text

Learning is the process by which an animal acquires knowledge or skills through experience. This process
includes forming neural representations of novel information which are initially stored for short-term access
and then stabilized into long-term memory through the process of consolidation. The hippocampus is
essential for rapid learning and consolidation of spatial and episodic memory, or memories of events.
Hippocampal excitatory pyramidal cell activity is thought to represent the internal perception of the external

environment such as one’s position in space-time dimensions and associations between external stimuli



relevant for task performance (Gauthier and Tank, 2018a; Gois and Tort, 2018; Knierim, 2002; Lee et al.,
2012; MacDonald et al., 2011; O’Keefe and Dostrovsky, 1971; Singer and Frank, 2009; Tanaka et al., 2018;
Wang et al., 2020a). Inhibitory interneurons strongly influence brain functions required for memory-related
tasks and are known to play a major role in many diseases with common symptoms of memory impairment
(Allen et al., 2011; Andrews-Zwilling et al., 2012; Artinian et al., 2019; Bissonette et al., 2015; Delorme et
al., 2021; Lovett-Barron et al., 2014; Martinez-Losa et al., 2018). While genetic, optogenetic, and
pharmacological interventions have shown that hippocampal interneurons play essential roles in spatial and
episodic learning and memory (Andrews-Zwilling et al., 2012; Artinian et al., 2019; Oliveira da Cruz et al.,
2020; de Salas-Quiroga et al., 2020), exactly how interneurons affect local circuit computations during
behavior is an active area of investigation and debate. Recent studies have revealed significant functional
heterogeneity in spatial and contextual selectivity, as well as heterogeneity in temporal dynamics of various
interneurons, suggesting cell-type specific roles in circuit computations (Geiller et al., 2020; Klausberger
and Somogyi, 2008; Pelkey et al., 2017). Indeed, interneuron subclasses in CAl not only exhibit
transcriptomic heterogeneity, but also target different cell-types and cellular compartments in CA1 (Fig. 1-
1A) (Francavilla et al., 2019; Harris et al., 2018; Sik et al., 1995).

Here we review the emerging role of hippocampal interneurons in circuit computations for spatial
learning and memory and open questions about interneurons in learning. In this review, we focus on recent
papers investigating the main hippocampal output region CA1 using recording and manipulation of select
neuronal populations during hippocampus-dependent spatial navigation tasks. While one of the primary
established roles of interneurons is the generation of neural oscillations, this has been reviewed elsewhere
and therefore will not be the focus here (Allen and Monyer, 2015; Antonoudiou et al., 2020; Butler and
Paulsen, 2015; Buzsaki, 2015; Colgin, 2016; Dvorak et al., 2018; Mann et al., 2005; Striiber et al., 2022).
Recent studies have shown that CA1 interneurons exhibit previously underappreciated feature selectivity
that is relevant for spatial learning and memory (Ego-Stengel and Wilson, 2007; Geiller et al., 2021).

Growing evidence suggests that this selectivity for features—whether it be a specific location, type of



information, or context—may be attributed to specific subclasses of interneurons (Geiller et al., 2020).
Thus, we review how interneuron roles in computations for learning and memory are actively being

rewritten by recent findings investigating cell-type-specific inhibitory populations during behavior.

Formation and Maintenance of Place Codes

When an animal navigates an environment, hippocampal pyramidal cells develop location-specific
receptive fields, or place fields, where they preferentially fire action potentials when the animal is in a
specific part of the environment (O’Keefe and Dostrovsky, 1971). Place cells have been studied extensively
as an elegant example of how neural firing patterns develop to form internal representations of the external
world (Best and White, 1998; Wilson et al., 1993). Some studies have shown that place fields tend to cluster
around reward zones (Dupret et al., 2010; Gauthier and Tank, 2018a; Hollup et al., 2001; Lee et al., 2020;
Singer and Frank, 2009), consistent with the idea that they prioritize behaviorally relevant locations over
less important ones. Recent work has shown that place cells are causally involved in goal-directed behaviors
(Robinson et al., 2020). For example, optogenetically stimulating groups of place cells that typically fired
when animals were at a rewarded location led mice to lick at an unrewarded location, behaving as if they
were at the reward location (Robinson et al., 2020). Thus, it is important to understand how interneurons
affect place field formation and maintenance because place fields are relevant for memory-guided
navigation.

The role of inhibitory interneurons in place field formation and maintenance is currently debated
in the field. On one hand, one study showed near uniform inhibitory firing across spatial positions in CAl
of head-fixed navigating mice (Grienberger et al., 2017). Under uniform inhibitory firing, spatial
modulation of excitatory cells is thought to arise primarily from spatially specific excitatory inputs or
strengthening of excitatory synapses, requiring little spatially-specific inhibitory input (Bittner et al., 2015,
2017). On the other hand, spatial selectivity in CA1 interneurons has been previously reported in varying

degrees (Ego-Stengel and Wilson, 2007; Hangya et al., 2010; Nitz and McNaughton, 2004; Wilent and



Nitz, 2007), and some have speculated that location-specific release of inhibition at least partly contributes
to the spatial tuning of place cells (Hangya et al., 2010). Other studies that have examined CA1 excitatory
and inhibitory responses to spontaneously developed or optogenetically induced place fields in head-fixed
behaving mice have reported seemingly conflicting findings (Dudok et al., 2021; Geiller et al., 2020, 2021;
McKenzie et al., 2021; Rolotti et al., 2022). Below we highlight recent empirical data investigating the role
of interneurons in place field formation and maintenance.

A recent study reports a role for CA1 interneurons in place field maintenance (Geiller et al., 2021).
This study by Geiller et al. (2021) elucidated interneuron effects on place fields in mice by using in vivo
single-cell electroporation combined with monosynaptic retrograde tracing and optogenetics to identify
synaptically connected cells in vivo (Geiller et al., 2021). The authors retrogradely labeled neurons
presynaptic to an electroporated starter pyramidal cell and found that over 90% of the presynaptic inputs
were from local inhibitory interneurons. Given this observation, the authors then expressed a genetically
encoded Ca?" indicator in all inhibitory interneurons using the VGAT-Cre mouse line, followed by
electroporation of a starter pyramidal cell in CAl. This approach allowed for calcium imaging of
functionally coupled pyramidal cells and interneurons in head-fixed mice running on a belt decorated with
different tactile cues and licking for randomly delivered water rewards. Strikingly, while there was no
detectable reduction in the activity of presynaptic interneurons during spontaneous place field formation,
presynaptic interneurons showed “inverse” spatial selectivity once newly formed place fields stabilized,
with strong reduction in firing at field locations of the starter pyramidal cell (Fig. 1-1B). These findings
contrast with prior work that showed inhibitory inputs are spatially uniform and contrast to theories that
reduced inhibition is required for place field formation (Grienberger et al., 2017). The discrepancy in spatial
selectivity of interneurons between different studies may be due to the cells included. Geiller et al.
specifically examined interneurons that were presynaptic to cells with place fields in the current
environment and these cells may have higher spatial selectivity than other interneurons, e.g. those that

synapse onto cells without a current place field. Additionally, differences in the behavior paradigm (like



randomly delivered reward versus reward delivered in specific parts of the track), may affect the animal’s
use of position-specific cues leading to differences in spatial selectivity of interneurons.

In contrast, another study suggests CAL interneurons do play a key role in place field formation,
but these effects may be interneuron subtype specific. Dudok et al. (2021) show that disinhibition by axo-
axonic Chandelier cells, which target the axon initial segment of pyramidal cells, can induce place field
formation (Dudok et al., 2021). In this study, the authors created a new genetic mouse line to specifically
target and optogenetically manipulate CA1 axo-axonic Chandelier cells (Dudok et al., 2021). This work
found axo-axonic cells inhibit firing activity of pyramidal cells in awake behaving mice. Both optogenetic
activation and silencing of axo-axonic cells led to remapping of place fields. Interestingly, optogenetic
silencing induced new place fields near the photostimulation site that persisted during post-
photostimulation laps while optogenetic activation did not change the total number of place fields (Fig. 1-
1C). Thus, location-specific reduction in axo-axonic cells’ firing may be sufficient to generate place fields
at that location. Together, the findings of Dubok et al. and Geiller et al. suggest that spatially organized
activity of interneurons plays a key role in the development and maintenance of hippocampal
representations of spatial experience with the exact role dependent on the interneuron subclass.

Indeed, spatial selectivity in CAl interneurons differs between interneuron subclasses, or
interneurons that have the same molecular markers, like parvalbumin, but differ in their morphological
classification, like basket cells and bistratified cells (Geiller et al., 2020). Geiller et al. (2020) used three-
dimensional 2-photon calcium imaging and molecular verification by immunohistochemistry to survey
several subclasses of CAL interneurons simultaneously recorded in behaving head-fixed mice. This study
found that many interneuron subclasses showed spatial selectivity, although the degree or stability of
modulation varied by subclass. For example, spatial selectivity was more stable across sessions for
parvalbumin-positive basket cells than for somatostatin-positive interneurons, although they both had
similar spatial modulation. Given the diversity in interneuron responses, inhibitory populations likely

contribute significantly to spatial representations that are typically thought to be represented by excitatory



populations with significant spatial modulation. Indeed, Geiller et al. (2020) found that the animal’s current
position was decoded above chance levels from CAL interneuron activity alone although decoding
performance was better with CA1 place cells than with interneurons only.

Beyond the development of individual place fields, Rolotti et al. (2022) suggest that local feedback
inhibition may control the size of the excitatory population to represent a specific location (Rolotti et al.,
2022). This is analogous to the previously reported role of dentate somatostatin interneurons in controlling
the size of fear memory ensembles (Stefanelli et al., 2016). In this study, Rolotti et al. used a tamoxifen-
dependent Cre virus and Cre-dependent excitatory opsin ChRmine to achieve sparse opsin expression
across CAL subpopulations in head-fixed mice running on a treadmill for randomly delivered water
rewards. By varying the dose of tamoxifen injected in each mouse, the authors titrated the fraction of opsin-
expressing CA1 pyramidal cells, while co-injection of GCaMP6f allowed for imaging calcium dynamics
of the entire CALl excitatory population. Rolotti et al. found that most single neurons could be
optogenetically induced to develop place fields at the stimulation location that lasted at least 24 hours post-
stimulation. Thus, new place fields may require strong enough excitatory drive above a certain threshold.
Indeed, they showed that the percentage of pyramidal cells that were stimulated to fire together affected the
efficacy of place field induction at the stimulation location (Rolotti et al., 2022). Stimulation of fewer cells
together due to lower opsin expression density led to a higher induction of place fields at the stimulation
location compared to mice with higher opsin expression density. The authors then reasoned that a larger
stimulated excitatory subpopulation might be more likely to recruit local interneurons, providing lateral
inhibition onto nearby CA1 pyramidal cells. As a result, place fields could be more difficult to induce due
to this lateral inhibition. Consistent with this hypothesis, the number of activated excitatory cells in a
subpopulation was increased by chemogenetically suppressing local inhibition with inhibitory DREADDs
specific to interneurons. Similarly, McKenzie et al. (2021), which used relatively low-power stimulation of
CA1 pyramidal cells in head-fixed behaving mice, observed induction failures at the stimulation site

perhaps due to larger recruitment of interneurons than place field induction via intracellular recordings



(McKenzie et al., 2021). These experiments suggest that interneurons play a key role in a competitive
mechanism by which some pyramidal cells are selected to be part of a neuronal assembly while other
pyramidal cells are suppressed and excluded (Rao-Ruiz et al., 2019; Roux and Buzsaki, 2015). Such groups
of neurons firing together during an experience would then strengthen their connections which is thought
to be the basis of memory formation (Buzséki, 2010; Wallace and Kerr, 2010).

Interneurons have been hypothesized to play a key role in developing and refining spatial codes
thus improving the signal-to-noise of such coding (McNaughton and Morris, 1987). These recent studies
support this hypothesis and refine it by showing that specific functions vary by interneuron subclass.
Together, these studies point to a model in which interneurons refine spatial codes in multiple ways. First,
the activity of some spatially modulated interneurons can decode animal location (Geiller et al., 2020).
Second, presynaptic interneuron activity exhibits an inverse relationship with new place field activity to
maintain sharp and stable place fields (Geiller et al., 2021). Third, while interneurons disinhibit high firing
cells at their place field locations, interneurons also suppress low firing pyramidal cells such that cells with
inadequate excitatory drive do not participate in an assembly (Rolotti et al., 2022). Thus, these studies
suggest that interneurons increase spatial coding signal-to-noise to stabilize new memories and suppress
low or unstable excitatory activity with their exact roles differing by cell-type. The notion of cell-type-
specific spatial selectivity in interneurons is further supported by cell-type-specific plasticity mechanisms
discovered in CAL, including at glutamatergic synapses onto interneurons and at inhibitory synapses onto
excitatory pyramidal cells (Bannon et al., 2020; Nissen et al., 2010; Szabo et al., 2012; Udakis et al., 2020).
Spatially-selective interneurons may also play a role in behavior timescale synaptic plasticity (BTSP) in
which excitatory cells exhibit extended periods of subthreshold depolarizations, or dendritic plateau
potentials, over behavioral (seconds) timescales, although this has traditionally been attributed to excitatory
inputs (Bittner et al., 2017; Milstein et al., 2021). Furthermore, spatial selectivity that seems to be driven
by excitatory inputs may have an inhibitory component. Previous in vitro work has shown that the efficacy

of inhibition depends on the distance to adjacent excitatory inputs on the same hippocampal dendritic



branch, while excitatory and inhibitory drives are also balanced across dendritic branches (Liu, 2004). This
within-dendrite inhibitory influence over excitatory inputs may contribute to spatial selectivity of excitatory
inputs. Future work is necessary to determine which plasticity mechanisms contribute to different phases

of spatial learning.

Learning Goal-Directed Navigation

The hippocampus is essential for rapid learning, whether after a single experience or a few minutes (Kim
and Frank, 2009; Moser et al., 1993; Nakazawa et al., 2003). While recent papers described above examined
place field formation and maintenance as a model of memory formation, place field formation occurs even
when animals explore open fields and does not necessarily require animals to express their learning via
behavioral changes (Wilson et al., 1993). To study learning-related behaviors explicitly, a few recent studies
have shed light on the role of interneurons in circuit function as animals learn to find new goal locations
(Dupret et al., 2013; Turi et al., 2019). These studies have examined neural inputs and connections as well
as place fields that tend to cluster around reward location (Fig. 1-2A).

Interneuron-targeting interneurons, which ultimately disinhibit pyramidal cells, were recently
discovered to play a key role in goal-directed spatial learning in the work by Turi et al. (2019) (Turi et al.,
2019). This study focused on CA1 vasoactive intestinal polypeptide (VIP) positive interneurons, a subset
of interneurons that primarily target parvalbumin- or somatostatin-expressing interneurons (Francavilla et
al., 2018; Tyan et al., 2014), and ultimately release pyramidal cells from perisomatic or dendritic inhibition.
After verifying that these VIP interneurons were indeed disinhibitory on CA1 pyramidal cells in vitro and
in vivo, the authors virally expressed GCaMPG6f in the dorsal CA1 region of VIP-Cre mice to observe
chronic Ca?" activity in head-fixed mice running on a treadmill. The authors first found that VIP
interneurons could be separated into two groups based on whether they were positively or negatively
modulated by speed. Upon training in a behavioral task that required the mice to learn to lick at a specific

location, the firing of both VIP interneuron groups was modulated by proximity to reward, but in opposite



directions. Interestingly, this reward modulation was not observed if the mice did not have to learn the task
as in random foraging conditions. The authors then tested the hypothesis that disinhibition of CAl
pyramidal cells is necessary for overrepresentation of goal location by place cells during learning and
subsequent improved performance. To do this, Turi et al. virally expressed either the opsin
channelrhodopsin or the opsin archaerhodopsinT in CA1 of VIP-Cre mice to optogenetically activate or
silence, respectively, CAL VIP interneurons in mice learning a new reward location. In support of their
hypothesis, the authors found that optogenetic silencing of VIP interneurons reduced the number of place
cells near goal locations as well as the rate of learning measured by licking earlier as animals approached
the reward location (Fig. 1-2 B,C). Mice learned significantly faster than controls when CAl VIP
interneurons were optogenetically stimulated near the reward location, even if it did not affect CAl
pyramidal cell reorganization. Based on these results, the authors concluded that disinhibition mediated by
VIP interneurons is necessary, but not sufficient, for learning-dependent reorganization of CA1 pyramidal
cells.

Prior work has shown that the strength of connections between pyramidal cells and interneurons
rapidly reorganize during spatial learning (Dupret et al., 2013). Dupret et al. (2013) found that rats rapidly
learning new goal zones in an otherwise familiar environment had learning-dependent changes in the
strengths of putative monosynaptic connections between pre-synaptic excitatory place cells and post-
synaptic inhibitory cells in CA1 (Dupret et al., 2013). This study showed that putative pyramidal-to-
interneuron connections alter input weight distributions following learning, with the direction of change
dependent on whether the assembly represented new learning. Pyramidal assemblies that represented newly
learned goal locations strengthened their connections to postsynaptic interneurons that preferentially fired
when the new map was expressed. Conversely, these same pyramidal assemblies weakened their coupling
to interneurons whose firing was more correlated with the old map. Furthermore, the changes in connection
strength were more likely to occur around rewarded locations compared to unrewarded locations, even

though pairing events were observed in all locations (Dupret et al., 2013). These findings indicate that local



pyramidal-to-inhibitory circuits reconfigure dynamically based on both learned information and their
affiliation to the map of relevance, and thus may contribute to outputting learned behavior. While this study
was unable to differentiate between different subclasses of interneurons, it would be important for future
work to determine whether and how cell-type-specific changes in connection strengths drive new learning
(Geiller et al., 2020).

Together these studies show that CAL interneurons develop learning-dependent changes important
for goal-directed behavior. First, interneurons alter firing responses to specific spatial cues that predict
reward, with the magnitude and direction of response modulation varied by subclass. Second, interneurons
rapidly reorganize over learning by redistributing their synaptic weights onto nearby neurons. Ultimately,
interneuron changes in firing activity and synaptic strength lead to stable representation of newly learned

locations directly relevant for task performance.

Current Gaps in Knowledge

Together these recent studies reveal previously unappreciated spatial selectivity in some interneuron types
which in turn increases the signal-to-noise ratio of spatial codes and enables learning (Dudok et al., 2021;
Geiller et al., 2020, 2021; Rolotti et al., 2022). We must also keep important experimental limitations in
mind when considering these findings. First, several studies have made clever use of induced place fields
(Geiller et al., 2021; McKenzie et al., 2021; Rolotti et al., 2022). However, these place fields are generated
artificially so may differ in their inputs or structure than naturally occurring place fields. Second, many of
these studies were performed in head-fixed mice. This approach enables complex imaging and
electrophysiology, but limits vestibular inputs to animals among other limitations (Minderer et al., 2016).
Third, optogenetic stimulation can have many unintended side effects (Allen et al., 2015). Fourth, imaging
of hippocampus often includes extensive damage to overlying cortex which may affect hippocampal

functions or animal behavior since interactions between hippocampus and cortex are involved in cognition



(Anderson and Floresco, 2021; Sigurdsson and Duvarci, 2015; Wang et al., 2020b). Even with these
limitations, these studies have provided key insights into interneuron roles in spatial coding.

These findings raise several key questions. First, it remains to be examined whether inhibitory
interneurons are crucial in selecting specific assemblies over others to represent or respond to particular
experiences. Second, the specific plasticity mechanisms at play in the development of interneuron spatial
selectivity and in changing connection strength between inhibitory and excitatory cells are not well
understood. Third, while inhibitory deficits have been well-documented in diseases with learning and
memory impairments, the diverse circuit mechanisms by which interneurons influence learning and
memory have not been elucidated. Finally, multiple brain regions may have unifying inhibitory mechanisms
for learning and disease susceptibility, which opens avenues for future research. Studies that bridge multiple
scales, from single neurons to networks to behavior, will shine light on the inhibitory mechanisms of

learning and memory in health and disease.

Functional Outcomes of Inhibitory Deficits in Disease

Interneurons are sensitive to disease states and deficits in inhibitory activity are likely to lead to network
dysfunction due to their powerful influences on neural circuits (Marin, 2012; Paterno et al., 2020; Ruden et
al., 2020). Multiple studies have shown abnormal inhibitory activity of multiple subclasses in several animal
models of Alzheimer’s disease (AD), revealing common pathophysiological mechanisms (Busche et al.,
2008; Leung et al., 2012; Li et al., 2009; Martinez-Losa et al., 2018; Palop et al., 2007; Reid et al., 2021,
Verret et al., 2012). Furthermore, abnormal GABAergic inhibition is observed in depression, autism
spectrum disorder, and Down syndrome, suggesting the sensitivity of inhibitory neurons to disease and
potential common inhibitory mechanisms across multiple pathological conditions (Contestabile et al., 2017;
Filice et al., 2020; Umschweif et al., 2021). Recent studies using in vivo electrophysiology in animal models
of disease have demonstrated the need for subclass-specific investigation of interneurons that may affect

different aspects of spatial learning and memory. Paterno et al. (2021) using the Cntnap2 KO mouse model



of autism showed reduced inhibitory transmission in vitro by parvalbumin-expressing interneurons onto
CAL1 pyramidal cells in KO mice, which also had impaired performance in spatial object recognition and
object congruence tasks (Paterno et al., 2021). This model also had layer- and frequency-specific deficits
in gamma phase-amplitude coupling, which could be directly related to deficits in subclass-specific
transmission at inhibitory synapses. In another study, Chung et al. (2020) found that in mice injected with
toxic amyloid beta oligomers, optogenetically activating CAL parvalbumin- or somatostatin-expressing
interneurons restored peak gamma or theta power, respectively, to normal levels in vivo, albeit during
anesthesia (Chung et al., 2020). The optogenetic manipulation also led to resynchronization of pyramidal
cell spiking relative to gamma or theta oscillation, respectively. While this study did not examine mice
during task performance, it would be of interest to consider interneuron subclass-specific rescue of
frequency-specific oscillations during spatial memory-guided behavior. Similar to these observations, our
study using the 5XFAD genetic mouse model of AD and a virtual reality spatial navigation task found fewer
and weaker sharp-wave ripples in AD mice, which correlated with a significant reduction in the strength of
putative interneuron-onto-pyramidal neuron monosynaptic connections in CAL (Prince et al., 2021). These
studies suggest that interneurons are involved in memory impairment in multiple models of disease either
by disrupting oscillations or driving network imbalances and hyperactivity. Considering recent studies
revealing the diversity and specialization of inhibitory populations and their roles for spatial coding and
memory formation described above, interneuron dysfunction likely plays more direct roles in memory
impairment, however empirical data for the specific roles of interneurons in circuit dysfunction in disease

models is lacking.
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Figure 1-1. Inhibitory roles in place field formation and maintenance

A. Simplified diagram of CAL interneuron subclasses and their inhibitory synaptic targets on a pyramidal
cell (Pyr.) with circles and triangle illustrating the location of the cell body of the interneuron and
pyramidal cell, respectively. Calretinin (CR)- and vasoactive intestinal polypeptide (VIP)-expressing
interneurons inhibit dendritic-targeting O-LM cells that primarily express somatostatin (SST), as well as
soma-targeting parvalbumin-expressing basket cells (PVBC), thereby disinhibiting pyramidal cells. Basket
cells co-expressing cholecystokinin (CCK) and VIP target the soma of pyramidal cells, whereas CCK and
calbindin (CB)-expressing interneurons typically target the dendrites. Axo-axonic Chandelier (AAC) cells
primarily target the axon initial segment. Note that the diagram focuses on interneurons described in this
review and is not a comprehensive overview of hippocampal inhibitory circuitry. B. Prior work shows that
spatially selective reduction in inhibition is not required for new field formation but may be important for
stabilization and maintenance of new fields. Top, several types of inhibitory interneurons that synapsed
onto a pyramidal cell were identified and targeted by their expression of vesicular GABA transporter
(VGAT). The inhibitory neurons included multiple cell-types with multiple possible synaptic target
locations. Bottom, no change in presynaptic inhibition was found prior to the lap where a new place field
formed, but as the place field stabilized, the presynaptic interneuron developed “inverse” spatial selectivity
such that it fired less than baseline levels at the postsynaptic pyramidal cell’s place field location (Geiller
et al., 2021). C. Spatial selectivity in place cells is inducible with cell-type-specific reduction in inhibition.
Optogenetic activation or silencing of axo-axonic cells targeting the axon initial segment of the pyramidal
cell led to place field remapping in vivo during behavior (Dudok et al., 2021). Specifically, optogenetic
silencing led to induction of new, persistent place fields at the photostimulated location. In contrast
optogenetic activation led to no significance change in the number of place fields at the stimulation site

although rare pre-existing place fields were suppressed.
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Figure 1-2. Inhibitory roles in learning goal-directed navigation

A. Place cells overrepresent behaviorally relevant locations such as reward zones and, while place fields
tile the entire environment, more place fields cluster around these important locations. B. Vasoactive
intestinal polypeptide (VIP)-expressing interneurons target other interneurons (Int.) that provides either
perisomatic or dendritic inhibition onto pyramidal cells (Pyr.). In a recent study investigating a local CA1
disinhibitory circuit in goal-directed learning, optogenetically activating VIP interneurons (light blue) was
found to induce faster learning of a new reward zone, as demonstrated by increased licking near the reward
location (Turi et al., 2019). Optogenetic silencing (yellow) led to impaired learning in the same goal-
directed navigation task. These findings suggest that new goal learning (and its behavioral expression) is
mediated by local inhibition and disinhibition of pyramidal cells. C. Left, consistent with these behavioral
changes in B, optogenetic silencing of VIP neurons led to a reduced proportion of place cells with fields
near the goal (yellow, inhibitory opsin ArchT in VIP interneurons). Right, in contrast to the observed
behavioral effects, VIP optogenetic activation (light blue, excitatory opsin ChR2 in VIP interneurons) did

not lead to observable changes in the proportion of goal-representing place cells. These results suggest



that transient release of pyramidal cells from local inhibition is necessary, but not sufficient, to induce

learning-dependent neuronal reorganization.
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Chapter 2

Spatially selective inhibition gates new goal memory

Abstract

Goal-directed navigation in a new environment requires quickly identifying and exploiting crucial spatial
information. Prevailing theories posit that interneurons play a supporting role in spatial learning by
increasing the signal-to-noise ratio of excitatory place cells. We tested a novel hypothesis that spatially
selective disinhibition drives plasticity at crucial locations during learning. We found location-selective,
learning-dependent reduction in the firing of hippocampal interneurons around new goal locations. This
goal-associated inhibitory reduction was required for spatial learning and excitatory reorganization to
represent new goal locations. Sparse optogenetic stimulation to prevent goal-related decreases in
interneuron firing impaired learning, reactivation of goal locations, and coding for goal locations in new
but not familiar environments. These results reveal a novel role for interneurons in gating new spatial

memories.

Introduction

Navigating to new goals is a fundamental behavior that requires rapidly identifying and remembering goal
locations. Location-selective excitatory pyramidal cells, or place cells, in the hippocampus represent many
positions in the environment including goal locations and are considered to drive goal-directed navigation
(O’Keefe and Dostrovsky, 1971; Robinson et al., 2020). Place cells are intimately coupled with fast-spiking
interneurons, including parvalbumin (PV) interneurons, that both respond to and control coordinated
excitatory cell firing (English et al., 2017; Royer et al., 2012; Stark et al., 2014). Recent work reveals that

hippocampal interneurons in CA1 exhibit spatially modulated firing, which is thought to result from place



cell inputs (Geiller et al., 2021). By following changes in excitatory input inhibitory interneurons are
understood to increase the signal-to-noise ratio of place cell coding and balance excitation. In contrast to
this view, we propose a new principle of circuit function in which spatially modulated interneuron firing
acts as the driver of selecting important information, like goal locations, for rapid learning and
consolidation. Prior work has not examined changes in inhibitory activity that precede or drive changes in
excitatory firing during new spatial learning. As a result, it is unclear whether interneurons develop spatial
selectivity preferentially for important locations and whether this interneuron selectivity is necessary for

new learning.

Prior work posits two major hypotheses of inhibitory roles in spatial learning that support rapid
learning of new goals. First, a long-standing view is that inhibitory recruitment balances excitation to
prevent network instability (Hennequin et al., 2017; Higley and Contreras, 2006; Wehr and Zador, 2003).
To balance excitation, inhibitory activity is expected to increase proportionally to increases in excitation to
keep excitatory activity within an optimal dynamic range. It was previously shown in the hippocampus that
the inhibitory balancing activity occurs after a time delay whose duration (tens of milliseconds) depends on
the input amplitude (Bhatia et al., 2019) (Fig. 2-1A, left). A second prominent hypothesis is that weakly
tuned inhibition improves the signal-to-noise ratio of spatial coding by suppressing low firing activity due
to weak excitatory drive while strong excitatory drive overcomes this inhibition to produce high firing
(Grienberger et al., 2017) (Fig. 2-1A, middle). This inhibitory model is analogous to the one proposed in
sensory cortices in which broadly tuned inhibition sharpens the feature selectivity of excitatory neurons

(Liu et al., 2011; Poo and Isaacson, 2009; Wu et al., 2008).

We propose a new model of inhibitory roles in rapid spatial learning. In this model, interneurons
function as a disinhibitory gate permitting specific plasticity events to occur at locations of special relevance
to learning (Fig. 2-1A, right). In gating, changes in inhibitory and excitatory activity occur in opposite

directions (i.e., one increases and the other decreases in firing), with unequal magnitude of change, and



with inhibitory change preceding excitatory change. We can directly test these hypotheses by investigating
the relationship between the direction, magnitude, and timing of excitatory and inhibitory activity. Prior
work has primarily examined hippocampal interneurons in CAL, even though CA3, upstream of CAL, is
the nexus of rapid spatial learning in a novel environment (Lee and Kesner, 2002; Nakazawa et al., 2003;
Rolls, 2018). Thus, understanding the role of interneurons, especially those that directly inhibit pyramidal

cells, in CA3 is crucial for distinguishing their role in rapid learning.

Because previous studies have not explicitly tested the inhibitory gating hypothesis, there are
important questions to be addressed about the potential role of disinhibition in learning of precise locations.
(1) Does disinhibition of excitatory firing occur in task-relevant locations during learning? (2) Does
disinhibition increase learning-associated plasticity events at those locations? (3) Does disinhibition
improve goal-directed navigational behavior? In the aforementioned models of inhibitory roles in new
location-selective learning, the first two models assume reactively occurring inhibition, that is, inhibition
that occurs in response to a change in excitation. In contrast, the gating hypothesis supports the model in
which proactive inhibition occurs in response to specific locations and drives response selectivity of

excitatory neurons by biasing them to represent specific locations over others.

Here, we addressed these questions by combining in vivo electrophysiology, optogenetics, and a
novel virtual reality (VR) spatial learning task in head-fixed mice. We found that about half of fast-spiking
CA3 interneurons, most likely PV interneurons as determined by opto-tagging, reduce their firing activity
over a period of seconds as mice approach learned reward locations. This reward location-selective
reduction in inhibitory firing occurred in a manner consistent with the gating hypothesis, and is inconsistent
with the simple reactive balancing of excitatory change. To determine if this reduced inhibitory activity is
required for new goal learning, we triggered optogenetic stimulation of a small subset of CA3 PV
interneurons specifically at goal locations of novel environments to disrupt the reduction in PV activity

during goal approach. Consistent with the gating hypothesis, optogenetic stimulation to disrupt PV firing



reduction at goals, but not sham stimulation at non-goals, impaired learning in the new environment. In
contrast, optogenetic stimulation to disrupt PV firing reduction at goals did not impair performance in the
familiar environment. Furthermore, PV stimulation at goal locations led to unstable goal representation by
pyramidal cells and reduced reactivation of goal locations during sharp-wave ripples, both of which predict
stable memory consolidation. These results demonstrate a mechanism of novel memory formation via
disinhibition in selective locations that are most pertinent to new learning. These findings reveal new
principles of neural circuit function in which prolonged, behaviorally relevant decreases in neural activity
are crucial to learning, in contrast to transient increases in activity. Furthermore, we discover that spatially-
tuned inhibition plays an active role in spatial learning by gating prioritized memories and plasticity

processes during spatial navigation.

Results

Mice rapidly learn new goal locations in a novel virtual reality spatial learning task

To investigate hippocampal activity during new location-specific learning, we developed a new VR
behavioral paradigm in which we could quantify progressive learning of goal locations in a controlled
environment. We trained head-fixed mice to lick for rewards while running unidirectionally on treadmill
(Fig. 2-1B and fig. 2-S1A). The track consisted of 36 equally sized areas around a circular track that had
non-overlapping wall patterns and colors. Mice had to lick in three of these areas, or reward zones (RZ), to
receive a reward. Licking outside the RZ or the zone just before the RZ, the anticipatory zone (AZ), more
than 25-50 times resulted in a 4-second timeout. Prior to electrophysiological recordings, mice were
exposed to one environment only (Track A or familiar track; Fig. 2-1C and fig. 2-S1A). After 7-14 days of
training, mice reduced their movement speed and increased lick rate by an average of 28.95% and 21.36%,
respectively, when they approached the AZ, indicating that they had learned the RZ locations (fig. 2-S1A,

box). Successful task performance required visual cues because mice did not show a significant change in



movement speed or licking around well-learned goal areas if visual cues were removed (fig. 2-S1B). We
used timeouts to discourage mice from licking indiscriminately and placed three RZs unevenly around the

track to prevent mice from using a distance-based strategy.

On the first day of recording, mice alternated between sessions navigating on the familiar track
(Track A) and a novel track (Track B or C) where they learned three new RZs through trial and error over
three days (Fig. 2-1C and fig. 2-S1A). Consistent with knowing the specific reward locations, mouse
movement speed in the familiar AZ decreased across all three days compared to a non-reward zone (NRZ),
defined as the control zone that appeared 30 degrees after each RZ within the same environment (Fig. 2-
1D, shades of grey; fig. 2-S1C, Days 1-3). On the first day of novel track exposure, mice showed no
significant difference in movement speed between the novel AZ and NRZ. This lack of differences in
movement speed shows that mice did not slow down, consistent with not knowing the reward locations
(Fig. 2-1D, lightest shade of green; fig. 2-S1D, Day 1). By Day 2 or 3, mice exhibited slowing prior to
arriving at the RZs, indicating that they had learned to differentiate rewarded areas from unrewarded areas
(Fig. 2-1D, darker shades of green; fig. 2-S1D, Days 2-3). We quantified learning over days by animals’
behavioral differentiation between goal and non-goal locations based on either movement speed, lick
latency, or lick rate using receiver-operating characteristic curves in which larger areas under the curves
(AUC) indicate better behavioral performance. We observed that, on average, AUC increased 20.05% on
Day 2 and 22.65% on Day 3 from Day 1 in the novel environment, demonstrating that mice had rapidly
learned to differentiate between AZs and NRZs (Fig. 2-1E, green; F2111 (Day x Environment) = 3.5, P =
0.01, linear mixed-effects model, LMM). Thus, mice learned to differentiate goals from non-goals over
only a few days of novel track exposure. The performance metric using movement speed data tended to be
better at position differentiation than licking-based metrics, likely because mice were not required to lick
in the AZ to receive a reward and well-trained animals licked very sparsely (fig. 2-S1E). Overall, our novel

virtual reality spatial navigation task enabled robust quantification of rapid learning of new goals.



Hippocampal inhibitory interneurons reduce firing activity around learned goal locations

A key prediction of the inhibitory gating hypothesis is that changes in inhibitory activity precede that of
excitatory activity and occur in the opposite direction, while other models predict inhibitory activity follows
or co-occurs with that of excitatory cells and proceeds in the same direction (Fig. 2-1A, right). To
distinguish between the different hypothesized roles of interneurons in rapid goal learning (Fig. 2-1A), we
first asked if CA3 interneurons show a spatially selective firing pattern around learned goal locations. We
recorded 3,465 single units in CA3 during active spatial navigation in head-fixed mice and classified them
based on their waveform features, inter-spike interval statistics, and autocorrelograms (Petersen et al., 2021)
(fig. 2-S2). We identified putative pyramidal cells and two fast-spiking groups of interneurons with narrow
or wide spike widths (fig. 2-S2). Opto-tagging and juxtacellular data indicate that narrow (NS) and wide
spike-width (WS) interneurons most likely correspond to PV basket cells and somatostatin-positive
interneurons, respectively (English et al., 2017; Royer et al., 2012; Stark et al., 2014). We confirmed that

PV interneurons fall into the NS interneurons’ classification via opto-tagging.

Strikingly, we found a goal-related reduction in the firing activity of the majority of NS and WS
interneurons around three different RZs along the familiar track (Fig. 2-1F). Given the observed firing
reduction across all goal locations despite distinct visual cues, we collapsed the responses to three RZs into
a single firing map over the relative distance to RZ (Fig. 2-1G). We observed approximately a 15-20%
reduction in firing during the approach to familiar RZs spanning approximately 30 degrees or 6 seconds
prior to the RZ (Fig. 2-1H; Fus.4s795 (Position) = 12.76, P < 2.2e-16, LMM). We found significant firing
reduction in 40-70% of all recorded interneurons over days in the familiar environment (Fig. 2-11, left and
middle, black). As expected, pyramidal cells tended to fire at one or a few locations that collectively
represented the entire environment, with approximately 15-20% of units with increased activity around the
RZ (Fig. 2-11, right, black). In the novel environment, the proportion of NS interneurons with goal-

associated activity reduction increased to comparable levels in the familiar environment by Day 2 (Fig. 2-



11, left, green), whereas the proportion of pyramidal cells with increased goal-associated activity did not

change significantly over days (Fig. 2-11, right, green).

Because hippocampal neurons are known to be speed-modulated (Géis and Tort, 2018; Nitz and
McNaughton, 2004; Wiener et al., 1989), we considered the possibility that the neuronal firing reduction is
purely driven by reduced movement speed during reward approach behavior. To account for changes due
to speed, we regressed out the estimated contributions of movement speed and lick rate to the raw firing
rates (see Materials and Methods). Here we report the residual firing rates that cannot be attributed to
position-related changes in movement speed or lick rate (Fig. 2-1, G-1). The observed raw firing patterns
were preserved in residuals. Indeed, the amount of variance explained by movement speed and lick rate
was less than 25% for the majority of units (fig. 2-S3). The statistically significant reduction in the residual
firing activity of interneurons shows that these results could not be explained by position-dependent

changes in movement speed or lick rate.

We performed several different control analyses that consistently support the finding that NS
interneurons reduce firing rates around goals beyond what is expected by position-related behavioral
changes. First, interneuron firing rates in the RZ during navigation in the familiar environment were
significantly different from speed-matched firing rates during baseline no-VR periods at all speed quartiles
except for the fastest speeds (fig. 2-S4A). Second, we separated out familiar reward approach trials by the
animal’s movement speed. When we compared the firing rates of the same neurons at the familiar AZ
between speed quartiles, we found no significant speed effect on the AZ firing rates in all cell types (fig. 2-
S4B). Finally, to further control movement speed and lick rate inherently associated with animal position
on the track, we introduced a new trial type in the familiar environment in a small subset of animals (n =
2). Here, mice slowed down and licked more at the familiar RZ as they normally would, except that, upon
RZ entry, the visual cues on the screen froze for 3-5 seconds even if the animal was moving on the treadmill,

when the visual cues would normally progress forward through the track. With these screen-freeze trials,



we effectively dissociated position-related visual cues in VR from the animal’s movement on the treadmill
(fig. 2-S4C). We examined a period after RZ entry during which movement speed and lick rates were
similar but the visual cues dissimilar. We found that the firing rates of NS interneurons were lower when
reward-associated visual cues stayed fixed during screen-freeze trials than during normal trials. These
results show that inhibitory firing is reduced for goal-related cues and not purely for speed changes (fig. 2-

S4C).

Our data are consistent with the inhibitory gating hypothesis in which a spatially selective
inhibitory reduction occurs prior to excitatory activity changes. Importantly, we find that this gating occurs
at locations relevant for goal-directed navigation. To determine if this goal-specific inhibitory activity is
correlated with behavior performance, we compared NS interneuron firing on correct and incorrect trials.
NS interneurons reduced firing rates at the familiar AZ by a moderately greater amount on correct trials
than on incorrect trials (fig. S5; familiar correct, n = 196 versus incorrect, n = 75, F1,124.84 (TrialOutcome) =
3.93, P = 0.05; LMM). These results show that successful task performance co-occurs with a goal-specific
reduction in inhibitory activity that precedes excitatory activity changes and develops over days of new

spatial learning.

Optogenetically disrupting inhibitory firing reduction at goal locations impairs new goal learning without

affecting performance in the well-learned environment

We next asked whether the goal-associated reduction in inhibitory activity was necessary for learning new
goal locations. To answer this question, we used optogenetic stimulation to disrupt the normal inhibitory
reduction around goals during active spatial navigation. We focused our stimulation on PV interneurons for
two reasons. First, we observed the earliest and largest pre-RZ activity reduction in NS interneurons, which
are most likely PV interneurons as verified by opto-tagging (Fig. 2-1H). Second, PV interneurons are strong
inhibitors of pyramidal cells at the somas readily found in stratum pyramidale and accessible in our

recordings (Pelkey et al., 2017). For PV-specific targeting in vivo, we crossed the PV-Cre mouse line with



Ai32 mice to achieve Cre-dependent expression of the blue light-sensitive opsin channelrhodopsin-2
(ChR2) in PV interneurons (Madisen et al., 2012) (fig. 2-S6A). We inhibited PV cells in a small part of
dorsal CA3, a circular truncated cone volume of approximately 1.7 mm?® and 4.3 mm? in CA3 with the light
intensities of 4.9 Mw/mm? and 12.7 Mw/mm?, respectively (Stark et al., 2012). We confirmed the optical
targeting of 2-3 PV units on average in a single recording, consistent with prior studies estimating between
2.4 and 32 PV cells per mm?® in CA3 (Deng et al., 2019; Li et al., 2022; Uchida et al., 2014). Consistent
with light-induced activation, we observed an increase in PV firing activity within ~3 ms of blue LED light
(470 nm) onset with the rate increase occurring in a dose-dependent manner (fig. 2-S6, B and C). As
expected, strong PV stimulation increased firing rates of NS interneurons, while it suppressed firing in WS
interneurons and pyramidal cells at the highest stimulation intensity (fig. 2-S6C). Low PV stimulation
increased PV cell firing without significantly decreasing firing of WS interneurons or pyramidal cells (fig.
2-S6C). To disrupt inhibitory reduction around goals, LED light turned on from the time that the animal
entered the AZ until it left the RZ or after a maximum of 10 seconds, whichever came first (Fig. 2-2A,
“Goal stim,” blue). We compared the goal stimulation condition to a sham stimulation condition within the
same animals in which PV interneurons were stimulated for up to 10 seconds but at the NRZ and the zone
immediately after each NRZ in another novel environment (Fig. 2-2A, “Sham stim,” orange). The novel

tracks used and the order of stimulation conditions were cross-balanced across animals.

Surprisingly, disrupting goal-associated firing reduction of a small subset of CA3 PV cells via goal
stimulation profoundly impaired the learning of new goal locations. Mice that underwent PV goal
stimulation did not show a significant speed difference between the AZ and NRZ over three days (Fig. 2-
2B; goal stimulation using all trials: Day 1 versus Day 2, P = 0.99; Day 1 versus Day 3, P = 0.95; Day 2
versus Day 3, P = 0.90; n = 4 mice; LMM followed by Tukey’s correction). These same animals showed
normal learning when they received sham stimulation in another novel environment (Fig. 2-2B; sham
stimulation using all trials: Day 1 versus Day 2, P = 0.01; Day 1 versus Day 3, P = 0.0003; Day 2 versus

Day 3, P = 0.32; n = 5 mice; LMM followed by Tukey’s correction). Goal-related PV stimulation



performance deficits over days were confirmed by significant fixed effects of day, stimulation condition,
and interaction (F2,17.001 (Day) = 6.5, P = 0.01; F1,18.708 (Stimulation Condition) = 7.0, P = 0.02; F2,17.001 (Day
x Stimulation Condition) = 5.4, P = 0.02, LMM). Even after parsing out different trial types based on
stimulation intensity and duration, the results were similar in that mice learned with sham stimulation, but

not with stimulation that disrupted inhibitory reduction at goals (Fig. 2-2C).

It is Important to note that PV stimulation at goals did not result in the complete shut-down of
excitatory activity that might explain the observed learning impairment. Because we used relatively low
light intensities of a small subset of PV cells (0, 5, or 12 Mw/mm? used as no, low, or high stimulation,
respectively, for each of the three goal locations), the normalized firing rate change of NS interneurons,
WS interneurons, and pyramidal cells did not differ between no stimulation and low stimulation (fig. 2-
S6C). Furthermore, the average reduction of normalized firing from baseline for pyramidal cells did not
differ significantly between the two stimulation conditions with low or high stimulation (Fig. 2-2D; low
stimulation: goal stimulation, -0.07 £ 0.18, n = 264 versus sham stimulation, -0.03 + 0.17, n = 314 cells, P
= 0.84; high stimulation: goal stimulation, -0.1021 + 0.19 spikes/s, n = 264 cells versus sham stimulation,
-0.06 £ 0.19, n = 314 cells, P = 0.66; LMM followed by Tukey’s correction). Likewise, PV firing did not
differ significantly between goal and sham stimulation conditions at all intensities. At light onset, PV
neurons increased their firing rates by similar amounts for both goal and sham stimulation conditions with
low or high stimulation (Fig. 2-2E; low stimulation: goal stimulation, 0.31 + 0.11, n = 12 versus sham
stimulation, 0.29 + 0.17, n = 15 cells, P = 0.98; high stimulation: goal stimulation, 0.45 + 0.10, n = 12

versus sham stimulation, 0.3770 + 0.17, n = 15 cells, P = 0.96; LMM followed by Tukey’s correction).

Interestingly, mice failed to learn both the no-stimulation RZ that was never stimulated and the
other stimulated RZs at the end of each session when they received no stimulation (Fig. 2-2C, “No stim”).
This finding shows that there was no latent learning that emerges even when PV firing reduction was no

longer disrupted. One explanation might be that the effects of PV stimulation on behavior are not spatially



confined and affect behaviors like licking or running speed outside stimulated zones. We found evidence
against this hypothesis because there was no significant difference in the overall rate of licking outside the
goal or stimulation locations between goal and sham conditions, ruling out the possibility that PV
stimulation impaired the animals’ ability to lick or that mice had different baseline levels of engagement in
a task that requires licking for rewards (goal stimulation, 1.3 + 0.14 licks/s versus sham stimulation, 1.5 +
0.09 licks/s; Wilcoxon rank-sum test, P = 0.47). We found little to no differences in licking and movement
speed between no stimulation and low stimulation in both familiar and novel environments (fig. 2-S7 A
and B), which cannot explain the deficits in new goal learning even at low stimulation intensity. Thus, we
conclude that disrupting interneuron firing reduction specifically at goal locations impairs new goal learning
that cannot be due to potential differences in task engagement, and licking and running behavior at least at
the lower intensity. Interestingly, disrupting goal-associated inhibitory reduction with PV stimulation at
well-learned goals in the familiar environment did not compromise behavioral performance at any
stimulation intensity (fig. 2-S7C; F151.195 (Stimulation Condition) = 0.25, P = 0.62 for speed-based AUC;
F1.41.588 (Stimulation Condition) = 2.2, P = 0.15 for lick latency-based AUC; F1 41310 (Stimulation Condition)
= 1.8, P = 0.18 for lick rate-based AUC; LMM). Taken together, these results show that goal-associated
reduction in CA3 PV inhibition is required for learning new goal information but not for retrieving

previously stored goal information.

Goal-associated reduction in inhibitory activity develops over learning and precedes goal-associated

increase in excitatory activity

Because decreased inhibitory activity at goals is essential for learning and develops quickly, we wondered
how this inhibitory reduction develops during learning. Prior work has shown that goal overrepresentation
develops with learning (Danielson et al., 2016; Turi et al., 2019; Zaremba et al., 2017). We aimed to
understand the time course of the development of inhibitory reduction at goal locations in wild-type (WT)

animals to determine how it develops with learning (Fig. 2-3, A and B). When examining pooled data from



all days of novel exploration, we saw a significant (P < 0.05; one-sample t-test followed by Bonferroni’s
correction) reduction in firing activity at the goal location in NS interneurons (Fig. 2-3, A and B, top row),
but not in WS interneurons (Fig. 2-3, A and B, middle row). As expected, pyramidal cells had a significant

increase at the goal location (Fig. 2-3, A and B, bottom row).

The population activity in the novel environment tended to be more variable than in the familiar
environment, with variable proportions of neurons that had goal-related firing patterns. Therefore, we opted
to average across the units with similar goal-associated changes in firing activity only. To this end, we sub-
selected units with a significant firing decrease or increase within 10 degrees of the novel RZ with the
significance threshold established by each unit’s shuffled rate distribution. Among the cell types, NS
interneurons had the most consistent firing reduction during reward approach (Fig. 2-3B, top; Day 1, -8.8
+/-8.5%, n=8; Day 2, -14.35 +/- 5.3%, n = 19; Day 3, -3.4 +/- 6.9%, n = 22). While there was no significant
position effect on the residual firing rates of NS interneurons on Day 1 (Fazss25 (Position) = 1.2, P = 0.21;
LMM), NS interneurons did develop a small but significant reduction prior to the RZ even on the first
session of Day 1. This rapid development preceded a significant increase in the pyramidal cell firing at the
RZ that occurred by the second session (fig. 2-S3D). By Day 2, NS interneurons showed a significant
position effect on the residual firing rates, which was also observed on Day 3 (Day 2, Fs g5 (Position) =
4.6, P = 15e-12; Day 3, Fasgrs (Position) = 3.7, P = 2.8e-09; LMM). On the other hand, few WS
interneurons survived the significance threshold, making it difficult to see a reliable population activity
change in the AZ (Fig. 2-3B, middle; Day 1, 11.48 +/- 17.4%, n = 6; Day 2, -6.70 +/- 9.7%, n = 7; Day 3,
-34.94 +/- 1.4%, n = 4). Pyramidal cells did not have a consistent change in the firing rate prior to the RZ,
with a slight increase on Day 1, a decrease on Day 2, and then an increase on Day 3 (Fig. 2-3B, bottom;

Day 1, 3.4 +/- 2.2%, n = 184, Day 2, -1.9 +/- 2.5%, n = 168; Day 3, 6.6 +/- 2.4, n = 206).

To further understand the functional consequences of excitatory firing changes over learning, we

examined the spatial properties of goal-representing cells, or pyramidal cells that have at least one receptive



field with significant spatial modulation around goals. As expected, field stability was significantly higher
in the familiar environment than the novel environment based on rate map correlations across trials (Fig.
2-3C; F21001.6 (Environment) = 27.08, P = 2.3e-07; F211750 (Day) = 11.25, P = 1.5e-05; LMM). The amount
of spatial information about new goals carried by goal-representing cells did not increase significantly from
Day 1 to Day 2, but it did by Day 3 in the novel environment (Fig. 2-3D; Day 1 versus Day 2, P = 0.99;
Day 1 versus Day 3, P = 0.04; Day 2 versus Day 3, P = 0.006; n = 133, 177, 192 cells for days 1-3; LMM
followed by Tukey’s correction). The proportion of goal-representing cells did not change over days. We
did not observe significant effects of day, environment, or interaction on the proportion of goal-representing
cells (Fig. 2-3E; F270.237 (Day) = 0.061, P = 0.50; F270.003 (Environment) = 2.1, P = 0.15); F270.003 (Day X
Environment) = 2.6, P = 0.09; LMM). Thus, while the proportion of NS interneurons with a significant
reduction in activity around the goal increased to comparable levels in the familiar environment by Day 2
(Fig. 2-11), goal-related spatial information carried by excitatory cells did not significantly increase until
day 3 in the novel environment and was lower in the novel than familiar environment. Together, these
results show that learning-dependent changes in inhibitory activity occur rapidly during learning with

evidence of inhibitory change before the enhancement of spatial information in excitatory cells.

Reduced inhibition coincides with the learning-dependent enhancement of new spatial representations by

excitatory pyramidal cells

We then asked what coding is gated and causally unlocked by the reduction of inhibition around goals.
Because goal stimulation resulted in similar patterns of behavioral deficits across stimulation intensities,
we hypothesized that this stimulation affected goal-representing cells during learning as these cells can
code for multiple goal locations in an environment (Gauthier and Tank, 2018b). To address this, we
determined how optogenetic disruption of the goal-associated inhibitory reduction affects excitatory goal
representations over learning in a new environment. During normal learning, the spatial information of

goal-representing cells increases over days as animals perform better in the task (Fig. 2-3D). Goal



overrepresentation predicts successful goal-directed behavior and improves with learning (Danielson et al.,
2016; Dupret et al., 2010; Gauthier and Tank, 2018a; Hollup et al., 2001; Turi et al., 2019; Zaremba et al.,
2017). We found that goal stimulation disrupted the stability of new goal fields, as evidenced by a
significant reduction in the rate map correlation over trials with goal stimulation compared to sham
stimulation (Fig. 2-4, A, B, and C; F2789 (Day x Stimulation Condition) = 6.7, P = 0.001, LMM).
Consistent with impaired goal representation due to disrupted PV reduction provided by goal stimulation,
there was no significant increase in the spatial information of goal-representing cells over days (Fig. 2-4D;
goal stimulation spatial information: Day 1 versus Day 2, P = 0.99; Day 1 versus Day 3, P = 0.95; Day 2
versus Day 3, P =0.73; n = 46, 36, 36 cells for days 1-3; LMM followed by Tukey’s correction). However,
the same animals showed significant learning-dependent increase in goal information from Day 1 to Day
3, consistent with prior work, with sham stimulation in non-goal areas (Fig. 2-4D; sham stimulation spatial
information: Day 1 versus Day 2, P = 0.45; Day 1 versus Day 3, P = 0.0003; Day 2 versus Day 3, P =0.09;
n =51, 60, 54 cells for days 1-3; LMM followed by Tukey’s correction). At the same time, there was no
significant increase in the proportion of goal-representing cells over days for both goal and sham stimulation
conditions (Fig. 2-4E; F217.000 (Day) = 0.86, P = 0.44; F217677 (Stimulation Condition) = 1.5, P = 0.24;

F2.17.000 (Day x Stimulation Condition) = 0.52, P = 0.60; LMM).

Notably, we found that goal stimulation caused deficits in the stability of place cells in positions
away from goals, outside the stimulated portion of the track (Fig. 2-4F; goal stimulation rate map
correlations: Day 1 versus Day 2, P =0.97; Day 1 versus Day 3, P = 0.96; Day 2 versus Day 3; P =1.0; n
= 54, 38, 45 cells for days 1-3; LMM followed by Tukey’s correction). In contrast, when the same mice
received sham stimulation in a different novel environment, it resulted in normal improvement over days
(Fig. 2-4F; sham stimulation rate map correlations: Day 1 versus Day 2, P = 1.0; Day 1 versus Day 3, P =
0.006; Day 2 versus Day 3; P =0.04; n = 42, 41, 56 cells for days 1-3; LMM followed by Tukey’s
correction). The amount of spatial information of place fields away from goals also did not increase over

days with goal stimulation but did with sham stimulation (Fig. 2-4G; goal stimulation spatial information



in non-goal cells: Day 1 versus Day 2, P = 0.97; Day 1 versus Day 3, P = 0.96 Day 2 versus Day 3, P =
1.0; n =53, 37, 44 cells for days 1-3; sham stimulation: Day 1 versus Day 2, P = 1.0; Day 1 versus Day 3,
P = 0.006; Day 2 versus Day 3, P = 0.04; n = 36, 46, 55 cells for days 1-3; LMM followed by Tukey’s
correction). These spatial deficits occurred without significant changes in the proportion of non-goal-
representing cells under both stimulation conditions (Fig. 2-4H; F1 19008 (Day) = 0.45, P = 0.51; F119.116
(Stimulation Condition) = 0.99, P = 0.33; F1,19.008 (Day X Stimulation Condition) = 0.43, P = 0.52; LMM).
These results show that learning-dependent reduction in interneuron activity during goal approach is critical
for both goal and non-goal representations. Disrupting PV reduction around goal locations resulted in
deficits in both stimulated and unstimulated locations, whereas new spatial representations improved under
sham stimulation. Taken together, our results support a goal-selective gating role of inhibition that recruits

excitatory neurons to sharpen and stabilize new spatial representations that improve with performance.

Reduced inhibition increases goal-related reactivations during sharp-wave ripples

Goals are also represented at the population level during sharp-wave ripples (SWRs) when sequences of
pyramidal cell activity represent paths toward goals (Pfeiffer and Foster, 2013; Singer and Frank, 2009; Xu
et al., 2019). SWRs are required for rapid learning (Fig. 2-5A) and have been reported to affect synapses
related to new spatial learning (Norimoto et al., 2018). We asked whether goal-associated inhibitory
reduction is required for SWRs at goal locations. We hypothesized that disrupting the reduction in PV firing
around goals would cause SWR activity deficits, in particular, deficits in goal-informative SWRs. We found
that goal stimulation that disrupted PV firing reduction selectively at the novel goals resulted in a slightly
lower rate of SWRs occurring around goal locations than sham stimulation in the same animals (Fig. 2-5B;
goal stimulation, 0.018 + 0.00088 Hz, n = 20 sessions versus sham stimulation, 0.034 £+ 0.0014 Hz, n = 20
sessions, P = 0.036, LMM). Reduced SWR rate during goal stimulation was further corroborated by the
observation that coactivation probability among simultaneously recorded pairs of goal-representing

pyramidal cells during SWRs was lower with goal stimulation than sham stimulation (Fig. 2-5C; goal



stimulation, 0.043 £ 0.0080, n = 111 pairs versus sham stimulation, 0.087 + 0.0056, n = 516 pairs, P <
0.0001, LMM). Furthermore, both SWR power and duration were significantly smaller in SWRs detected
in sessions with goal stimulation than sham stimulation (Fig. 2-5, D and E; SWR power: goal stimulation,
3.5+ 0.068, n = 54 SWRs versus sham stimulation, 3.6 + 0.10, n = 80 SWRs, P = 0.004; ripple duration:
goal stimulation, 0.076 £ 0.0036 seconds, n = 54 SWRs versus sham stimulation, 0.11 + 0.015 seconds, n
= 80 SWRs, P < 0.0001; LMM). These results show that disrupting goal-associated inhibitory reduction

reduces SWR activity.

We then asked whether SWRs in the two stimulation conditions carried significantly different
information about goal locations. To answer this question, we used sequenceless decoding of SWR content
within a single time window to identify the most likely location about which individual SWRs carry
information. To control for animal position and position-related variability in behavior, we included only
SWRs that occurred while the animal was in the AZ or RZ in this analysis. We found significant differences
in the information bias of SWRs between goal and sham stimulation. SWRs in sham stimulation sessions
were much more likely to represent locations around goals than locations far from goals, similar to what
we observed with no stimulation (Fig. 2-5, F to I; sham stimulation: near-goal versus far-goal proportions,
n =12 sessions, P = 0.009, Wilcoxon signed-rank test). On the other hand, when PV firing reduction was
disrupted in the same animals, there was no significant difference in the proportion of SWRs representing
locations near or far from goals, indicating a deficit in goal-related content during SWRs (Fig. 2-5, F and
G; goal stimulation: near-goal versus far-goal proportions, n = 8 sessions, P = 0.67, Wilcoxon signed-rank
test). These findings show that inhibitory reduction during reward approach is required for preferential
reactivation of goal-related information. Consistent with this idea, we observed that SWRs in WT mice
were much more likely to code for near-goal locations than far-goal locations in both familiar and novel
environments (Fig. 2-5, H and I; familiar near-goal versus far-goal proportions, n = 36 sessions, P = 3.1e-
07; novel near-goal versus far-goal proportions, n = 26 sessions, P = 0.001; Wilcoxon signed-rank test).

This bias toward reactivation of goal locations in the WT mice occurred without significant environmental



differences in SWR rate, power, duration, or generation (fig. 2-S8). Neither SWR rate nor duration in the
familiar environment differed significantly with or without goal stimulation in the same PvxAi32 animals
(fig. 2-S9, C and D; F119302 (Stimulation Condition) = 0.0034, P = 0.49 for rate; Fis30.77 (Stimulation
Condition) = 0.017, P = 0.90 for duration; LMM). These results are consistent with our previous finding
that stimulation itself does not induce a complete shutdown of excitatory activity (Fig. 2-2E). While the
rate of SWR rate was lower during goal stimulation, for SWRs that did occur during goal stimulation
appeared similar to SWRs in the sham stimulation condition in terms of firing around the SWR, SWR
power, and duration (fig. 2-S9). Overall, our results show that reduced activity of PV interneurons during
reward approach gates goal-informative SWR activity for learning locations most pertinent to task

performance.

Discussion

Here, we find a new role for PV inhibitory activity in gating information about goals that is essential for
rapid learning of goal locations in new environments. This hippocampal inhibitory activity is learning-
dependent, spatially selective, and specific to new goals. We found that CA3 interneurons reduced firing
rates as mice approached learned goal locations. The observed inhibitory reduction was inconsistent with
the simple balancing of increased excitatory. The inhibitory reduction started about 30 degrees or 6 seconds
prior to RZs and preceded excitatory changes, in contract to reactive inhibition. This goal-specific reduction
in inhibitory activity developed quickly by the second day with hints of it on Day 1 while mice learned new
goal locations in a novel environment. Optogenetically disrupting this inhibitory firing reduction around
goals profoundly impaired new goal learning but did not impair the retrieval of previously learned goal
memories. In line with this, disrupting this inhibitory firing reduction with goal stimulation resulted in less
stable and less informative spatial representations by pyramidal cells, shorter and fewer goal-informative

SWRs, and reduced co-activation of pyramidal cells during SWRs compared to sham stimulation. Together,



our data support the hypothesis that hippocampal inhibition gates new location-selective learning in service

of goal-directed navigation.

Our findings provide a direct inhibitory link to previously reported hippocampal signatures of new
learning: enhanced goal representation by pyramidal cells and sharp-wave ripple activity. We show that
these signatures are under the influence of inhibition during new goal learning. Others have also reported
goal-related changes in hippocampal activity as animals approach reward locations, including pre-reward
bi-directional ramping activity of the retrohippocampal cortex (Tennant et al., 2022), calcium activity of
CALl astrocytes (Doron et al., 2022), reward-predictive signals of ventral tegmental area dopaminergic
inputs to CA1 (Krishnan et al., 2022), and a dedicated reward-coding population found in CA1 and the
subiculum (Gauthier and Tank, 2018a). However, the causal role of these previously goal-related
hippocampal changes in rapid goal learning is unclear. Given its relevance to behavioral performance, new
goal learning likely engages multiple plasticity mechanisms within or outside the hippocampus that may

involve inhibitory gating.

One such plasticity mechanism worth noting is the recently proposed behavioral time scale synaptic
plasticity (BTSP) rule (Bittner et al., 2015, 2017; Milstein et al., 2021). BTSP was illustrated in CA1 place
field development with naturally occurring or artificially induced dendritic calcium spikes or “plateau
potentials.” In our study, we found that changes in interneuron firing activity occurred over long,
behaviorally relevant (seconds) timescales, similar to BTSP. While BTSP appears to be present without
goal enrichment, reduced PV activity may underlie BTSP, with PV interneurons suppressing the activity of
dendrite-targeting somatostatin-expressing (SST) interneurons preferentially at newly learned goal
locations. Most prior work on the mechanisms of spatial learning has examined CAL, whereas this study
focused on area CA3, directly upstream of CAL, because plasticity in this region is thought to drive rapid
learning. Examining PV firing reduction in intra- and extrahippocampal regions will be an important next

step in addressing a potential common inhibitory mechanism in new learning.



Our observation that goal stimulation to disrupt decreases in PV firing leads to deficits at single-
unit, population, and behavioral levels raises the ultimate question about which deficit comes first. Prior
work showed that temporally precise activation of PV interneurons, albeit on a much shorter timescale than
in our task, is necessary and sufficient to generate SWRs (Schlingloff et al., 2014). However, it is unclear
whether PV stimulation directly affects goal coding that causes learning deficits, or whether stimulation
directly impairs learning, which in turn leads to disrupted goal coding. We hypothesize that, for PV
interneurons in spatial coding, location-specific learning occurs because disinhibition triggers the induction
of plasticity events at the key locations. Indeed, while disinhibition might occur anywhere around the track,
coordinated disinhibition of about half of interneurons around the goal location unlocks plasticity
selectively at the goal location. In examining the effects of stimulation intensities on learning in the novel
environment, we found that mice failed to learn the no-stimulation RZs in which there was no disruption
of PV firing. These results suggest that disrupting PV activity in one RZ may reduce an animal’s learning
capacity at another RZ, perhaps due to the inability to recognize goals, the inability to reduce inhibition, or
both. Our observation that disrupted PV reduction resulted in less informative and less stable place cells
across the environment could be due to disrupting SWRs which are thought to stabilize place fields.
However, we found that goal-informative SWRs were particularly vulnerable to disrupting PV reduction.
These findings suggest that PV reduction biases plasticity-related events to occur at and to represent
important locations. Thus, disinhibition as a means of gating excitatory reorganization occurs preferentially

at important locations over less relevant locations.

We initially found it surprising that stimulating PV interneurons in only a small subset of CA3
would have such a powerful effect on learning but others have also shown that stimulating as few as ~15
hippocampal pyramidal cells can profoundly alter learned behavior during spatial navigation (Robinson et
al., 2020). Considering that fast-spiking interneurons are mostly coupled via gap junctions (Fukuda and
Kosaka, 2000), it is possible that we stimulated more interneurons than we could detect at the site of

recording. Importantly, our stimulation did not result in a “temporal lesion” of excitatory cell activity. The



effect of low-power stimulation on the firing activity of pyramidal cells was relatively small. Furthermore,
we did not see signs of tissue damage or significant change in running and licking behavior. Future studies
could use recently developed ULED optogenetic tools to target single units in a more spatially confined
area (Wu et al., 2015) to investigate the minimum number of interneurons required to generate the observed

learning deficits.

In sum, this study reveals physiological disinhibition as a necessary means to endow excitatory
activity with appropriate selectivity for behaviorally relevant information during spatial learning. Previous
studies have described synaptic inhibition as a spatially uniform or temporally regular gain controller of
excitatory activity without feature selectivity of its own. Others have suggested some feature selectivity of
inhibition that followed changes in excitatory activity. In contrast to these studies, our study reveals that
inhibition, preceding excitation, shows input selectivity and mediates subsequent response selectivity by

tuning excitatory events to the most relevant information that meets the task demands.

Materials and Methods

Animals

We used C57BL/6J adult male wild-type (WT) mice (N = 7 mice, 25-35 g) at 10-12 weeks of age (3.5-5
months at the time of recordings) in our study. For optogenetics experiments, we crossed male PV-Cre
knockin (The Jackson Laboratory #017320) with female homozygous Ai32 mice (The Jackson Laboratory
#024109) to generate PvxAi32 mice (N = 10 mice) that express channelrhodopsin-2 specifically in
parvalbumin-positive interneurons. All procedures involving animals were performed in accordance with
the guidelines provided by the Institutional Animal Care and Use Committee at the Georgia Institute of
Technology. Animals were housed in a reverse dark-light cycle room (07:00 light off, 19:00 light on) with

ad libitum access to food and water. We performed all behavioral training during the dark cycle.



Surgery

Mice were handled for at least three days prior to stereotaxic surgery. For head-plate implantations, mice
were deeply anesthetized with isoflurane, and head-plates were affixed to the skull with dental cement
(Parkell C&B Metabond, Edgewood, NY). Animals were single-housed and monitored for at least 3 days
post-surgery. Mice received a subcutaneous injection of ketoprofen (0.5 mg/kg) for the first two days and
saline for the first three days post-surgery. For acute extracellular recordings, craniotomies of 600-900 um
in diameter were made on either hemisphere of well-trained mice one day before the first recording. We
used the following coordinates to target CA3 stratum pyramidale (from bregma): 0.18 mm A/P, 0.24 mm

M/L, and ~2.5 mm D/V.

Virtual reality spatial learning task

We began habituation of head-fixed mice on a treadmill at least 7 days of recovery after head-plate
implantation. We trained mice to run on either a linear treadmill (N = 4 WT mice; PhenoSys SpeedBelt,
Berlin, Germany) or a spherical Styrofoam treadmill floating on air (N =3 WT mice, 8 PvxAi32 mice). To
increase motivation for running, animals were food-deprived gradually to reach 85-90% of their original
body weight. Mice were head-fixed and trained daily to run unidirectionally on the virtual track for
progressively longer periods. We delivered drops of sweetened condensed milk as a reward, delivered
through a plastic needle. Licks were detected using either a piezoelectric sensor attached to the reward
needle or a custom-built photointerruptor-based system. All virtual tracks were designed and interfaced
with animals using the open-source software Virtual Reality MATLAB Engine (ViRMEN) as previously
described (Aronov and Tank, 2014a). Proximal and distal cues were projected onto a cylindrical screen,
creating a rich and immersive environment for virtual navigation. Voluntary movement of a mouse on the

linear or spherical treadmill automatically advanced movement in the virtual track environment.

We used three annular tracks (Tracks A, B, and C; 2-Fig. 1C) of the same size but with distinct

visual cues, reward locations, and distances between reward locations. All mice were initially trained on



Track A as the familiar environment and later (during recordings) introduced to Tracks B and C as the novel
condition. Speed gain was set such that 1° advancement through the virtual environment was equivalent to
the movement of about 1.5 cm on the belt for a total distance of approximately 540 cm around each track.
Gain on the spherical treadmill was adjusted to ensure similar virtual experience as with the linear treadmill.
Each of the tracks had 36 non-overlapping, equally sized wall cues (10° per cue), and 3 of them were
associated with reward (reward zones). The reward zones were irregularly placed to prevent animals from
solely using the inter-reward distances, as opposed to using distinct spatial cues, to perform the task across

multiple environments.

For the first 3-5 days of virtual spatial experience, mice received rewards automatically when they
arrived at the three reward zones on the track. After this first phase of training, mice showed anticipatory
licking immediately before the reward delivery. In the subsequent training and recording sessions, animals
were required to lick in the reward zones to trigger a reward delivery. To prevent generalized licking
irrespective of position on training days, licking more than 25-50 times cumulatively outside the
anticipatory and reward zones triggered a 4-second time-out period. During a time-out period, the animal
was teleported to a grey box and received no reward. After 4 seconds, the mouse resumed running from the
location it had left off prior to the time-out. We introduced mice to novel tracks on days of recording only
after a mouse was deemed to have learned and reached behavioral criteria indicative of good performance

in the familiar environment.

Behavioral data analysis

Mice were required to have 85% correct or higher performance in the familiar environment for at least 2
consecutive sessions before the recording commenced. Behavioral performance criteria were set based on

an animal’s propensity to slow down and lick more in the anticipatory zones.

Raw behavioral data were divided based on an animal’s position (in degrees) into either 360-degree

“laps” around the whole environment or RZ-centered “trials” that spanned the area 60 degrees before and



after each 10-degree RZ for analyses. Mean speed (in degrees/s) was calculated by dividing the total
distance traveled in each 2-degree position bin by the total time spent in that bin. Lick probability was
calculated by taking the ratio of the number of licks per position bin over the total number of licks within
the lap or trial. Lick rate (in licks/s) was calculated by dividing the number of total licks per position by the
total time spent in that bin over all position bins. Speed and lick behavior for each lap or trial was smoothed
with a Gaussian-weighted moving average filter (SD = 2 bins, MATLAB function smoothdata.m). Once
learned, mice tended to show stereotyped behavior in all three reward zones. Therefore, speed and lick
behavioral data around reward zones during all trials were concatenated and averaged for each session
regardless of the absolute position on the track. We used receiver-operating characteristics curves
(MATLAB function perfcurve.m) to quantify behavioral performance based on how well mice
differentiated between the pre-reward zone (anticipatory zone) and the non-reward control zone that
appeared 30 degrees after the end of each reward zone. For lick latency-based performance, we quantified
the temporal distance (in seconds) between the time an animal entered the reward zone and the first lick
time. This lick latency at the reward zone was compared to the control latency between the time an animal

arrived at the non-reward zone and the first lick time regardless of position.

Electrophysiology

All extracellular electrophysiology recordings were performed using a poly 5 two-shank 64-channel
silicone probe or a 64-channel optoelectrode of the same channel geometry (NeuroNexus, Ann Arbor, Ml).
The probe was affixed to a 3-axis micromanipulator (Luigs & Neumann, Ratingen, Germany) and vertically
advanced to the target region. Neural data were acquired using either two 32-channel Upright Headstages
(SpikeGadgets, San Francisco, CA) or two RHD 32-Channel Recording Headstages (Intan RHD2000, Los
Angeles, CA) at a sampling rate of 30 kHz with a ground pellet used as reference. Location was determined

by stereotaxic coordinates, depth, and electrophysiological signatures. Electrophysiological features



indicative of CA3 were closely monitored: high-amplitude theta activity during running, prominent sharp-

wave ripples during stillness, and high-amplitude (100+ pV) action potentials appearing on many channels.

On each recording day, the animal had at least two 15-to-30-minute sessions in the familiar (Track
A) and novel (Track B or C) environments per day (always starting with the familiar environment). Two
behavioral sessions were separated by a shorter (5-10 minute) baseline recording period in the dark. The
movement direction was consistent (clockwise) across environments. We performed recordings from the
same craniotomy (typically from the right hemisphere first) for three consecutive days, using the same
novel track during this period. After the first set of novel learning days, a second craniotomy was made on
the contralateral hemisphere on the fourth or fifth day, and mice learned a brand-new track for three
consecutive days starting on the following day. The same familiar track was used for each mouse for the

entire duration of the study.

Optogenetic stimulation during behavior

We recorded and stimulated neural activity simultaneously using a customized two-shank 64-channel
optoelectrode with two optical fibers terminating 100-200 um above the top recording site on each shank.
Each optical fiber’s (inner/outer) core diameter was 105/125 um and the numerical aperture 0.22. Ferrule
patch cables (@105 um Core, 0.22 NA SMA905 to @1.25 mm; Thorlabs, M63L01) were connected to
optical fibers on one end via ceramic split mating sleeves (Thorlabs, ADAL1-5) and 470 nm fiber-coupled
LEDs (Thorlabs, M470F3) with T-Cube LED driver (Thorlabs, LEDD1B) with a 15-V power supply unit
(Thorlabs, KPS101) on the other end. A custom MATLAB script and National Instruments data acquisition
system were used for detection and triggering of on/offset and intensity of blue light stimulation. Animal
position in virtual environments was detected in real time to trigger position-specific stimulation. In the
goal location-specific condition, light turned on when an animal entered the anticipatory zone, the zone
immediately before the reward zone, and stayed on for up to 10 seconds or until the animal left the reward

zone. Similarly, in the sham stimulation condition, the light turned on at the non-reward zone for up to 10



seconds or until the animal left the zone immediately after the non-reward zone. A subset of animals was
stimulated at the anticipatory or reward zone only, or for a fixed duration of 3 seconds regardless of position.
For each of the three goal zones, we stimulated at the light intensity of either 0, 5, or 12 Mw/mm? from the
fiber tip. The same stimulation intensity was used for the same goal location throughout the session and in
the same environment over three days. Each stimulation session consisted of 20 minutes of stimulation
trials followed by 5 minutes of stimulation-free trials to assess the potentially lasting effects of stimulation
at the end of a session. All PvxAi32 mice had a shorter (~10 minutes) session with goal location-specific

stimulation trials in the familiar environment (Track A) as their final session of the last day of recording.
Histological verification of probe location

On the last day of recording, the neural probe was dipped in fluorescent dye dil (0.9 mg/Ml) prior to use.
Following recording, mice were deeply anesthetized with isoflurane and perfused with ice-cold 4%
paraformaldehyde. Brains were quickly extracted and stored at 4°C in 4% paraformaldehyde for 24 hr.
Brains were then transferred to either 1X phosphate-buffered saline (PBS) until sectioning by a vibratome
or to 20% sucrose solution overnight before being frozen at -80°C for sectioning on a cryostat. Fixed brain
tissues were cut coronally in 100 pm thickness on a vibratome or in 60 um thickness on a cryostat. Tissue
sections were stained for nuclei with DAPI, mounted on slides (Vectashield Antifade Mounting Media),
and cover-slipped for confocal imaging. Images were taken at 10X using an LSM 700 laser scanning

confocal microscope (Zeiss).

Virtual reality manipulation

A small subset of animals (n = 2) was exposed to a behavioral manipulation in virtual reality on the last
recording day to control for position-dependent changes in speed and licking activity. In this session, we
introduced automatic screen freeze at the three reward zones in the familiar environment for a fixed duration
of 3 to 5 seconds regardless of the animal’s movement on the ball. The goal of this manipulation was to

dissociate movement speed from position-specific visual cues.



Preprocessing of local field potentials and detection of sharp-wave ripples and theta periods

Raw neural signals were down-sampled to 2 kHz and bandpass filtered between 1-300 Hz to obtain local
field potentials. Multi-unit spikes were extracted by bandpass filtering the raw signal between 300-6,000
Hz and thresholding the filtered signal above 5 standard deviations from the mean. We interpolated over
outliers (noise) defined as 15 standard deviations above the mean of the pre-filtered signal. For analyses of
theta, gamma, and sharp-wave ripple periods, the filtered signal free of outliers was bandpass-filtered based
on frequency bands (4-12 Hz for theta, 1-4 Hz for delta, and 12-30 for beta) using a finite impulse response
(FIR) equiripple filter. We then applied the following criteria to extract specific periods of interest and used
the same thresholds for all sessions recorded from the same animal on the same day. To detect theta and
non-theta periods, the envelope amplitude of the filtered theta signal was divided by the sum of the envelope
amplitudes of the delta and beta signals. A theta period was defined as a period during which this theta to
delta and beta ratio was 2 standard deviations above the mean for at least 2 seconds (Csicsvari et al., 1999;
laccarino et al., 2016; Jackson et al., 2006). A non-theta period was defined as a period during which this
ratio threshold was less than 1.1 for at least 2 s. Sharp-wave ripples were detected when the envelope
amplitude of the filtered sharp-wave ripple trace was greater than 3 standard deviations above the mean for
at least 20 ms (Karlsson and Frank, 2009; Singer and Frank, 2009; Singer et al., 2013). We excluded any
events with a power ratio (power from 100 to 250 Hz / power from 250 to 400 Hz) less than 4 based on the
typically observed frequency range of sharp-wave ripples (Ylinen et al., 1995). We only included in our
ripple analyses the periods with at least 1 multi-unit spike and excluded periods during which movement
speed was above 5 deg/s for 1 second before and after the mid-point of each period (2 seconds in total). In
all of our local field potential analyses we used the channel with the highest envelope amplitude for the
ripple band signal as the proxy site of stratum pyramidale (Gordon et al., 2005). Extracted periods of interest
were visually inspected to ensure accurate detection. Duration of sharp-wave ripples was defined as the
length of time the sharp-wave ripple envelope was greater than the threshold of 3 standard deviations above

the mean. Sharp-wave ripple power was quantified as standard deviations above the mean ripple power for



the entire recording session. Ripple rate was quantified for ripple events detected during stopped periods
defined as periods where movement speed fell below 2 deg/s. Ripple rate was expressed as the total number

of ripple events divided by the total duration of stopped periods for individual recording sessions.
Single unit isolation

We identified and sorted single units using the automatic clustering software Kilosort2 (Pachitariu et al.,
2016), followed by manual curation. Only well-isolated units with the signal-to-noise ratio of greater than
1 and < 0.01% inter-spike interval noise were included in the study. We visually verified the firing rate
stability of single units by ensuring the firing rates during periods in between VR sessions did not fall below

the threshold set at 10% of the peak firing rate of the entire duration of the recording.
Cell-type classification

We classified single units as pyramidal cells and interneurons with narrow- and wide- waveform
interneurons based on the spike waveform’s trough-to-peak distance in time and the autocorrelogram
(ACG) fitted with a triple-exponential equation via CellExplorer software (Petersen et al., 2021):

ACGflt = max <C <exp (M) —d- exp <M)> +h- exp (M)

Trise Trise Trise

+ rateasymptotev 0>

where c is ACG t decay amplitude, d is ACG t rise amplitude, h is burst amplitude, t,¢rrqc is ACG
refractory period (ms). The CellExplorer software automatically identifies putative narrow spike-width
(NS) interneurons with trough-to-peak latency <= 0.425 ms, wide spike-width (WS) interneurons with
trouble-to-peak latency > 0.425 ms and ACG T rise amplitude > 6 ms, and the remaining units assigned as
pyramidal cells. We recorded a total of 3,465 well-isolated single units recorded in this study (2-fig. S2).
Among these, we identified a total of 463 NS interneurons, 258 WS interneurons, and 2,743 pyramidal

cells. These criteria for fast-spiking NS interneurons were confirmed via optogenetics. To identify optically



tagged parvalbumin-positive interneurons, we used the stimulus-associated spike latency test (SALT) as
previously described (Kvitsiani et al., 2013) and manually verified by visualizing light-evoked firing

activity within 1-3 ms of light onset.
Place field analyses

To construct a one-dimensional, occupancy-normalized firing rate map for each cell, we first removed all
spikes that occurred during stillness (movement speed < 2 deg/s or ~3 cm/s) from the spike trains. We then
binned the remaining spikes into 5-degree position bins. We counted the number of spikes and time spent
(in seconds) for each position bin and smoothed the spike count and occupancy map separately with a
Gaussian kernel (SD = 2 bins). Finally, the rate map was constructed by diving the smoothed spike count
by the smoothed occupancy for each bin. The following criteria were used to identify place cells among
putative pyramidal cells: (1) mean firing rate less than 10 spikes/s to exclude potential interneurons, (2)
peak firing rate of least 1 spike/s, and (3) spatial information content greater than the 95 percentile of the
information content generated from shuffled (repeated 1,000 times) data. Spatial information, expressed in

bits/spike, was computed using the formula (Skaggs et al., 1996):

N
I = zpi
i=1

where p; is the probability of the animal occupying the position bin i, A; is the mean firing rate of the cell

| >
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in bin i, and A is the mean firing rate across all position bins.

Multiple linear regression

To control for the well-documented linear and usually positive relationship between movement speed and
neural activity, we used multiple linear regression. We also accounted for potential effects of position-
specific lick rate on firing activity. Using MATLAB function regress.m, we fit for each unit a multiple

linear regression model with position-binned trial-by-trial firing rates as the response and position-binned



speed, lick rate, and the interaction between speed and lick rate as predictors. We then subtracted the
expected effects of speed and lick behavior from the observed firing rates. The remaining data (residuals)
were used in further analyses as estimated neural activity that could not be attributed to position-related
changes in speed or lick rate across trials. For visualizing population activity, we first normalized residual
firing rates over binned position by dividing each bin by peak firing rate per unit and averaged over
rewarded trials only per unit. To illustrate the change in residual firing activity from baseline, we subtracted
the baseline firing rate defined as the mean normalized firing rate of the first two bins (in the position range
of [-60, -50) degrees. We then sorted units based on the binned position with the peak or trough activity,

for pyramidal cells or interneurons, respectively.

Determining units with a significant increase or decrease in firing activity at goal locations

To quantify the proportion of units with significantly increased or decreased activity in the familiar
environment, we first created a position-binned firing rate map using a 2-degree bin size for each RZ-
centered trial (from -60 to 70 degrees with zero being the start of the RZ) per unit. After removing all bins
during which animal speed fell below 2 deg/s, we averaged binned firing rates over trials to result in a single
rate map per unit. We then used a generalized linear model (MATLAB function fitglm.m) to find the best
linear fit for the rate map over the pre-RZ position bins (-60 to 0 degrees) and obtain a P-value and estimated
coefficient (slope) per unit. Only units with significant adjusted P-values after applying the false discovery
rate of 0.01 were identified as units with significant activity change. For NS and WS interneurons, we
identified units with significant negative coefficients as interneurons with significantly reduced activity.
For pyramidal cells, we only included units with significant positive coefficients as units with significantly

increased activity.

The firing rate changes around the new reward zones in the novel environment tended to be more
variable than in the familiar environment. Therefore, we chose a different approach to identify units with a

significant increase or decrease in firing in the novel environment to average over in Fig. 2-3B. We



randomly shuffled both the position-binned trial-by-trial maps of firing rates, movement speed, and lick
rates used for multiple linear regression. This process was repeated 1,000 times for each unit to generate a
shuffled distribution. We compared these shuffled distributions in each position bin against the observed
session-averaged residual firing rate in the same position bin. We identified units with a significant decrease
or increase at each bin if the observed residual was either less than the 10™ percentile (for interneurons) or
greater than 90" percentile (for pyramidal cells), respectively, of the shuffled distribution at each position
bin. The population average in Fig. 2-3B are the average of units that had at least one bin determined to be

significant 10 deg before and after the reward zone.
Ripple content decoding

To determine the content of individual ripple events, we performed sequenceless decoding to decode each
ripple as a single time window (Carey et al., 2019). For each ripple, we calculated the spatial probability
distribution using a simple Bayesian decoder as previously described (Karlsson and Frank, 2009). Briefly,
the probability of particular positions given the spiking activity at each timepoint (expressed in

nPositionBins x nTime) was calculated using the formula:

) = (i POV - PONIX)) - POO)

C
Pe PE)

where X is the set of all distance relative to the RZ (using 5-degree bins) and N is a vector of spike counts
for all C cells recorded simultaneously within the specified time window used as testing spike counts. For
all ripple events, we used a single 250-ms time window centered at the midpoint of each event regardless
of its duration. For the training spike counts, we used the population firing rate map averaged across trials
(a nUnits x nBins matrix using 5-degree position bins as a function of distance to RZ, from -60 to 70
degrees) multiplied by the decoding time window. P(X|Nf) was then normalized across position bins to
sum to 1. From the single probability estimate, we identified the decoded position bin with the highest

spatial probability as the most likely spatial information (expressed as the relative distance to RZ) carried



by the population activity during each event. Only sharp-wave ripples that occurred when the animal was

in either AZ or RZ were included for this analysis.

Immunohistochemistry

We used additional six PvxAi32 mice (3 females) to verify the expression of channelrhodopsin-2 localized
in PV-expressing interneurons. We made 30 pum coronal sections and used 5% goat serum in 1X PBS as
the blocking solution for the first 30-minute incubation, followed by an additional 30-minute incubation in
5% goat serum with 0.3% Triton-X. Following blocking, we incubated the sections in primary antibodies
at 4°C overnight, washed them in 1X PBS three times for 5 minutes each, and incubated them with
secondary antibodies at room temperature for 1 hr. After three washes in 1X PBS, the sections were
mounted on slides and imaged at 10X or 20X with an LSM 700 laser scanning confocal microscope (Zeiss).
We used the following primary and secondary antibodies: rabbit anti-parvalbumin (Swant, P27, 1:5,000),

goat anti-rabbit 1gG Alexa Fluor Plus 647 (A55055, 1:2,000).

Statistical analysis

We examined differences for statistical significance using a non-parametric two-sided Wilcoxon rank-sum
test for non-uniformly distributed data. For non-parametric paired comparisons, we used the Wilcoxon
signed-rank test with the Bonferroni method used to correct for multiple corrections. We used one-sample
permutation t-test (5,000 times) identifying the position bins with population residual firing rate change
that are significantly different from zero Notations in figures, *, **, *** and **** indicate P < 0.05, P <
0.01, P < 0.005, and P < 0.001, respectively, and ns indicates not significant. Data with error bars were

reported as mean £ SEM. Details on statistical analyses have been described in the supplementary text.

To account for dependency in our data, we used linear mixed-effects model (LMM) analysis in R
(version 4.2.2) and Ime4 package (Bates et al., 2015) for most of the data. Significance was calculated using
the ImerTest package (Kuznetsova et al., 2017) with Kenward-Roger’s method to estimate degrees of

freedom and generate p-values for mixed models. The emmeans package (https://cran.r-


https://cran.r-project.org/web/packages/emmeans/index.html

project.org/web/packages/emmeans/index.html) was used to adjust P-values for multiple comparisons. To

determine statistically significant learning over days in WT mice, we included the areas under the
behavioral receiver-operating characteristics curves as the dependent variable, day, environment, and day
by environment interaction terms as fixed effects, and animal IDs as a random effect. The model
specification for WT mice was as follows: AUC ~ day + environment + day*environment + (1|JAnimallD).
For PvxAi32 mice, our main comparison was between goal stimulation and sham stimulation conditions
that occurred in the novel environment only, therefore, we added fixed effects of day, stimulation condition
(instead of environment), and the interaction between the two. We included animal number as a random
effect. For PvxAi32 mice, we used the following model specification: AUC ~ day + stim_condition +
day*stim_condition + (1JAnimallD). Spatial information distributions between groups were compared
using the following model specification: for WT mice, spatial information ~ day*environment +
(1JAnimallD/CellID); for PvxAi32 mice with goal and sham stimulation comparisons, spatial information

~ day*stim_condition + (1|AnimallD/CellID).


https://cran.r-project.org/web/packages/emmeans/index.html
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Figure 2-1. Interneurons reduce firing as mice approach learned goals. A. Hypothesized roles of
inhibitory interneurons in spatial learning. Left, inhibitory activity (blue) balances heightened excitatory
activity (red) by increasing and decreasing firing around the location of importance (e.g. reward zone,
pink) in about the same magnitude and timing of excitatory activity change. Middle, inhibitory activity
increases the signal-to-noise ratio of spatial coding by suppressing low-firing excitatory activity without
significant spatial modulation around the location of importance (pink). Right, inhibitory gating occurs
with changes in excitatory following decreases in inhibitory activity around the area of importance (pink).
B. Head-fixed virtual navigation setup with the location of the probe. C. Experimental timeline. Visual cues
that predict reward are unique in the three different environments, Tracks A, B, and C. During recordings,
animals ran in both novel (green) and familiar (black) tracks each day. D. Example receiver operating
characteristic curves based on speed from a single animal with larger area under the curve indicating
higher behavioral differentiation between rewarded and unrewarded areas (familiar days 1-3, or Fam D1-
3, in shades of grey; novel days 1-3, or Nov D1-3, in shades of green, lightest for day 1). Dotted diagonal
line indicates chance-level performance. E. Behavioral performance based on speed in AZ and NRZ
improves over days in the novel environment (green) and reaches performance levels in the familiar
environment (black) by day 3. Data represent mean + SEM area under the receiver operating characteristic
curves for WT mice (linear mixed-effects model with Tukey’s correction, n = 14 sessions from 7 mice in
two different novel environments). F. Heatmap of residual firing rates of all recorded NS interneurons as
a function of animal position on the familiar track. Pink areas indicate the three reward zones, or RZ1-3.
G. Residual firing rates as a function of distance to reward zone for NS interneurons (dark blue, left), WS
interneurons (light blue, middle), and pyramidal cells (red, right). H. Population average percent change
in normalized residual firing as a function of distance (left) or time (right) to reward zone (RZ, pink) for
each cell type (NS interneurons (“NS Int.”), dark blue, n = 196; WS interneurons (“WS Int.”), light blue,
n = 95, pyramidal cells (“Pyr.”), red, n = 1157). Color-coded horizontal bar indicates position bins that

are significantly (P < 0.05) different from zero or baseline using data pooled from all days (t-test followed



by Bonferroni’s correction). Data represent mean £ SEM. 1. Proportion of NS (left) and WS interneurons
(middle) with a significant reduction in activity over days in the novel environment (green) and familiar
environment (black) and proportion of pyramidal cells (right) with significant increase in activity in either
environment. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001. Statistical details are available in the

supplementary text.
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Figure 2-2. Goal-associated inhibitory reduction is required for new goal learning. A. Left, schematic of
optogenetic experiments targeting a few parvalbumin neurons (blue) in the stratum pyramidale (str.pyr.).
Right, PVxAi32 mice received goal stimulation (blue) in one novel environment and sham stimulation
(orange) in another novel environment for three days each. Both stimulation conditions were the same
except for the location in which blue light turned on. B. Disrupting normal goal-associated inhibitory firing
reduction impairs learning new goal locations. Data represent mean = SEM area under the receiver

operating characteristic curves based on speed differentiation over three days of learning (goal stimulation,



blue, n = 4 mice; sham stimulation, orange, n = 5 mice; linear mixed-effects model followed by Tukey’s
correction). C. Performance for each stimulation condition: no-stimulation trials only ("No stim,” far left),
low-intensity stimulation trials only (“Low stim,” center left), high-intensity stimulation trials only (“High
stim,” center), all stimulation trials (“L+H,” center right), or trials with the stimulation duration of 5 or
less seconds (“Short stim,” far right). Linear mixed-effects model followed by Tukey’s correction. D. Top
row, normalized change in pyramidal cell firing from baseline over time with goal stimulation (blue) and
sham stimulation (orange) across stimulation intensities. Data represent mean + SEM. Baseline firing rates
were defined as the average firing rate in the 1-second window prior to stimulation onset. Bottom row,
mean firing rates in the 2 second period after AZ for no stimulation or light onset across stimulation
intensities. Goal stimulation, n = 12 cells; sham stimulation, n = 15 cells. Baseline firing rates were defined
as the average firing rate in the 1-second window prior to stimulation onset. Goal stimulation normalized
pyramidal cell firing rate change percentiles: no stimulation = [-0.50, -0.12, -0.0050, 0.080, 0.46], n = 264
cells; low stimulation = [-0.55, -0.15, -0.038, 0.055, 0.58], n = 264 cells; high stimulation = [-0.63, -0.21,
-0.075, 0.031, 0.53], n = 264 cells. Sham stimulation percentiles: no stimulation = [-0.51, -0.093, 0.0085,
0.095, 0.50], n = 313 cells; low stimulation = [-0.60, -0.18, -0.059, 0.037, 0.54], n = 302 cells; high
stimulation = [-0.72, -0.18, -0.048, 0.031, 0.50], n = 313 cells. E. Same as in D, but for PV interneurons.
Goal stimulation normalized firing rate change percentiles: no stimulation = [-0.13, -0.094, -0.063, -0.017,
0.073], n =12 cells; low stimulation = [0.18, 0.25, 0.31, 0.43, 0.52], n = 12 cells; high stimulation = [0.28,
0.37, 0.51, 0.57, 0.66], n = 12 cells. Sham stimulation percentiles: no stimulation = [-0.098, -0.0615, -
0.014, 0.017, 0.11], n = 15 cells; low stimulation = [0.056, 0.24, 0.34, 0.46, 0.59], n = 15 cells; high
stimulation = [-0.1271, 0.3345, 0.4020, 0.5524, 0.6759], n = 15 cells. *P < 0.05, **P < 0.01, ***P <
0.005, ****P < 0.001. Statistical details are available in the supplementary text. All percentiles represent

[minimum, 25", median, 75", maximum].
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Figure 2-3. Learning-dependent reduction in inhibitory activity precedes excitatory reorganization to
overrepresent new goals. A. Heatmap of normalized residual firing rates as a function of distance to the
novel RZ across three days of learning (from left to right) for NS interneurons (top row), WS interneurons

(middle row), and pyramidal cells (bottom row). B. Percent change in normalized residual firing rates from



baseline for NS interneurons (top, dark blue), WS interneurons (middle, light blue), and pyramidal cells
(bottom, red) as a function of distance to RZ (pink dotted lines) in the novel environment over three days.
Shades of color indicate days 1-3. Data represent mean + SEM. Color-coded horizontal bar indicates
position bins that are significantly (P < 0.05) different from zero or baseline using data pooled from all
days (t-test followed by Bonferroni’s correction). C. Pearson’s correlation of ratemaps across trials for
goal-representing cells in the (“Fam,” black) and novel (“Nov,” green) environments, linear mixed-effects
model followed by Tukey’s correction. D. Spatial information carried by goal-representing pyramidal cells
is significantly increased from day 1 to day 3 and from day 2 to day 3 in both novel (shades of green) and
familiar (shades of black) environments. Novel spatial information percentiles on day 1, [0.028, 0.16, 0.38,
0.78, 2.4], n = 133; day 2, [0.0217, 0.20, 0.42, 0.81, 3.0], n = 177; day 3, [0.08, 0.32, 0.57, 1.1, 9.7], n =
192. Familiar spatial information percentiles on day 1, [0.032, 0.39, 1.1, 2.1, 13.8], n = 179; day 2, [0.056,
0.39, 0.79, 2.4, 8.5], n = 156; day 3, [0.086, 0.62, 1.5, 2.9, 7.3], n = 202; linear mixed-effects model
followed by Tukey’s correction. E. Proportion of goal-representing pyramidal cells does not significantly
change over days in the familiar (black, n = 13, 15, 14 sessions for days 1-3) or novel (green, n = 13, 14,
14 sessions for days 1-3) environment; linear mixed-effects model. *P < 0.05, **P < 0.01, ***P < 0.005,
****pP < (.001. Statistical details are available in the supplementary text. All percentiles represent

[minimum, 25", median, 75", maximum].
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Figure 2-4. Inhibitory reduction co-occurs with sharper and more stable new spatial representation by

pyramidal cells. A-B. Examples of goal-representing cells (“Goal cell”) or non-goal cells during sessions

with goal stimulation (4, “Goal stim,” blue) and sham stimulation (B, “Sham stim,”

orange) in a novel

environment. Vertical bars in pink on the X-axis indicate the three reward zones (“RZ”). C. Goal

stimulation disrupts stabilization of new place fields. Pearson’s correlation coefficients for rate map

correlations across trials for all goal-representing pyramidal cells (“goal cells”) in goal stimulation



(“Goal stim,” blue) and sham stimulation (“Sham stim,” orange). Goal stimulation novel rate map
correlation percentiles, [0.068, 0.18, 0.22, 0.28, 0.59], n = 121; sham stimulation correlation percentiles,
[0.076, 0.20, 0.28, 0.37, 0.65], n = 169; linear mixed-effects model with Tukey's correction. D. Goal
stimulation disrupts new goal representation over days. Cumulative distribution of spatial information for
all goal-representing pyramidal cells recorded in sessions with goal stimulation over three days (“Goal
stim D1-3”, shades of blue) or sham stimulation (“Sham stim DI-3”, shades of orange) in the novel
environment. Goal stimulation spatial information percentiles on day 1, [0.064, 0.15, 0.22, 0.36, 0.96], n
= 45; day 2, [0.046, 0.18, 0.27, 0.41, 0.91], n = 36; day 3, [0.025, 0.11, 0.20, 0.31, 1.2], n = 36 cells. Sham
stimulation spatial information percentiles on day 1, [0.025, 0.097, 0.19, 0.45, 0.96], n =51; day 2, [0.044,
0.098, 0.29, 0.45, 2.48], n = 60; day 3, [0.047, 0.20, 0.40, 0.71, 2.9], n = 54 cells; linear mixed-effects
model with Tukey’s correction. E. Proportion of goal-representing pyramidal cells does not significantly
change with goal stimulation (blue) or sham stimulation (orange). Goal stimulation novel rate map
correlation percentiles, [-0.0066, 0.17, 0.21609, 0.30, 0.62], n = 143; sham stimulation correlation
percentiles, [0.044, 0.21, 0.29, 0.40, 0.86], n = 145; linear mixed-effects model with Tukey’s correction. F.
Same as C, but for pyramidal cells with significant spatial modulation outside goals (“non-goal cells”).
Goal stimulation spatial information percentiles on day 1, [0.027, 0.11, 0.17, 0.31, 1.0], n = 54; day 2,
[0.041,0.14, 0.25, 0.49, 0.89], n = 38; day 3, [0.064, 0.19, 0.29, 0.44, 0.80], n = 45 cells. Sham stimulation
spatial information percentiles on day 1, [0.032, 0.085, 0.17, 0.36, 3.4], n = 42; day 2, [0.038, 0.15, 0.32,
0.46, 1.6], n = 41; day 3, [0.054, 0.20, 0.41, 0.74, 2.5], n = 56 cells. G. Same as D, but for non-goal cells.
H. Same as E, but for non-goal cells. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001. Statistical
details are available in the supplementary text. All percentiles represent [minimum, 25", median, 75",

maximum].
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Figure 2-5. Inhibitory reduction is required for goal-related reactivation during sharp-wave ripples. A.
Example filtered traces of SWRs (marked in stars) in the local field potentials with (blue) or without (black)
optogenetic stimulation. B. Overall SWR rate slightly decreased in goal stimulation (“Goal stim,” blue)
than sham stimulation (“Sham stim,” orange). Sessions with at least 10 ripples detected were included.
Goal stimulation percentiles, [0, 0.0023, 0.014, 0.026, 0.062], n = 20 sessions; sham stimulation
percentiles, [0, 0.0093, 0.022, 0.052, 0.11], n = 20 sessions; linear mixed-effects model. C. Coactivation
probability of goal-representing pyramidal cells during SWR activity in sessions with goal (blue) or sham

(orange) stimulation. Goal stimulation percentiles, [0, 0, 0, 0, 0.38], n = 111 pairs of goal-modulated



pyramidal cells; sham stimulation, [0, 0, 0.043, 0.10, 0.55], n = 516 pairs of goal-modulated pyramidal
cells; linear mixed-effects model. D. SWR power expressed as the number of standard deviations from the
mean in goal stimulation (blue, percentiles, [3.01, 3.20, 3.39, 3.61, 6.26], n = 75 ripples) and sham
stimulation (orange, percentiles, [3.01, 3.19, 3.50, 3.77, 10.87], n = 122 ripples); linear mixed-effects
model. Note that part of the y-axis is removed to show the distributions; no data point was removed. E.
Duration of SWRs in goal stimulation (blue, percentiles, [0.033, 0.06, 0.075, 0.091, 0.15], n = 54 ripples)
and sham stimulation (orange, percentiles = [0.037, 0.062, 0.075, 0.10, 1.00], n = 80); linear mixed-effects
model. Note that part of the y-axis is removed to show the distributions; three data points from sham
stimulation were removed. F. Goal stimulation (“Goal stim,” blue) results in fewer SWRs that represent
positions near goals than sham stimulation (“‘Sham stim,” orange). Heatmap of spatial probability of
decoded ripple content. Each row is a single ripple event. G. SWRs during sham stimulation are more likely
to represent positions near goals rather than far from goals, whereas no such preference is observed with
goal stimulation. Proportions of SWRs with near-goal versus far-goal content (“Goal stim,” blue, n = 8
sessions), sham stimulation proportions (“Sham stim,” orange, n = 12 sessions). Wilcoxon signed-ranked
test for near versus far goal representation. H. Same as in F, but for WT mice in the familiar (“Fam,”
black) and novel (“Nov,” green) environments. |. Same as in G, but for WT mice. Familiar proportions of
SWRs with near-goal versus far-goal content (black, n = 36 sessions); novel proportions (green, n = 26
sessions). Wilcoxon signed-ranked test for near versus far goal representation. *P < 0.05, **P < 0.01,
***p < 0.005, ****P < 0.001. Statistical details are available in the supplementary text. All percentiles

represent [minimum, 25", median, 75", maximum].
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Figure 2-S1. Mice rapidly learn new goal locations in a novel virtual reality spatial learning task. A.
Experimental timeline. Box, typical behavior of a well-trained animal. Data represent mean + SEM change
in lick rate (purple) and movement speed (yellow) of an animal, averaged over trials (n = 80) in a single
session in the familiar environment. B-D. Example animal’s speed distributions in AZ (black or green) or
NRZ (tan) and respective receiver operating characteristic curves over three days during no-VR baseline
(B), familiar (C), or novel navigation (D). E. Area under the receiver operating characteristic curves base
on either speed (left), lick latency (middle), or lick rate (right). Error bars indicate mean = SEM. Each line
indicates a single animal per environment (linear mixed-effects model followed by Tukey’s correction, n

=14; 2 novel environments per animal).
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Figure 2-S2. Cell type classification. A. Top, 64-channel probe was inserted in stratum pyramidale of CA3
in head-fixed mice. Bottom, an example histology image taken at 10X, probe tract marked with the
fluorescent marker Dil (pink) and the nuclei marker DAPI (blue). White scale bar indicates 500 pm. B.
Distribution of autocorrelogram tau rise times and spike waveform trough-to-peak times of all recorded
units color-coded by cell type (399 NS interneurons, dark blue; 237 WS interneurons, light blue; 2559
pyramidal cells, red). Interneurons with narrow and wide spike widths most likely correspond to PV basket
cells and somatostatin-positive interneurons, respectively (English et al., 2017; Royer et al., 2012; Stark et

al., 2014). Classification is based in part by the location of somas primarily found in our site of recording



and (stratum pyramidale), although we cannot rule out the possibility of a subset of cholecystokinin
interneurons with wide spike widths that also have somas located in stratum pyramidale (Pelkey et al.,
2017). C. Spike waveforms color-coded by cell type. Each line indicates a single unit. D. Distribution of

firing rates color-coded by cell type. E. Distribution of burst index as used by Royer et al. 2012.



A

FR ~ Speed * Lick rate

g o
= ©
2
Example unit output %
.g:gso R-sq=0.13 g
[0} =
28 2
e
ol 0
E)
(gee Track position (deg)
C
. 200 . 190 . 2000
3 3 3
c € 100 c
3100 2 2 1000
= = 50 =
o C [
s | s | =)
0 0 : 0
0 50 0 50 0 50
Variance explained by the model (%)
D Day 1 Day 2 Day 3
. Session 1 Session 2 Session 3 Session 4 Session 5 Session 6
X 20{r : 1 1 [
0 -20 , : ; :
S0 '
€
=
"q‘) 20
T oWMAANTY INAA LM iAo R i
2-20
“ 40
(]
=)
i) ) ‘ . . ‘
8 20 : 1. = m N T :
20 ; : : ; :
c § H H ] :
o -40 : . . : .
S -50 0 50 -50 0 50 50 0 &0 -50 0 50 -50 0 50 -50 0 &0

Distance to novel RZ (deg)



Figure 2-S3. Residual firing after estimating and removing contributions of speed and licking activity
on neuronal firing rates. A. Top, model construction for performing multiple linear regression. Matrices
of the same size (in nTrials x nPositionBins) were created for firing rates, speed, and lick rate to fit the
linear model per neuron. Bottom, example unit’s model (illustrated in a grid) plotted against the trial data
(blue circles) with its r-squared value on top right. B. Heatmaps of raw (top row) and residual (bottom
row) firing rates for all recorded NS interneurons (left, dark blue), WS interneurons (middle, light blue),
and pyramidal cells (right, red). Each row is a single unit. C. Percent variance explained by the multiple
linear regression model fit for each unit, separated by cell type (NS interneurons, left, dark blue; WS
interneurons, middle, light blue; pyramidal cells, right, red). Less than 25% of variance in the neural firing
rate data is explained by movement speed and lick rate. D. Top row, change in residual firing rate from
baseline for NS interneurons (dark blue) across first and second halves of day 1 (sessions 1-2), day 2
(sessions 3-4), and day 3 (sessions 5-6). Data represent mean £ SEM. Vertical dotted line indicates the
start of RZ (RZ was 0-10 degrees). Color-coded horizontal bar indicates position bins that are significantly
(P < 0.05) different from zero or baseline (t-test followed by Bonferroni’s correction). Middle row, same
as top, but for WS interneurons. Bottom row, same as top, but for pyramidal cells. *P < 0.05, **P < 0.01,

***P < 0.005, ****P < 0.001. Statistical details are available in the supplementary text.
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Figure 2-S4. Inhibitory firing reduction cannot be explained by position-related changes in movement
speed or lick rate. A-C. Analyses to control for the effects of speed on interneuron firing rates. A.

Comparison of firing rates of NS interneurons in speed-matched trials during no-VR and familiar



navigation across speed quartiles. Linear mixed-effects model. B. Dividing the periods of familiar reward
approach by speed quartiles. Firing rates do not change significantly across speed quartiles. C. Two
animals exposed to a virtual reality manipulation in which the visual cues stayed frozen for at least 3
seconds upon RZ entry. C1,, Comparison of trial-averaged lick rate (top), movement speed (middle), or NS
inhibitory firing rate (bottom) as a function of time to RZ or freeze onset between normal (grey, n = 43)
and screen-freeze trials (teal, n = 30). Tan shaded bar indicates the time period during which quantification
was done. Data represent mean = SEM. For firing rates, only NS interneurons (n = 8 and 7 for normal and
screen-freeze trials, respectively) with stable firing rates were selected and averaged across trials in animal
1 (Cy) and animal 2 (C2; n = 5 and 4 NS interneurons for 34 normal and 29 screen-freeze trials). Cs.,
Quantification of firing rates within a 1-second time window (tan shaded bar) after arriving at the RZ
during which movement speed was similar in the animal as in C; and the animal as in C,. Bar plots with
error bars indicate mean + SEM; two-sided t-test. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001.

Statistical details are available in the supplementary text.
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Figure 2-S5. Goal-associated inhibitory firing reductions are more pronounced during correct trials
than incorrect trials. A. Top row, normalized change in residual firing rates from baseline activity as a
function of distance to the familiar RZ averaged across at least 5 correct (black) or incorrect (burgundy)
trials in the familiar environment for each of NS interneurons (“NS Int.,” left), WS interneurons (“WS Int.,”
middle), and pyramidal cells (“Pyr.,” right) from 7 WT mice. Data represent mean + SEM. Bottom row,
guantification of average residual firing rate change at the AZ (from -10 to O degrees) during correct
(black) and incorrect (burgundy) trials. NS interneurons (left): familiar correct percentiles = [-0.97, -0.38,
-0.10, 0.20, 0.83], n = 196 cells; incorrect = [-0.78, -0.24, 0.10, 0.26, 0.83], n = 75 cells; WS interneurons
(middle): correct = [-0.86, -0.36, -0.12, 0.19, 0.68], n = 95 cells; incorrect = [-0.73, -0.29, -0.063, 0.19,
0.56], n = 39 cells; pyramidal cells (right): correct = [-0.95, -0.25, -0.015, 0.20, 0.91], n = 1168 cells;
incorrect = [-0.98, -0.19, -0.0069, 0.18, 0.88], n = 375 cells. Each dot represents a single unit. Black circles
with error bars represent mean + SEM. B. Same as A, but for the novel environment. NS interneurons (left):

novel correct percentiles = [-0.77, -0.21, 0.0050, 0.26, 0.80], n = 193 cells; incorrect = [-0.82, -0.25, -



0.031, 0.20, 0.86], n = 146 cells; WS interneurons (middle): correct = [-0.79, -0.18, 0.093, 0.34, 0.78], n
= 96 cells; incorrect = [-0.77, -0.22, 0.010, 0.16, 0.67], n = 84 cells; pyramidal cells (right): correct = [-
0.89, -0.24, -0.012, 0.20, 0.85], n = 1144 cells; incorrect = [-0.94, -0.21, -0.0065, 0.21, 0.84], n = 898
cells. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001. Statistical details are available in the

supplementary text. All percentiles represent [minimum, 25", median, 75", maximum].
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Figure 2-S6. Validation of optogenetic experiments in vivo. A. Confocal images taken at 20X showing
CA3 stratum pyramidale in center. Fluorescence markers indicate nuclei (DAPI, blue), channelrhodopsin-
2 (eYFP, green), and parvalbumin (red). White scale bar indicates 20 um. We found 73.06 + 27.17% of
ChR2+ cells to be co-expressing PV, and 87.92 + 18.87% of PV+ cells co-expressing channelrhodopsin-2.
B. Left, schematic of in vivo recording with an optoelectrode inserted in CA3 stratum pyramidale. Right,

spike raster plot of an example optically tagged unit as a function of time to light onset (blue shaded area).



C. Average change in the normalized firing rates from baseline across stimulation intensities (light to dark
shades of purple, from 0 to 12 mW/mm?) per cell type. PV interneurons: no stimulation (“No stim”)
percentiles, [-16.09, -7.91, -4.00, -1.36, 14.52], n = 44, low stimulation (“Low stim”), [1.94, 1.94, 2.63,
3.32, 3.32], n = 2; high stimulation (“High stim”), [-0.7751, 5.55, 14.36, 30.19, 67.69], n = 44. NS
interneurons: no stimulation, [-16.09, -6.83, -3.07, -0.40, 14.52], n = 75; low stimulation, [-10.87, -6.60, -
2.81, 1.94, 3.32], n = 6; high stimulation, [-20.15, -0.79, 3.59, 17.75, 67.69], n = 71. WS interneurons: no
stimulation, [-8.37, -1.10, -0.22, 0.29, 10.08], n = 36; low stimulation, [-10.84, -0.30, 0.053, 0.52, 3.93], n
= 11; high stimulation, [-10.87, -3.29, -0.82, -0.0094, 5.44], n = 36. Pyramidal cells: no stimulation, [-
7.70, -0.17, 0.020, 0.20, 2.69], n = 36; low stimulation, [-1.94, -0.26, 0.00, 0.33, 2.47], n = 11; high
stimulation, [-8.84, -0.47, -0.088, 0.016, 4.47], n = 36. Baseline was defined as the mean firing rate in the
1-second window before AZ or light onset; linear mixed-effects model. Data represent mean + SEM. *P <
0.05, **P < 0.01, ***P < 0.005, ****P < 0.001. Statistical details are available in the supplementary text.

All percentiles represent [minimum, 25", median, 75", maximum].
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Figure 2-S7. Effects of optogenetic stimulation intensity on speed and licking activity. A. Top row,
normalized change in lick rate from baseline levels as a function of time to optogenetic stimulation or AZ
entry (dotted line at 0) for novel days 1-3, or “Nov Day 1-3” (green) and the last day of familiar navigation
(black, “Fam Day 3”). Lick rate in the novel environment: day 1, no stimulation (“No stim”) percentiles
= [-0.70, -0.0063, 0.077, 0.27, 0.68], n = 118 trials, low stimulation (“Low stim”) = [-0.45, 0.00, 0.079,
0.26, 0.64], n = 59, high stimulation (“High stim”) = [-0.69, 0.00, 0.16, 0.29, 0.68], n = 62; day 2, no
stimulation = [-0.52, -0.0010, 0.11, 0.27, 0.56], n = 115; low stimulation = [-0.33, 0.00, 0.14, 0.25, 0.53],
n = 63; high stimulation = [-0.47, 0.00, 0.082, 0.299, 0.59], n = 67; day 3, no stimulation = [-0.77, -0.027,
0.13,0.28, 0.71], n = 179; low stimulation = [-0.39, -0.055, 0.072, 0.23, 0.73], n = 96; high stimulation =
[-0.41, -0.032, 0.064, 0.24, 0.66], n = 99. Lick rate in the familiar environment: day 3, no stimulation = [-
0.68, 0.0168, 0.19, 0.41, 0.78], n = 559; low stimulation = [-0.27, 0.056, 0.21, 0.35, 0.62], n = 42; high
stimulation = [-0.27 0.0082, 0.23, 0.40, 0.75], n = 38. Light to dark shades of color indicate low to high
stimulation intensity. Data represent mean + SEM. Bottom row, quantification of mean change in lick rate
after stimulation or AZ onset. Each colored circle indicates a trial. Black line and error bars indicate mean
+ SEM; linear mixed-effects model. B. Same as A, but for speed. Speed in the novel environment: day 1,
no stimulation percentiles = [-0.48, -0.15, -0.034, 0.059, 0.50], n = 179; low stimulation = [-0.54, -0.15, -
0.0381, 0.038, 0.45], n = 99; high stimulation = [-0.62, -0.16, -0.013, 0.10, 0.47], n = 101; day 2, no
stimulation = [-0.62, -0.24, -0.081, 0.042, 0.64], n = 179; low stimulation = [-0.63, -0.24, -0.15, -0.048,
0.38], n = 97; high stimulation = [-0.52, -0.14, -0.047, 0.14, 0.47], n = 103; day 3, no stimulation = [-
0.43, -0.10, -0.015, 0.054, 0.36], n = 200; low stimulation = [-0.52, -0.18, -0.090, 0.074, 0.44], n = 104;
high stimulation = [-0.52, -0.18, -0.090, 0.074, 0.44], n = 106. Speed in the familiar environment: day 3,
no stimulation = [-0.71, -0.33, -0.22, -0.13, 0.62], n = 560; low stimulation = [-0.66, -0.28, -0.20, -0.073,
0.14], n = 43; high stimulation = [-0.48, -0.32, -0.21, -0.10, 0.095], n = 39; linear mixed-effects model. C.
Performance in the familiar environment based on speed (left), lick latency (middle), and lick rate (right)

across different conditions and trial types; trials during baseline periods without visual cues (“No VR”),



trials with no stimulation (“No stim”), low stimulation (““L”), high stimulation (“H”), both low and high
stimulation (“L+H”), and all trials (“All”). *P < 0.05, **P < 0.01, ***P < (.005, ****P < 0.001.
Statistical details are available in the supplementary text. All percentiles represent [minimum, 25", median,

75", maximum].
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Figure 2-S8. Sharp-wave ripple activity detected in WT mice. A. Example traces of local field potentials
showing sharp-wave ripple events (marked with stars) detected in the familiar (“Fam,” black) or novel
(“Nov,” green) environment. B. Distribution of ripple rate occurring in the familiar (black, percentiles,

[0.00, 0.012, 0.036, 0.059, 0.17], n = 41 sessions) or novel (green, percentiles, [0.00, 0.018, 0.035, 0.061,



0.16], n = 42 sessions) environment; linear mixed-effects model. Each data point indicates a recording
session. C. Same as B, but for the probability of co-activation among pairs of goal-modulated pyramidal
cells. Familiar percentiles, [0, 0, 0.063, 0.19, 1], n = 4076 pairs; novel = [0, 0, 0, 0.081, 0.89], n = 3207
pairs; linear mixed-effects model. Each data point indicates a pyramidal cell pair. D. Same as B, but for
ripple power expressed as the number of standard deviations from the mean. Familiar percentiles, [3.00,
3.21, 3.54, 4.02, 7.63], n = 598 ripples; novel percentiles, [3.00, 3.21, 3.53, 4.09, 9.92], n = 834 ripples;
linear mixed-effects model. Note our ripple detection requires the minimum ripple power of 3 standard
deviations to be detected as a ripple event. Each data point indicates a ripple event. E. Same as B, but for
the duration of ripples in seconds. Each data point indicates a ripple event. Familiar percentiles, [0.034,
0.061, 0.078, 0.1, 0.34], n = 598 ripples from 7 mice; novel percentiles, [0.034, 0.062, 0.081, 0.11, 0.31],
n = 834 ripples from 7 mice; linear mixed-effects model. F. Change in normalized firing rate of NS
interneurons (“NS Int.,” dark blue), WS interneurons (“WS Int.,” light blue), or pyramidal cells (“Pyr.,”
red) from baseline as a function of time to the mid-point of sharp-wave ripple (SWR), averaged across SWR
events in the familiar (left) and novel (right) environment. Inset, zoomed-in view of normalized firing rate
change, 1 second around SWR midpoint for each cell type. Data represent mean £ SEM. G. Comparison of
normalized firing rate change between familiar (black) and novel (green) environments for NS interneurons
(left), WS interneurons (middle), and pyramidal cells (right). Data represent mean + SEM. *P < 0.05, **P
< 0.01, ***P < 0.005, ****P < 0.001. Statistical details are available in the supplementary text. All

percentiles represent [minimum, 25", median, 75", maximum].
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Figure 2-S9. Optogenetic stimulation does not significantly affect sharp-wave ripple generation, power,
or duration. A. Change in normalized firing rate of NS interneurons (“NS Int.,” dark blue), WS

’

interneurons (“WS Int.,” light blue), or pyramidal cells (“Pyr.,” red) from baseline as a function of time
to the mid-point of sharp-wave ripple (SWR), averaged across SWR events in sessions with goal (“Novel
Goal Stim,” left) or sham stimulation (““Novel Sham Stim,” right) in the novel environment. Inset, zoomed-

in view of normalized firing rate change, 1 second around SWR midpoint for each cell type. Data represent



mean = SEM. B. Comparison of normalized firing rate change between goal stimulation (“Goal stim,”
blue) and sham stimulation (“Sham stim,” orange) environments for NS interneurons (left), WS
interneurons (middle), and pyramidal cells (right). Data represent mean = SEM. C. Distribution of ripple
power expressed as the number of standard deviations from the mean with goal stimulation (blue) or no
stimulation (black) in the familiar environment. Familiar goal stimulation percentiles, [3.0962, 3.3517,
3.7334, 3.9702, 4.4851], n = 14 ripples; familiar no stimulation percentiles, [3.0073, 3.171, 3.4287,
3.7714, 8.3701], n = 347 ripples; linear mixed-effects model. Note that part of the y-axis is removed to
show the distributions; no data point was removed. D. Distribution of ripple duration with goal stimulation
(blue) or no stimulation (black) in the familiar environment. Familiar goal stimulation percentiles, [0.037,
0.065, 0.080, 0.087, 0.26], n = 14 ripples; familiar no stimulation percentiles, [0.035, 0.059, 0.075, 0.095,
1.84], n = 347 ripples; linear mixed-effects model. Note that part of the y-axis is removed to show the
distributions; no data point was removed. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001. Statistical
details are available in the supplementary text. All percentiles represent [minimum, 25", median, 75",

maximum].



Table 2-1. Genotypes, type of treadmill, recording sessions with novelty, single units, sharp-wave ripples,

recording duration per animal

Narrow Sharp- | Stopped
Treadmill | Single Wide Pyramidal
Animal | Genotype interneurons wave periods
type units interneurons cells
(PVs) ripples | (min)
N11 WT Linear 155 33 (N/A) 8 114 36 43.93
N18 WT Linear 208 23 (N/A) 15 170 646 246.04
N21 WT Linear 179 17 (N/A) 14 148 498 190.58
N24 WT Linear 227 27 (N/A) 35 165 241 84.33
N45 WT Spherical 201 34 (N/A) 8 159 8 14.66
N46 WT Spherical 293 34 (N/A) 10 249 2 4.90
N47 WT Spherical | 223 35 (N/A) 12 176 1 15.87
N48 PVxAIi32 | Spherical 181 23 (13) 6 152 11 20.85
N50 PVxAIi32 | Spherical 210 34 (28) 16 160 32 21.46
N52 PVxAi32 | Spherical 196 24 (12) 14 158 139 49.12
N53 PVxAIi32 | Spherical 197 21 (14) 14 162 3 7.09
N54 PVxAIi32 | Spherical 208 25 (10) 15 168 105 68.13
N57 PVxAIi32 | Spherical 192 15 (10) 27 150 201 78.82
N61 PVxAi32 | Spherical 97 12 (4) 5 80 51 67.26
N62 PVxAIi32 | Spherical 154 20 (11) 9 125 108 106.13
N63 | PVXAIi32 | Spherical | 165 17 (7) 14 134 90 74.18
N65 PVxAIi32 | Spherical 109 5(1) 15 89 108 59.87




Supplementary Text

Details on statistical analyses

Statistical significance abbreviations: ns (not significant) P>0.05, *P<0.05, **P<0.01, ***P<0.005,

****pP<0.001.
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Chapter 3

Our memories of new and important things develop quickly and are under the tight regulation of specialized
neurons in the brain. Previous studies primarily focused on excitatory populations in CA1. While useful,
this prior work provided us with an incomplete mechanistic understanding about how we quickly prioritize
and remember the most important things. In contrast to these prior studies, we focused on fast-spiking
inhibitory interneurons in CA3 where the rapid formation of new memories occurs. We show for the first
time physiological and learning-dependent reorganization in hippocampal inhibitory populations that
exhibit both input selectivity and output response selectivity during novel spatial learning. Narrow spike-
width and PV interneurons showed a spatially selective reduction in firing activity in response to goal-
specific inputs. We found that this input-specific reduction in inhibitory drive onto excitatory cells was
necessary for subsequent response bias in those excitatory cells to represent task-relevant goal information
over less relevant information.

Our observations of goal-specific disinhibitory drive onto local excitatory pyramidal cells in CA3
directly oppose previous models of inhibition in spatial learning that assume spatial uniformity, non-feature
selectivity, or prerequisite excitatory reorganization. The results of our optogenetic manipulations show a
causal link between spatially selective disinhibition and learning-dependent activity changes at the single
unit, population, and behavioral levels. First, we show that goal-specific inhibitory ramp downs are required
for sharper and more stable global spatial representations by pyramidal cells. Second, goal-specific
inhibitory ramp downs are required for the preferred representation of goals over other locations by groups
of pyramidal cells during sharp-wave ripples known to be essential for spatial learning. Finally, goal-
specific inhibitory ramp downs are necessary for animals’ behavioral differentiation between goal and non-
goal locations. Importantly, we compared similar optogenetic stimulation at goal and non-goal locations

and found these changes specifically at goal locations. These results show that rapid learning-dependent



changes in inhibition, preceding changes in excitation, drive events critical for successful goal-directed
navigational behavior. These results highlight a necessary inhibitory means of driving plasticity at precise

locations relevant for new goal learning.

Caveats
We focused on PV interneurons for optogenetic targeting because we found the fast-acting changes in firing
during learning in narrow spike-width interneurons that are most likely PV interneurons as determined by
opto-tagging. Besides PV basket cells, PV expression is present in other classes of interneurons such as
bistratified cells and axo-axonic cells that have cell bodies residing in or close to stratum pyramidale but
with distinct morphological features and post-synaptic innervation patterns (Pelkey et al., 2017). While PV
basket cells innervate principal cells primarily at the soma and proximal dendrites, bistratified cells target
the basal and apical dendrites and axo-axonic cells exclusively target the axon initial segments. Thus, it is
possible some of the effects of PV stimulation we observed in our study may be attributed to inhibition
outside of the perisomatic domains. Prior work suggests that distinct classes of hippocampal PV
interneurons have different phase preference and modulation strength during theta oscillations and different
probabilities of action potential discharges during sharp-wave ripples (Varga et al., 2014). These class-
specific characteristics within the PV inhibitory population likely have class-specific functional
implications in disease. For example, PV basket cells, but not PV bistratified or axo-axonic cells in CA1,
were found to have reduced spiking activity during sharp-wave ripples in a genetic mouse model of amyloid
pathology (Caccavano et al., 2020). While we have not attempted to separate out different classes of PV
interneurons in our study, it may be an interesting future avenue for examining relative contributions of
these PV classes to new goal learning.

While our results support our hypothesis that disinhibition by PV interneurons is a necessary driver
of new learning, we have not tested whether it is sufficient for such learning. It is challenging to strongly

reduce inhibition during active behavior for two reasons. First, excessive reduction in inhibition can induce



unwanted seizures that could affect behavior and learning. In fact, disrupted balance in excitation and
inhibition is thought to be the hallmark of many diseases including Alzheimer’s disease (Maestu et al.,
2021). Second, because reduced inhibition occurs naturally over goal learning, we may not observe a
significant improvement in performance due to the ceiling effect in wild-type animals. Animal models of
disease, specifically those with known deficits in both spatial learning and inhibitory firing, however, could
be used in future studies to test whether spatial learning deficits could be rescued with optogenetic
suppression of PV interneurons. In the genetic mouse model of amyloid deposition via overexpression of
five familial Alzheimer’s disease (5XFAD) mutations, we previously found significantly fewer and shorter
sharp-wave ripple periods and weaker putative interneuron-to-pyramidal cell monosynaptic connections
(Prince et al., 2021). In addition, we found deficits in inhibitory firing reduction around familiar goal
locations in 5XFAD mice (Fig. 3-1). While this study used a relatively simple task without a novel learning
component to enable learning in both 5XFAD mice and littermates, it suggests goal-specific inhibitory

deficits exist even in the absence of major group differences in behavioral performance.

Future directions

Prior work in sensory cortices has suggested cholinergic inputs as a key neuromodulatory component of
learning that is not examined in our study. In primary motor cortex, for example, higher cholinergic inputs
from the basal forebrain were found during motor learning (Ren et al., 2022). This increased cholinergic
input co-occurred with reduced activity in somatostatin-expressing (SST) interneurons and increased
activity in vasoactive intestinal peptide (VIP) interneurons. Similarly, in primary visual cortex, running-
induced increases in cholinergic input to VIP interneurons resulted in disinhibition of pyramidal cells from
SST interneurons (Fu et al., 2014). This disinhibition improved visual responses, in line with sensory
response modulation by behavioral state. The same group also showed that this improved sensory response
is driven by VIP-SST circuit directly, independent of locomotion (Fu et al., 2015). In another brain region,

primary barrel cortex, layer 2/3 VVIP neurons were found to receive nicotinic input to depolarize, which in



turn disinhibits nearby excitatory pyramidal cells via reduced SST activity during active sensing. Given
that PV interneurons target other interneurons including SST interneurons, the VIP-SST circuit extensively
studied in the context of associative learning may extend to PV-SST interactions, though potentially cell-
type-specific functional roles in learning must be investigated. In addition, recent findings of PV inhibition
with sublaminar- and subregion-specific differences suggest interesting future directions in examining how
spatial and nonspatial operations in the hippocampus are delegated. For example, PV basket cells
preferentially target deep pyramidal cells over more superficial pyramidal cells in CAL1 (Danielson et al.,
2016). Furthermore, CA3 PV interneurons have been shown to mediate the proximodistal gradient found
in the inhibitory drive onto pyramidal cells (Sun et al., 2017). This gradient led to a lower inhibition-
excitation ratio in CA3b, the region with more enhanced reactivation of fear memory traces, compared to
CA3a or CA3c (Sun et al., 2017). These findings add to the complexity and heterogeneity associated with
intrinsic synaptic properties and connectivity that affect hippocampal functions and propose an important
avenue for future research.

Related to new learning, disinhibition is known to play an important role in experience-dependent
synaptic plasticity, classically studied in sensory deprivation and subsequent adaptation (Chen et al., 2011;
Kuhlman et al., 2013). For example, monocular deprivation leads to structural remodeling and adaptation,
accompanied by a decrease in inhibitory inputs onto neighboring pyramidal cells (Chen et al., 2011).
Interestingly, this study also found the antidepressant fluoxetine to be effective at reducing inhibitory tone
and facilitating structural adaptation, suggesting a pharmacological avenue for reduced inhibition for
learning-associated plasticity (Chen et al., 2011). In line with our interpretation of a role of PV disinhibition
in plasticity events, another study proposed the reduction of PV firing and subsequent restoration of normal
excitatory firing rates to permit competitive ocular dominance plasticity to proceed based on relative
strengths of inputs to two eyes (Kuhlman et al., 2013). These studies highlight a therapeutic potential of
reduced inhibition for deficits in learning-dependent plasticity and cognition, consistent with improved

cognition following administration of GABAAa antagonists in a mouse model of Down’s syndrome



(Fernandez et al., 2007). However, our study proposes important considerations for potential therapeutic
effects of reduced inhibition in cognitive processing because spatially specific, not broad, inhibition is
necessary for learning new specific information. Potential therapies of cognitive dysfunction should aim to
match the timing of manipulated inhibitory activity with the specific periods of learning. Pharmacological
compounds with half-lives of several hours to days may not allow for adequate temporal precision required
for maximal therapeutic efficacy.

In conclusion, we found a novel inhibitory mechanism by which inhibition drives new learning of
specific locations of importance. This work extends our understanding of how CA3 PV interneurons drive

local circuit computations necessary for learning new important locations of new environments.
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Figure 3-1. Deficits in inhibitory reduction at well-learned goal locations in the 5XFAD mouse model of
amyloid pathology. Mean and SEM percent change from baseline firing of interneurons (left) and
pyramidal cells (right) as a function of distance to reward zones (RZ, beige) for WT (black) and 5XFAD
(light blue or pink) mice in a well-learned track. N = 187 5XFAD, 142 WT interneurons, 708 5XFAD, 567

WT pyramidal cells.



Appendix A BrainWAVE: A Flexible Method for Noninvasive Stimulation of Brain

Rhythms across Species

This appendix is a published article as it appears in eNeuro.
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Abstract

Rhythmic neural activity, which coordinates brain regions and neurons to achieve multiple brain functions,
is impaired in many diseases. Despite the therapeutic potential of driving brain rhythms, methods to
noninvasively target deep brain regions are limited. Accordingly, we recently introduced a noninvasive

stimulation approach using flickering lights and sounds (“flicker”). Flicker drives rhythmic activity in deep



and superficial brain regions. Gamma flicker spurs immune function, clears pathogens, and rescues
memory performance in mice with amyloid pathology. Here we present substantial improvements to this
approach that is flexible, user-friendly, and generalizable across multiple experimental settings and species.
We present novel open-source methods for flicker stimulation across rodents and humans. We demonstrate
rapid, cross-species induction of rhythmic activity without behavioral confounds in multiple settings from
electrophysiology to neuroimaging. This flicker approach provides an exceptional opportunity to discover

the therapeutic effects of brain rhythms across scales and species.

Significance Statement

Despite many studies showing abnormal brain rhythms in multiple diseases, limited means to target deep
brain regions noninvasively has restricted the therapeutic potential of driving brain rhythms. Accordingly,
we developed a noninvasive millisecond precise sensory stimulation to drive brain rhythms. Here we
introduce for the first time newly developed open-source software and instructions for building, testing,
debugging, and using BrainWAVE (Brain Wide-spectrum Audio/Visual Exposure) stimulation. We
demonstrate BrainWAVE stimulation across multiple species and different experimental settings. These
methods constitute a customizable, open-source, accessible, and non-invasive technology that stimulates

brain oscillations to causally test how rhythmic brain activity impacts brain function.

Introduction

Neural oscillations—rhythmic patterns of activity in the brain—have been observed across many species

and extensively investigated in studies of sensory and cognitive processing. Studies of humans and animal



models of disease have uncovered neural deficits of different frequencies in multiple brain regions
(Herrmann and Demiralp, 2005; Prince et al., 2021; Schneider et al., 2014; Shahriari et al., 2016; Solis-
Vivanco et al., 2018; Tamura et al., 2017; Uhlhaas and Singer, 2006; Verret et al., 2012; Wang et al., 2013;
Worrell et al., 2008). In particular, we and others have found reduced power of endogenous gamma-
frequency oscillations in mouse models of Alzheimer’s disease (Goutagny et al., 2013; laccarino et al.,
2016; Mably et al., 2017; Martorell et al., 2019; Verret et al., 2012). We previously showed that enhancing
gamma neural activity using noninvasive rhythmic sensory stimulation (hereinafter referred to as “flicker”),
specifically lights and/or sounds turning on and off at 40 Hz, reduced Alzheimer’s pathology, recruited
immune cells, and improved memory performance in mice (Adaikkan et al., 2019; laccarino et al., 2016;
Martorell et al., 2019). These studies highlight the potential therapeutic benefits of modulating neural
oscillations using noninvasive sensory stimulation. Indeed, a growing number of studies have used flicker
to ameliorate pathology beyond Alzheimer’s disease. For example, 30-50 Hz light flicker was protective
against neurons in a cerebral ischemia model (Zheng et al., 2020). Other studies have found flicker to be
effective in correcting circadian rhythms (Chan et al., 2021; Yao et al., 2020). Furthermore, this sensory
stimulation is useful for studying how rhythmic neural activity affects brain function including immune
cells and signals (Garza et al., 2020; He et al., 2021; laccarino et al., 2016; Martorell et al., 2019; Venturino
etal., 2021). These findings demonstrate the general applicability of flicker stimulation as promising means
to treat multiple disorders and diseases (Huang et al., 2021; Jones et al., 2019; Park et al., 2020; Shi et al.,
2021).

Flicker stimulation has significant advantages over existing methods of neuromodulation. First, flicker
successfully produces reliable modulation in multiple species, including rodents and humans, in multiple
brain regions, including difficult-to-target areas such as the hippocampus (Adaikkan et al., 2019; He et al.,
2021; laccarino et al., 2016; Martorell et al., 2019; Quon et al., 2021). The ability to reach deeper brain
regions beyond the superficial sensory areas is particularly exciting because many such brain regions are

important for cognition and affected by disease but difficult to modulate noninvasively (Hescham et al.,



2020; Lozano et al., 2019; Qin et al., 2018; Spagnolo et al., 2019). Second, sensory flicker has been shown
to alter neuroimmune signaling in mice and humans (Adaikkan et al., 2019; Garza et al., 2020; He et al.,
2021; laccarino et al., 2016; Martorell et al., 2019; Venturino et al., 2021). Deficits in neuroimmune
function are prevalent in many diseases, but traditional invasive techniques to manipulate neural or immune
activity cause immune responses themselves thereby limiting their use or interpretation in the study of
neuroimmune function (Chung et al., 2015; Hickman et al., 2018; Hong et al., 2016; Wohleb et al., 2016).
Third, flicker is an attractive option for chronic at-home therapy in humans. This inexpensive flicker device
is widely accessible to researchers and clinicians. Finally, flicker has limited risk and potential side effects
in studies to date and offers an attractive model for individualized therapy programs.

Despite these advantages, earlier versions of flicker devices had limitations and room for improvement.
Previous flicker stimulation devices used separate systems for audio and visual stimulation without the
ability to synchronize the two signals. Furthermore, prior work did not describe methods to test and debug
multimodal flicker. These early devices also required extensive knowledge of coding and circuitry to build
and operate. As a result, these devices were not user-friendly or fully optimized for clinical and research
use. Early users could not easily and quickly adjust brightness and volume based on participant comfort
and study goals. Furthermore, previous visual flicker systems could not be used for MRI studies because
they were either not MR-compatible or were not bright enough to sufficiently illuminate the field of view
of a participant in the scanner bore from a safe distance. Furthermore, there was no established protocol for
blinding, which is especially tricky when the intervention is visible to the experimenter and easily
distinguished from control conditions. Earlier studies also did not describe the experience or potential side
effects of flicker in healthy subjects, which is important to consider in how readily usable this stimulation
is in a variety of participants.

For these reasons, we developed an easy-to-build, modular, and customizable BrainWAVE (Brain Wide-
spectrum Audio/Visual Exposure) Stimulator to modulate neural activity across multiple species and

experimental settings. Given the general utility of this device, here we introduce for the first time open-



source software and instructions for hardware assembly, testing, and debugging. We developed a user-
friendly graphical user interface (GUI) to easily control and adjust flicker during experiments without
programming. We demonstrate the feasibility, safety, and effectiveness of our newly optimized methods
for use in both clinical and preclinical research. We extend our previously published work by detailing how
to implement and troubleshoot flicker stimulation across multiple species and different experimental
settings, including intracranial recordings from humans and mice, behavioral assays in mice, and assays of
side effects in humans. We have also developed methods for minimizing signal interference during
simultaneous audio and visual flicker with human EEG recordings or MRI scans while participants engage
in behavior tasks. Additionally, we outline how to design and conduct a blinded flicker study and discuss
considerations for human and animal experiments involving flicker that we hope will aid future research.
These methods constitute a customizable, accessible, and noninvasive technology that stimulates brain

oscillations to causally test how rhythmic brain activity impacts brain function.

Results

To deliver flicker stimulation to humans and mice, we developed custom BrainWAVE devices (Fig. A-1).
Standard computer monitors and projectors do not have fast enough refresh rates to achieve 40 Hz flicker,
thus custom-built LED BrainWAVE Stimulators are required. The BrainWAVE Stimulator interfaced with
a variety of light sources and speakers as output components to accommodate different experimental needs
(Fig. A-1, A,B,C). The output components included LED lights or a PC monitor with a high refresh rate
(e.g. 165 Hz or greater) for visual signals, and speakers, headphones, or earbuds for auditory signals. To
illustrate the flexibility and customizability of our device, we provide several output components we have
used successfully. For mouse studies, we used LED light strips and speakers (Fig. A-1A) to expose animals
to flicker stimulation while the mice were able to freely move within their cages. For human studies, we
used LED goggles or LED monitor frames, and headphones or speakers (Fig. A-1, B and C). Flickering

LED light strips attached to the edges of a monitor were used in studies where participants perform memory



and attention/reaction tasks on a PC while receiving flicker (Fig. A-1C). We also designed LED frames and
panels that use extra bright LEDs to send light from a distance to the visual field of a participant laying
down within an MRI scanner (Fig. A-1C). These different outputs interfaced with a common, compact, and
portable circuit (Fig. A-1, D,E,F). A detailed parts list and instructions for BrainWAVE Stimulator circuit
assembly are provided (see Extended Data, Table A-1). We developed a user-friendly application to run a
variety of experiments involving visual and/or auditory stimulation (Fig. A-2). These examples

demonstrate the feasibility and customizability of the BrainWAVE Stimulator in a variety of settings.

Modulation in Humans

To establish the effects of flicker stimulation in humans, we characterized neural activity with and without
40 Hz audio/visual stimulation during both scalp EEG recordings and intracranial recordings in human
participants (Fig. A-4, A and D). Using scalp EEG, we found a significant increase in EEG power at 40
Hz during stimulation relative to no-stimulation baseline periods within the same subjects (Fig. A-4, B and
C; n =10 participants, p=0.002, two-sided Wilcoxon signed-rank test). This increase in EEG power during
40 Hz flicker was observed across multiple channels, with channels located over visual and auditory regions
having higher modulation (Fig. A-4B). Importantly, elevated EEG power was specific to the frequency of
stimulation; we found a significant difference in the power at 40 Hz compared to the mean power at
neighboring frequencies (e.g. 40 Hz vs. 31-39 Hz and 41-49 Hz); (Fig. A-4C; n = 10 participants, p=0.014
two-sided Wilcoxon signed-rank test). Furthermore, elevated EEG power was due to sensory stimulation
itself and not electrical artifacts since there was no significant increase in 40 Hz power during the occluded
condition (p=0.56, paired t-test). While there was variability across subjects, modulation of at least three
channels with at least one channel in each hemisphere was achieved within ten seconds after the onset of

stimuli and lasted for the duration of flicker exposure (data not shown).



To determine the effects of flicker stimulation in humans with better spatial resolution, we recorded
neural activity intracranially in treatment-resistant epileptic patients undergoing presurgical intracranial
seizure monitoring with stereotactic EEG (Fig. A-4, D and E) and applied offline highly localizing
Laplacian re-referencing to the LFP. We found that sensory flicker increased LFP oscillations, indicative
of population dendritic activity, at the frequency of the flickering stimulus in auditory and visual cortices.
As an example, in the early visual processing lingual gyrus, 40Hz visual stimulation induced an increase in
power at the frequency of stimulation, which is not present in the random visual flicker condition, our
control condition (Fig. A-4E; n = 15 trials in 1 subject, p=0.0005, paired t-test, power at 40Hz medians and
guartiles: 4.05 dB, 3.47-5.07 dB during 40Hz flicker; 0.68 dB, 0.46-0.87 dB during random flicker; Cohen’s
d = 2.05). By applying Laplacian re-referencing to the LFP, where the average of adjacent contacts’ signals
is subtracted from the signal of the channel of interest we determined this modulation was local and was
not due to distant volume conduction. Together, these findings demonstrate that the sensory flicker-induced

modulation is reliable, frequency-specific, and efficiently induced.

Modulation in Mice

To assess the effects of flicker in sensory and memory circuits of mice with high temporal and spatial
resolution, we recorded local field potentials and single neurons during flicker exposure. Using in vivo
electrophysiology in awake, head-fixed mice, we quantified sensory flicker-induced changes in neural
activity in mouse hippocampus (Fig. A-4, F-H). As previously reported in Martorell*, Paulson* et al. and
laccarino™*, Singer* et al., we found that LFP power was significantly elevated specifically at 40 Hz during
40 Hz stimulation, but not during no-stimulation baseline or random control conditions (Fig. A-4G; n=8
trials in 1 animal, p=0.010 40Hz vs baseline, p=0.004 40Hz vs random, paired t-test, power at 40Hz medians
and quartiles: 75.18 dB, 71.86-76.76 dB during 40 Hz flicker; 70.30 db, 68.39-72.31 dB during baseline;

70.39 dB, 68.05-71.11 dB during random). Furthermore, exposing mice to 40 Hz auditory flicker led to



increased modulation of single-neuron spiking, meaning neurons were more likely to fire at a particular
phase of the stimulus, in hippocampus (Fig. A-4H). These effects were not observed in no-stimulation
baseline or random control conditions. Similar results were observed in auditory cortex and prefrontal
cortex. These deeper regions are more difficult to target with other noninvasive stimuli, such as transcranial
magnetic stimulation. These results demonstrate effective, frequency-specific, and noninvasive modulation
of neural activity in multiple brain regions simultaneously using simple and customizable BrainWAVE

Stimulator circuits.

Stimulation Side Effects and Behavioral Controls

One important consideration is whether flicker stimulation is aversive or has unintended effects on
behavior. Accordingly, we asked our study participants to report any acute symptoms such as headache,
dizziness, negative affect, and more in a survey immediately before and after a one-hour audio and visual
flicker stimulation session. Out of eight participants, one reported that the light or sound was intolerable.
After stimulation, some participants reported mild negative or positive effects including
sleepiness/drowsiness (6), boredom (5), headache (2), increased (1) and decreased (2) ability to focus, and
increased relaxation (1) (Fig. 5A-C). Some of these effects, such as drowsiness and boredom may be
attributed to the experiment procedure which asked participants to remain still for over an hour, rather than

being an effect caused by the stimulation itself.

In addition to the acute effects of flicker, we assessed the potential adverse effects of more chronic flicker
exposure (He et al., 2021). In this study, older participants with prodromal Alzheimer’s disease were
exposed to 4-8 weeks of flicker stimulation. Overall, longer-term flicker exposure was well tolerated by

most subjects. Out of 10 participants, 3 reported mild adverse events which may be attributed to flicker



exposure, including dizziness, tinnitus, headache, and worsened hearing loss. These mild adverse events
were relatively rare, reported 5 times over the course of 4 to 8 weeks of daily 1hr flicker exposure.

One consideration is that different types of flicker stimulation indirectly affect neural or immune
responses because that particular type of stimulus makes animals move more or less. Our results show that
animals respond similarly in terms of the amount of activity and exploration of the environment with flicker
at different frequencies and constant light. These results show that neural and immune responses to sensory
flicker cannot solely be attributed to changes in activity levels during stimulation, although there may be
more subtle behavioral differences that could not be quantified with our assays. To determine if the effects
of sensory stimulation were confounded by changes in mouse behavior, we recorded the activity of mice
during a one-hour session of visual stimulation (Garza et al., 2020 Fig. 5D, E). To do this, we took
advantage of the fact that mice were allowed to move freely during stimulation. We quantified the amount
of time spent in the center arena of the cage during each stimulation condition as a common measure of
anxiety-like behavior in mice. We found no significant differences in both the time spent in the center of
the arena and total activity across stimulation conditions (Fig. A-5, F and G; percent time in center:
F(3,15)=0.8754, p=0.4757, RM-ANOVA, n=5 mice; percent time active: F(3,15)=0.9306, p=0.4502, RM-
ANOVA). These results show that neural and immune responses to sensory flicker cannot solely be
attributed to changes in behavior during stimulation, although there may be more subtle behavioral

differences that could not be quantified with our assays.

Discussion

Here we introduce a newly optimized BrainWAVE Stimulator and user-friendly, open-source methods for
assembling, testing, and implementing noninvasive sensory flicker across species and experimental designs.
Building on our first example use of flicker in modifying disease pathology, here we developed several new

methods to aid future research involving flicker. First, we integrated the audio and visual stimulation



systems to produce synchronized multimodal stimulation. Second, we created a user-friendly, intuitive GUI
to easily control and adjust flicker during experiments and without requiring programming. Third, we
designed an MR-compatible flicker device to remotely control flicker during MRI. Fourth, we established
a new protocol for designing and administering a blinded flicker study with appropriate control conditions.
Finally, we validated the safety of flicker by assessing potential adverse effects in healthy human subjects.
Our flicker stimulation produced robust, rapid, and frequency-specific modulation of neural activity in both
mice and humans with minimal side effects. We showed that side effects of stimulation were rare and mild.
These results were not due to differences in overall activity levels or anxiety-like behavior during
stimulation. Thus, this new and improved cross-species simulation tool provides a unique means to study
and treat neural activity deficits noninvasively in a wide spectrum of brain regions and diseases.

This optimized BrainWAVE Stimulator described in the present work has several advantages to reach a
wider scientific and medical community. We substantially improved our design to make our tools user-
friendly, accessible, and therefore more impactful in research and medicine. With a simple and flexible
design, sensory flicker is easy to integrate into a variety of experimental setups. These methodological
improvements build on our previously demonstrated effects of sensory flicker. We previously found that
audio and audio-visual sensory flicker noninvasively produces frequency-specific modulation in
hippocampus and prefrontal cortex of mice (Martorell et al., 2019). The ability to target deep brain regions
noninvasively is important because these regions are involved in memory and disease. Indeed, our prior
study shows gamma (40 Hz) flicker rescues memory deficits in a mouse model of Alzheimer’s disease
(Martorell et al., 2019).

Our ability to flexibly alter the degree of synchronization between multiple sensory stimuli brings
additional advantages to studying multimodal associative learning. For most of our previous studies, we
have programmed our stimulator to generate auditory and visual signals simultaneously. However, for some
experimental questions it is important to consider that the transmission times of auditory and visual

information through their respective pathways differ (King et al., 1985) and the magnitude of these



differences can vary across species and individuals. Future experiments may examine how changing the
onset and phase of these stimuli affect neural activity. Flexibly adjusting the delay between auditory and
visual stimulation so that the sensory information reaches their respective cortices at the exact same time
may indeed lead to more effective modulation in some brain structures. Furthermore, the BrainWAVE
stimulator is capable of adjusting stimuli onset with millisecond precision in order to suit the researcher’s
experimental design or to personalize stimuli to suit an individual or specie’s specific transmission speed.
Prior work has shown that phase locking of visual and auditory stimuli enhances and predicts future long-
term memory formation (Clouter et al., 2017; Wang et al., 2018). While we have not investigated this
directly, enhancing phase locking may be part of the mechanism by which flicker improves memory in
mice (Martorell, Paulson, et al., 2019).

Gamma flicker drastically reduces levels of amyloid beta levels, a peptide thought to initiate neurotoxic
events in Alzheimer’s disease, in sensory and memory circuits (laccarino et al., 2016; Martorell et al.,
2019). Noninvasive sensory stimulation is currently being tested in several clinical trials in patients with
neurodegenerative diseases (Cimenser et al., 2021; He et al., 2021; Murty et al., 2021). Human participants
have successfully used flicker at home with minimal side effects, proving long-term studies are feasible
and convenient (Cimenser et al., 2021; He et al., 2021). Future versions of BrainWAVE Stimulators may
be integrated into existing wearable technology like smartwatches and virtual reality headsets.

When designing a human or animal flicker study, there are a few limitations and considerations to keep
in mind. One of the recurring challenges is selecting a “control” condition or other stimuli for comparison.
Possible control conditions include no sensory stimulation, alternate frequencies (such as 20 Hz or 80 Hz),
constant (non-flickering) stimuli, and random (non-periodic) frequencies. Each type of stimulus condition
controls for different aspects of the stimuli, such as periodicity, frequency, and total duration of stimulus
exposure. Given these considerations, an ideal experimental design has multiple control groups with
different types of stimulation parameters. When deciding on one or more control groups, group size and

feasibility of an experiment may be limiting factors. As an additional limiting factor in human flicker use,



potential negative side effects must be considered and minimized. In this work and in a prior study, we
excluded participants with a history of light-induced seizures or migraines in case the stimulus exacerbates
these conditions (He et al., 2021). Though mild and rare, we noted some adverse side effects of acute flicker
stimulation, including boredom, sensitivity to light, and headache which were similar to mild adverse events
in our prior study on chronic stimulation (He et al., 2021). To help mitigate potential adverse effects,
participants may be given the option to adjust the stimulus intensity to more comfortable levels. However,
researchers should keep in mind that lowering the intensity may decrease the degree of modulation, and if
lowered below a certain point, modulation may not be observed. Indeed, studies should establish the degree
to which participants’ neural activity modulates to the flicker stimulus before studying subsequent effects
and establish baseline levels of acute modulation. In our studies, we first establish light and sound intensity
levels at which the subject is comfortable as well as levels that show adequate modulation to the stimulus.
We recommend testing multiple ranges of light and sound intensity prior to an experiment to include
participants with robust modulation at tolerated intensities and exclude those reporting discomfort with the
stimuli.

While most of our prior work has thus far focused on the effects of 40 Hz flicker in neurodegenerative
disease, the effects of stimulation in other diseases and in the healthy brain are currently under investigation
(Garza et al., 2020; He et al., 2021; laccarino et al., 2016; Martorell et al., 2019; Zheng et al., 2020). One
study has reported that 30-50 Hz flicker protects hippocampal neurons in an animal model of ischemia
(Zheng et al., 2020). Another study showed that 60Hz light flicker affects microglia remodeling of
perineuronal nets, which play a key role in critical period plasticity, in healthy mice (Venturino et al., 2021).
Our prior study shows that light flicker has frequency-specific effects on the expression of cytokines, an
extracellular immune signaling protein, as well as intracellular immune signaling in healthy adult animals
(Garza et al., 2020). These studies reveal that flicker could be used as a novel intervention in a variety of
contexts. For example, this noninvasive means of driving brain rhythms is valuable for assessing immune

effects of specific activity patterns without the confounding effects of invasive stimulation tools.



Inducing frequency-specific neural activity noninvasively using sensory flicker provides a novel
approach to investigating the role of specific frequencies of neural activity in health and disease. Here we
provide an easy-to-follow guide to build and implement such devices in experimental and clinical settings
at low cost and with user-friendly software. These tools will be useful to future studies using our devices
that will produce novel insights into the mechanisms of brain rhythms and immune function in health and

disease.

Materials and Methods

Device Design

The hardware components of each type of BrainWAVE Stimulator were selected to suit many different
types of subjects (animals/rodents, patients, healthy humans) and different types of studies (EEG, MRI,
behavior, electrophysiological recordings, intracranial EEG, etc.). For mouse studies, we designed and built
a BrainWAVE Stimulator using a strip of LEDs and a speaker to administer sensory stimulation to mice
housed within a cage (Fig. A-1A) to assess behavioral and immunological effects. To deliver flicker
stimulation to humans, we developed devices that consisted of headphones or earbuds and LED goggles or
an LED frame (Fig. A-1, B and C). For audio stimulation during intracranial recordings or scalp EEG
recordings small earbuds were advantageous compared to headphones with a headband since the headband
interfered with electrodes. When incorporating flicker with computer-based behavioral tasks, we used an
LED frame placed around a computer monitor (Fig. A-1C).

Each BrainWAVE Stimulator consisted of three types of hardware components: signal generators, signal
modulators, and the audio and visual outputs (Fig. A-1, D and E; Table A-1). These three components were
assembled to create either two independent audio and visual BrainWAVE Stimulator circuits or one
combined circuit (Fig. A-1, D, E, F; Fig. A-S1). A signal generator produced the signal dictating the on/off

timing of audio and visual outputs before sending it to a signal modulator. The signal modulator amplified



or attenuated the flicker control signal to adjust the intensity (e.g. brightness or volume) of the stimulation.
The modulated signal was then sent to audio and visual output components, specifically the lights and
speakers converting the electrical signals into visible and audible sensory stimuli.

For signal generation, we used a microcontroller (e.g., an Arduino) or digital acquisition (DAQ) hardware
to create the audio and visual control signals (Fig. A-1, D and F; Fig. A-S1), though other signal generators
with sub-millisecond precision may also be used. When selecting a signal generator, the advantages and
disadvantages of an Arduino or DAQ were considered in regard to the temporal precision required for a
particular experiment. A DAQ and PC system offers a higher sampling rate and better temporal precision
(e.g., 400,000 samples per second for a NI-DAQ USB-6212 vs ~9600 Hz sampling rate for an Arduino
Uno). Higher precision was required when aligning flicker stimulation to other signals with high temporal
resolution, like electrophysiological signals in scalp EEG, intracranial EEG, or depth electrode recordings.
If high sampling rate and precision were not necessary, then flicker signals were generated effectively and
more inexpensively using an Arduino microcontroller (less than $25). Arduino and DAQ signal generators
were programmed with custom code (see Extended Data) in Arduino IDE software or MATLAB,
respectively. For our studies, this code was either uploaded to an Arduino Uno (for an Arduino BrainWAVE
Stimulator) from a PC or was run in MATLAB on a PC that sent signals to a NI-DAQ USB-6212 (for a
DAQ BrainWAVE Stimulator).

Next, the generated output signal was typically amplified or attenuated via a sighal modulator to produce
the desired level of brightness or volume for a particular experiment. An audio amplifier (Fig. A-1D) was
used to increase or decrease the volume of the audio signal before being sent to a speaker or earbuds. Visual
signal modulation was achieved with a simple MOSFET circuit to power LEDs with a higher voltage source
(Fig. A-1, E and F) because the output voltages of the signal generators were too low for some light sources.
Arduino-generated visual signals were sent from the Arduino to a MOSFET circuit built on an Arduino
shield and then the modified signals were sent to the visual outputs. We adjusted the brightness of the LEDs

by installing a dimmer switch between the MOSFET circuit and the light source (see Extended Data Guide



1-1 for detailed instructions on how to assemble a BrainWWAVE Stimulator). Auditory signals were similarly
sent from the Arduino through an audio amplifier and then to the audio outputs. The ability to alter the level
of audio and visual stimulus intensity was important especially in studies involving human subjects to
ensure participant comfort and tolerance. For flexible adjustment of stimulus parameters, we developed a
user-friendly GUI tool in MATLAB (software and associated code in the Extended Data).

A 3D-printed case was used to protect the Arduino and circuit (Fig. A-1F). Instead of the Arduino shield,
circuits may be produced via a printed circuit board (PCB) or breadboard (Fig. A-S1). Using a PCB
simplifies the assembly process, reduces the footprint of the circuit, and makes a more reliable circuit. To
prevent electrical noise in electrophysiology or EEG recordings, the BrainWAVE Stimulator was shielded

by placing it in a metal-lined box. Testing for electrical artifacts was performed prior to recording.

BrainWAVE Stimulator Code and Software

Custom software controlled the signals generated by the microcontroller or DAQ. For Arduinos, code was
written in Arduino IDE and uploaded to an Arduino from a Windows 10 PC. Arduino code runs
automatically whenever the Arduino is supplied with power (either from a PC via USB cable or from a wall
power adapter) regardless of whether the Arduino is connected to the PC. For a DAQ BrainWAVE
Stimulator, the DAQ was first connected to a PC with MATLAB using the data acquisition toolbox (see
National Instruments for further instructions for NIDAQs). The DAQ BrainWAVE Stimulator was
controlled using MATLAB software and unlike an Arduino, the DAQ typically must be connected to a PC
while in use. While running the DAQ system, the signals generated in MATLAB were sent from the PC to
the DAQ, which in turn sent the signals to the signal amplification/attenuation components and then the
output components. We developed a user-friendly application (Fig. A-2) to run a variety of experiments
involving visual and/or auditory stimulation. All chosen experiment details, and timing of trials, are saved
in a MATLAB structure for offline data processing. Code used for Arduino and NI-DAQ BrainWAVE

Stimulators is found on GitHub.



Code Accessibility

The  code/software  described in  the paper is  freely available online at

https://github.com/singerlabgt/BrainWAVE. The code is available as Extended Data.

Measuring BrainWAVE Outputs

After constructing BrainWAVE Stimulators, testing was performed to determine if the devices generate
appropriate stimulus intensity, timing, and other signal properties. Light illuminance and audio volume
were measured with a light meter and decibel meter, respectively, with the distance between the sensor and
meter approximating the distance from the sensory to the subjects’ eyes and ears (Table A-3). For mouse
studies, light intensity was set at ~150 lux and sound intensity at 60-65 dB (Garza et al., 2020; Martorell et
al., 2019). For human studies, we adjusted stimulus intensity for each subject based on tolerance, with the
levels ranging from 0-1400 lux for brightness and 0-80 dBA for sound (He et al., 2021). We measured the
frequency and duty cycle of the audio and visual stimuli in real-time using an oscilloscope connected to the
analog output ports of the light and decibel meters (Fig. A-3A). Alternatively, the timing of the light and
sound stimulus may be measured with a photodiode and a microphone connected to an oscilloscope, or the
stimulus may be recorded on a laptop and analyzed on a computer. Audio and visual signals were measured
simultaneously to compare their duty cycle, frequency, and phase timing.

To modulate neural activity, we generated sensory signals at specific frequencies depending on the
experimental design. Visual gamma flicker (40 Hz) was produced using a 5.17 V, 40 Hz square wave with
a 50% duty cycle (Fig. A-3B). The voltage must be greater than 4 V to operate the MOSFET. Auditory
gamma flicker was produced with a pure sinusoid tone signal that was modulated by a 40 Hz square wave
with a 50% duty cycle for audio-visual stimulation, and a 4% duty cycle for audio-only stimulation (Fig.
A-3C). The pure tone used was adjusted to fall within the center of the hearing range of the species tested:
10 kHz for mice and 7 or 8 kHz for humans (Heffner et al., 2007). We used a 4% duty cycle for audio-only

stimulation to more closely match the timing of clicks in studies on auditory steady-state responses evoked



with 40-Hz click trains (Galambos et al., 1981; Ma et al., 2013; Osipova et al., 2006; Stapells et al., 1984;
Thuné et al., 2016). Other frequencies of sensory were generated in a similar manner typically with a 50%
duty cycle. Randomized stimulation was used to compare periodic to aperiodic flicker stimulation and had
varying duty cycles (from 33% to 99%). Audio and visual signals were typically synchronized with similar
duty cycles, but offset signals or different duty cycles may be desired in some cases (Fig. A-3, D, E, F, G,

).

Presenting BrainWAVE Stimuli to Humans and Mice

All human studies were approved and monitored by the Institutional Review Board. For EEG studies, male
and female human subjects (ages 18-24) received the audio stimulus of a 7 or 8 kHz tone via headphones
or earbuds. The visual stimulation was produced using an LED frame surrounding a PC monitor (Fig. A-
4A) or via glasses lined with LEDs. Both the tone and LEDs were synchronized. Prior to experiments,
subjects were presented with multiple levels of light and audio intensities to identify the optimal range the
subject tolerated. Subjects were allowed to ask the researcher to change the stimulus intensity to a level
they were comfortable with at any point during the study. After finding a comfortable stimulation level, we
noted the new stimulation level and then checked the subject’s EEG to see if they still met our modulation
criteria. Any subjects that did not meet modulation criteria were excluded from the study. In neural
recording studies, a “relative occluded” stimuli recording condition was performed to test for electrical
noise from the BrainWAVE Stimulator. In human studies, during the relative occluded condition, the
participant wore an opague eye mask and earplugs that prevented exposure to the sensory stimuli. Neural
activity of participants wearing the eye mask and ear plugs during this occluded condition session was not
modulated when the sensory stimulation was turned on.

The MRI environment poses additional challenges because standard circuit components and stimulus
devices are incompatible with the high magnetic field of the scanner. Thus, our lab developed novel

methods for conducting flicker in the MRI scanner. First, we designed stimulus presentation methods that



were MR safe. During MRI scans, we delivered audio flicker stimulation using in-ear MR safe, headphones
(brand: MRIAudio) to allow the participant to hear audio generated from a PC or BrainWAVE Stimulator
over scanner noises. These headphones were designed to fit within the MRI head coil during scans and have
a noise reduction rating (NRR) of 29 dB. For visual flicker, we created an MR safe LED frame that fits
around a projection screen. This setup allowed participants to view pictures or videos or perform visual-
based tasks while receiving visual flicker stimulation in their periphery. The translucent projection screen
with the LED frame was constructed on an MR safe stand placed about two feet from the patient table of
the MRI machine. We did not find MRI artifacts with this screen or the headphones.

Second, we designed a system such that the control circuit was far enough from the scanner (placed in
the MRI control room) while the lights and sounds were near the MRI scanner so that the stimulation signals
from the control circuit were not affected by the scanner’s radio frequency pulses and so that the circuit’s
signals did not create noise in the MRI images. A shielded cable was used to connect the flicker stimulation
device in the control room to the LED frame. We controlled and adjusted the volume and brightness of
flicker from the control room using a computer or BrainWAVE Stimulator. A projector in the control room
projected images through the control room window onto the back of the projection screen. A front-facing
mirror placed above the head coil mirrored the screen and flicker frame to the subject lying down in the
scanner. We also included simple attention tasks to determine if the subject is alert over the course of an
experiment.

All animal work was approved by the Institutional Animal Care and Use Committee at the Georgia
Institute of Technology. For mouse studies, wild-type male 2- to 3-month-old mice were brought into the
animal holding areas and left undisturbed for at least 30 minutes. Mice were then moved to a dark
experimental room and individually placed in an empty enclosure with three opaque black sides (Fig. A-
5D). One transparent side of the cage faced LED strips. An audio stimulus was presented through a speaker
and synchronized to the onset and offset of the LEDs. The stimulus was presented for one hour or for one

hour per day for multiple days. We used multiple different stimulation conditions as controls, namely,



random, 20 Hz, and constant light. The random group received sensory stimulation with randomized light-
off intervals (duration ranging from 0-25 ms) while the total duration of the light-on phase was kept
consistent with the 40 Hz group (12.5 ms). The 20 Hz group was exposed to 20 Hz light flicker with a 50%
duty cycle. The random condition was used to assess the effects of periodic versus aperiodic stimuli and
the 20 Hz condition was used to assess stimulus frequency-dependent effects. The constant light group was
exposed to constant light for the entire duration of the session and therefore used to disambiguate the effects

of constant versus flickering stimuli.

Blinding

A key consideration in flicker experiments is how to blind experimenters when different experimental
stimuli are readily perceived during experiments. To address this, we developed a blinding system such that
the experimenter could test and start flicker without being exposed to flicker. In this system, animals were
monitored remotely using an infrared (IR) light source and a video camera with an IR-pass filter. The IR
filter blocked visible light, thus preventing the experimenter from determining the light flicker frequency,
while the IR light source provided illumination to monitor animal behavior. Animals were assigned to
stimulation groups by a non-blinded third party and each animal identifier and the corresponding flicker
group assignment were listed in a file that was read by the flicker device. To start flicker, a blinded
experimenter entered the animal’s unique identifier into the flicker device, which then loaded the correct
stimulation condition corresponding to the animal’s identifier. Prior to starting the flicker stimulation
sequence or control condition sequence, the device first played a test sequence of light and sound so that
the experimenter could confirm that the LEDs and speaker were working properly. After the test sequence,
there was a pause in stimulation during which the experimenter exited the room to the remote monitoring
computer. Flicker stimulation or the control stimulation condition then commenced while the experimenter

monitored the animal via the IR video in another room.

Electrophysiology Recording, Preprocessing, and Analyses of Neural Data



We performed neural recording and analyses as described previously (He et al., 2021; laccarino et al., 2016;
Martorell et al., 2019). In brief, for in vivo electrophysiology in mice, we made small craniotomies on the
skull of the animal under isoflurane anesthesia using the coordinates for brain regions of interest. We
recorded local field potential (LFP) and spiking activity using a 32-channel NeuroNexus probe with data
acquired at a sampling rate of 20 kHz using an Intan RHD2000 Evaluation System with a ground pellet as
reference (Fig. A-4). Additional recordings were performed with the electrode in saline above the
craniotomy while animals were exposed to flicker to detect possible electrical artifacts. Recorded neural
data were bandpass filtered from 300 to 6000 Hz for spikes to be clustered into single units using an
automatic spike sorting algorithm (MountainSort). For LFP analyses, raw data were first downsampled to
2 kHz and bandpass filtered from 1 to 300 Hz. For power spectral density analyses, we used multitaper
methods from the MATLAB Chronux toolbox and compared traces between 40 Hz and random frequency
stimulation.

For the human scalp EEG recordings, we used a 32-channel BioSemi ActiveTwo system (Amsterdam,
Netherlands) with data acquired at a sampling rate of 2,048 Hz (Fig. A-4). Signals were bandpass filtered
from 1 to 100 Hz using Hamming windowed FIR filter (EEGLAB) for power spectral density analyses. We
defined modulation of individual channels as elevated power at 40 Hz, at least 3 standard deviations above
the mean power in neighboring frequencies of 31-39 Hz and 41-49 Hz. We defined modulation of an
individual human subject as having at least three modulated channels with at least one modulated channel
in either hemisphere over the course of a recording.

Human intracranial recordings were performed in treatment-resistant epileptic patients who underwent
pre-surgical intracranial seizure monitoring to determine their seizure onset zones (Fig. A-4D). To record
LFPs, these patients were usually implanted with a dozen (number and location determined based on
clinical needs) depth electrodes, each containing up to 18 macro-contacts along their length. Some of these
electrodes contained microwires that protruded at their tips and allowed recordings from single neurons.

Typically, these patients were monitored for several days to weeks, providing a unique opportunity to



perform voluntary studies on intracranial human brain activity in between clinical care. We carried out all
experiments in the patient’s room. LFP recordings were acquired using the clinical system used by the
hospital (XLTEK EMU 128FS; Natus Medical) at a rate ranging from 1024 to 2048 or higher Hz using
subdermal contacts from an electrode array placed at the vertex (subgaleal) as ground and reference. Signals
from microwires were recorded using the Blackrock NeuroPort system (Blackrock Microsystems, UTSW),
at a rate of 30,000 samples/s, using a dedicated microwire as reference. Data were re-referenced using
Laplacian reference and bandpass filtered between 2-300Hz, with a baseline correction over the duration
of 12-second records segments. PSD was calculated over 2-100Hz, using the Chronux toolbox (Mitra and

Bokil, 2009) (http://chronux.org/), with a time-bandwidth product of 3, and number of tapers of 5.

Behavioral Assessment

Human study participants were given a survey immediately before and after a one-hour audio and visual
flicker stimulation to assess any acute symptoms such as headache, dizziness, and negative affect (Fig. A-
5, A, B, C).

To monitor the effects of sensory flicker on animal behavior during stimulation, we recorded mouse
behavior using an IR-sensitive camera (Fig. A-5D). The infrared lighting was required to avoid poor video
tracking due to interference from the flickering visible light and to avoid experimenter bias. Behavior was
analyzed via automated animal tracking (Ethovision XT v 14.0). We divided the arena into center and outer
regions and quantified activity levels in both parts (Fig. A-5E). Animal activity was quantified by
classifying periods as activity or inactivity/freezing. Inactivity was defined as having activity in 0.01% of
the total arena for longer than 0.5 s (Fig. A-5, F and G). We performed a one-way ANOVA to assess group

differences.


http://chronux.org/
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Figure A-1. BrainWAVE circuit design (A) Flicker presentation for mice in a clear enclosure with a strip
of light-emitting diodes (LEDs) and a speaker. (B) Flicker presentation for humans with LED-lined goggles
and headphones. (C) Flicker presentation for humans with an LED-frame surrounding a computer monitor
and earbuds. (D) A circuit diagram of an audio flicker circuit with an audio amplifier to allow for volume
adjustments. (E) A circuit diagram of an LED visual flicker circuit with a MOSFET to allow a 12-

volt voltage source to power the LEDs. (F) Left: An Arduino Uno microcontroller (top) and Arduino shield



(bottom). A MOSFET and wires are soldered on the Arduino shield. Middle: The Arduino shield fits on top
of the Arduino Uno and both sit in a custom 3D printed case. Right: The Arduino and BrainWAVE
Stimulator circuit shield are enclosed in a 3D-printed case. Ports in the case allow a USB Type-B cable,
an LED cable and a power cable to plug into the Arduino and shield. See Extended Data Table 1-1 for a
list of BrainWAVE stimulator parts. See Extended Data Figure 1-1 for a physical diagram of an Arduio-
Visual BrainWAVE circuit. See Extended Data Guide 1-1 for detailed instructions on how to assemble the

device.
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Figure A-2. A user-friendly BrainWAVE graphical user interface (GUI) to perform many types of
experiments. We developed a user-friendly application to run a variety of experiments involving visual
and/or auditory stimulation. Preprogramed tasks are found under the task dropdown menu and include
four different tasks. First, a classical flicker task, with exposure to 5.5 Hz (theta-like), 40 Hz (gamma-like),
80 Hz, and random non-periodic flicker at visual, audio-visual and auditory modalities. Second, a flicker
duration task, exposing subjects to a given modality and frequency of flicker for minutes at a time. Third, a
flicker frequency task, which allows exposing subjects to up to 26 different frequencies of flicker of a given
modality. Fourth, a single pulse evoked potential task, where subjects are exposed to single visual, audio-
visual and auditory 12.5ms pulses. The stimuli parameters are set in entry boxes for stimulus duty cycle
and tone (sound frequency). The comments box is used to write and save time-stamped experiment notes
during the experiment. Developed for testing in human participants, each task includes tests for comfort to
determine the optimal brightness and volume of the stimuli that are comfortable to the subject (adjusted on
the device), tests for safety to determine if the intended flicker stimuli induce adverse events, experimental
tasks, control occluded condition (where subjects wear a sleep mask and earplugs), and measures of
brightness and volume used. See Extended Data BrainWAVE Stimulator Guide for instructions on how to

set-up and run an experiment using the BrainWAVE GUI.
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Figure A-3. Measuring BrainWAVE Stimulator output signals (A) Visual and auditory stimuli generated
by signal generators are measured with a light meter and decibel meter, respectively. Connecting these

devices to an oscilloscope allows visualization and quantification of frequency and duty cycle. (B) Ideal 40



Hz visual signal with a 50% duty cycle. (C) Ideal 40 Hz audio signal (8 kHz tone) with a 50% duty cycle.
Inset, a zoomed-in view of the signal at the stimulus onset showing an 8 kHz sinusoid. (D) Ideal 40 Hz
visual (blue) and audio (orange) signals in phase, both with a 50% duty cycle. (E) Example of an ideal 40
Hz visual signal (blue) with a 50% duty cycle in phase with a 40 Hz audio signal (orange) with a 4% duty
cycle. (F) Example of a real 40 Hz visual signal (dark blue) and its light output (light blue) recorded with
an oscilloscope. (G) Example of a real 40 Hz audio signal (dark orange) and its audio output (light orange)
recorded with an oscilloscope. (H) Same as F, but of a BrainWAVE Stimulator with an inverted MOSFET,
which turns the lights off with a high-voltage signal and turns LEDs on with a low-voltage signal. (I) Same
as F, but with a BrainWAVE Stimulator that uses a light source with a slower onset time. A delay is
observed in the onset timing between the visual signal (dark blue) and measured output (light blue). See

Extended Data Table A-2 for recommended light and sound levels.
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Figure A-4. Sensory flicker entrains brain regions in humans and rodents. (A) Top, schematic of a typical
EEG recording setup. Participants with EEG caps sat in front of a computer monitor (about 2 feet away)

framed by LEDs and received auditory stimulation through earbuds. Bottom, example EEG trace recorded



from the center electrode (Cz) during flicker stimulation. (B) Left, power spectral density averaged across
all channels in an example EEG recording during baseline (top) and 40 Hz audio-visual flicker stimulation
(bottom). Right, heatmaps of mean power at 40 Hz averaged across subjects before (top) and after (bottom)
40 Hz stimulation. (C) Mean power at 40 Hz during baseline (“Baseline”’) and during 40 Hz audio-visual
Slicker stimulation (“40 Hz”), and mean power at neighboring frequencies (31-39 Hz and 41-49 Hz) during
40 Hz audio-visual stimulation (“Around 40 Hz”). Mean power at 40 Hz is significantly higher during 40
Hz stimulation than power at 40 Hz during baseline (n = 10 participants, p=0.002 two-sided Wilcoxon
signed-rank test) or power at neighboring frequencies (n = 10 participants, p=0.014 two-sided Wilcoxon
signed-rank test). Each colored line represents a single participant. (D) Example setup of a human
intracranial recording during flicker stimulation. Local field potential recordings were obtained from
treatment-resistant epileptic patients implanted with intracranial electrodes for seizure monitoring. A
computer-controlled the delivery of sensory stimuli via a custom-made BrainWAVE Stimulator circuit,
which sent its output to a set of LED-lined goggles and earbuds. (E) Example of modulation to visual flicker
recorded in lingual gyrus. Left, axial slice of pre-implant T1 MRI overlaid with post-implant CT, showing
the location of the recording depth electrode. Highlighted in red is the electrode for data on right. Example
recording trace before and during stimulation where the start of stimulation is indicated with a dashed line
(below). Right, power spectral density averaged across 15 trials of either 40 Hz visual (blue), or random
visual stimulation (green). Shaded areas represent standard error of the mean. (n = 15 trials in 1
participant, p=0.00005, paired t-test). (F) Top, schematic of in vivo electrophysiology in head-fixed mice.
Mice running on a spherical treadmill received sensory flicker stimulation through a strip of LEDs placed
above the mouse and a speaker to the right. Bottom, example trace of local field potentials in mouse
auditory cortex during 40 Hz audio-visual flicker. (G) Power spectral density comparison between 40 Hz
flicker stimulation (blue) and baseline (grey), and between 40 Hz flicker and random (green) condition.

(H) Firing rate modulation during 40 Hz audio-visual stimulation (left), baseline (middle), and random



(right) conditions in mouse hippocampus. Colors above indicate if light was on (yellow), off (black), or

varied trial-to-trial (grey).
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Figure A-5. Minimal adverse effects from flicker exposure. (A) Number of reported mild adverse events by
participants (n=22) before or after one hour of audio-visual flicker stimulation during an EEG or MRI
session. (B) Number of reported changes in mood, anxiety, energy, focus, or relaxation (n=22). (C) The
distribution of responses from participants (n=22) rating the tolerability of flicker stimulation after one
hour of flicker during an EEG or MRI session. (D) Schematic of flicker stimulation for freely moving mice
in an enclosure. (E) Overhead view of mouse enclosure with a portion of the arena indicating the center
zone which was used for analysis. (F) Percentage of time spent in the center zone during a one-hour session
of constant light (yellow), 20 Hz (red), 40 Hz (blue), and random (green) conditions (F(3,15)=0.8754,
p=0.4757, RM-ANOVA, n=5 mice). Error bars indicate the mean + SEM. (G) Total percent of time mice

were active during the one-hour session of flicker (F(3,15)=0.9306, p=0.4502, RM-ANOVA). See Movie 1

for mouse exposure to sensory flicker.
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Extended Data

Table A-1. Parts List
Components for signal generation, modulation and sensory stimulation are needed to assemble and

BrainWAVE stimulator. This table lists components that can be used and their estimated price.

Table A-2. BrainWAVE Light and Sound Levels
These volume for the illuminance of LEDs and the volume of a speaker producing flicker stimulation from
have been successfully used in prior studies to comfortably produce gamma modulation in humans and

mice.

Figure A-S1. Diagram of audio-visual BrainWAVE circuit

The audio and visual signal generators (green), an Arduino Uno, and a data acquisition device (DAQ)
supply signals to the signal modulators (purple), an audio amplifier and a MOSFET, which then control the
outputs (red) for this circuit, a speaker and LED strip lights. Eight 1.5-volt AA batteries supply power to a

strip of LEDs.

Guide A-1. BrainWAVE Stimulator Guide
This guide provides more information on how to assemble a BrainWAVE device and set-up the software
to produce the stimulation. The guide also provides information on how to measure the stimulation and

troubleshooting tips.

Extended Data A-1 BrainWAVE Stimulator Code
These files contain code to generate and play flicker sensory stimulation with an Arduino Uno or NIDAQ

BrainWAVE stimulator device.



Movie A-1. Mouse BrainWAVE exposure.

A mouse is exposed to 40Hz audio visual flicker.



FIiCKER Circuit Parts List

Table A-1. Parts List

Part Purpose Part Number Cost
Signal Generation (select one)
E.g., Arduino
Arduino Uno Generates flicker signal $21.90
CC:7630049200074
E.g., National
Data Acquisition Device Generates flicker signal $1,357.00
Instruments: USB-6212
Signal Modulation
Switches LED signal on
n-channel MOSFET E.g., Digikey IRFZ44N $1.02
and off
Supplies power to 12 V E.g., Digikey:
Eight AA Battery Holder $3.24
LED lights BH48AAW-ND
Allow adjustment of LED superbrightleds.com:
LED Dimmer $9.95
brightness LDK-8A
Allows adjustment of E.g., Amazon:
Audio Amplifier $53.99
audio volume BOOULRFQ1A
Visual Output
E.g.,
superbrightleds.com:
LED Strip Lights Delivers visual stimuli $28.95
STN-A40K80-B3A-
08B5M-12Vv
Audio Output
Speaker Delivers audio stimuli Amazon: BO0O0O7L8ATM $29.99



Circuit Components

12 VV ACDC Power Adapter

Breadboard

Jumper Wires

Supplies power to the
Arduino
Hold circuits components

and wires

Connects components

E.g., Digikey: 364-1268-

$7.96
ND
E.g., Digikey: 2183-

$2.55
4000-ND
E.g., Digikey: BKWK-

$3.90

3-ND



FIiCkER Light and Sounds Levels

Table A-2. Light and Sound Levels

FIiCKER Light Levels*
Mice — LED Strip 800 lux at side of enclosure near light source
100 lux at side of enclosure far from light source (~6 inches from

front of cage)

Human — Goggles 100-1000 lux, measured from each eye of the LED goggles with

light meter sensor directly on the goggle**

Human — LED Frame 500-800 lux, measured at participant’s head position**

FIICKER Audio***

Mice — One Speaker 60-65 dB, measured at animal’s head position

Human — Earbuds or 70-80 dB, earbuds, earbuds measured with both earbuds next to

headphones decibel meter, headphones measured with decibel meter between
headphones**

*Light measurements were made using a Traceable® Light Meter set to “fast” while lights flickering at
40 Hz.
**For human studies, levels may be adjusted to comfort of participant.

***Measured with a dBA decibel meter.



Assembly Instructions

When using LEDs of 12 V or greater as visual outputs, the output signal typically required a MOSFET
circuit to amplify the signal enough for the LEDs to reach a desired level of brightness. A FIiCKER
MOSFET circuit for visual sensory stimulation includes a breadboard, an N-channel MOSFET, wires and
a power source (see Supplementary Materials for a detailed parts list). We used either a DC power supply
or another AC/DC wall power adapter as a power source (Fig. A-S1). For experiments sensitive to

electrical noise, we recommend batteries as the voltage source for the LEDs.

The circuit can be assembled on a solderless or solderable breadboard.

Step 1. Place the MOSFET into the breadboard so that the Gate, Drain and Source pins are located in
three different columns (Fig. A-S1).

Step 2. Connect the ground wire of the battery holder to the Source pin (right) of the MOSFET.

Step 3. Connect the positive end of the battery holder to the positive LED terminal.

Step 4. Connect the negative end of the LEDs to the breadboard in the Drain pin (middle) of the
MOSFET.

Step 5. Use a wire to connect a ground pin of the Arduino to the breadboard in the Source (right) column
of the MOSFET.

Step 6. Use a wire to connect the Signal pin (Pin 12) of your Arduino to the breadboard in the same
column as the Gate (left) pin of the MOSFET.

Step 7. Plug the male USB type-B side of the cable into the Arduino. The other end of the USB cable is

connected to either a PC or wall adapter.
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Figure A-S1. Diagram of audio-visual FIiCKER circuit

The audio and visual signal generators (green), an Arduino Uno, and a data acquisition device (DAQ)
supply signals to the signal modulators (purple), an audio amplifier and a MOSFET, which then control
the outputs (red) for this circuit, a speaker and LED strip lights. Eight 1.5-volt AA batteries supply power

to a strip of LEDs.



Video A-1. Mouse FIiCKER exposure. A mouse is exposed to 40Hz audio visual flicker.



Appendix B A rapid and generalizable goal-directed spatial learning paradigm

Abstract

Rapidly learning new spatial information to achieve goals is a key animal behavior directly relevant for
everyday activities. Most electrophysiological studies measure behavior in well-learned tasks or outside a
goal-directed task without clear learning outcomes, both of which make the investigation of rapid spatial
learning difficult. To fill this need, we developed a novel goal-directed spatial learning paradigm that
enables rapid learning of novel virtual environments (within 2-3 days) in mice. The use of a virtual reality
system enables controlled presentation of visual cues and efficient switching between environments. Our
paradigm provides clear quantitative metrics to monitor behavioral performance over learning. Importantly,
mice performed our task on two different treadmills, indicating the robustness and generalizability of the
task. The methods we describe here for training mice on the paradigm and analyzing behavior are easy to
implement and may be useful to researchers studying memory formation in a variety of experimental

settings.

Introduction
Animals rapidly learn to adapt to new contexts by identifying key relevant information and applying it to
solve problems at hand. One way to study this essential ability to learn and use new information in a goal-
directed manner is to examine how animals learn locations of importance in new environments. Studying
the mechanisms of spatial learning may also help understand the mechanisms of well-documented deficits
in spatial learning in Alzheimer’s disease.

One challenge to studying spatial learning is that most electrophysiological studies use well-learned

tasks and over-trained animals to standardize behavior and reduce potential uncontrolled variables in the



experiment. The use of virtual reality in experimental settings offers both precise control of the environment
and the flexibility of switching between environments efficiently. Furthermore, most tasks are performed
in one experimental setup for consistency, which does not provide information about the robustness or
generalizability of the task. The ideal behavioral paradigms to test spatial learning would work well in
multiple experimental setups, control the environment to assess the necessity of spatial cues to task
performance, and produce sufficient numbers of trials to analyze learning-dependent changes in neural
activity over time.

To address these needs, we developed a novel goal-directed virtual reality spatial learning paradigm
that mice learn rapidly. In this task, mice first learned one familiar environment and then later learned a
novel environment of distinct cues and reward locations. This learning of the new context was achieved
rapidly (within 2-3 days) with clear and quantifiable learning-dependent changes in behavior. Importantly,
mice could perform this task on two different treadmill systems, demonstrating the robustness of the task
independent of experimental equipment. Here, we describe our behavioral training and analysis protocols
with supplementary training videos. In addition, we provide methods for determining the performance

criteria to include or exclude animals based on previous training history.

Results

Novel goal-directed spatial learning task in virtual reality

We developed a novel goal-directed virtual reality spatial navigation task in head-fixed mice (Fig. B-1A).
In this task, mice were trained to run on a treadmill while licking for sweetened condensed milk rewards in
familiar and unfamiliar environments with distinct visual cues (Fig. B-1B). Following habituation on the
linear or spherical treadmill, mice underwent 3-5 days of passive training in which mice received
automatically delivered rewards at three specific locations referred to as the reward zones (RZ) regardless
of their licking activity (Fig. B-1C). Mice then transitioned to active training in which they were required

to lick in the RZs to trigger reward delivery. To prevent nonspecific licking, mice received a 4-second



timeout if they licked more than 25-50 times outside the RZ and the anticipatory zone (AZ) that immediately
precede the RZ. The flexibility of a virtual reality setup allows rapid switching between multiple
environments and consistency of cues in the same environment across sessions. We typically trained mice
on one track only (“Track A”) for at least 10 days, or until they showed clear signs of learned behavior in
the familiar environment, before introducing them to a new environment (Fig. B-1C). To monitor position-
specific speed over training days, we recorded movement speed in terms of forward advancement in the
virtual environment per unit time (in degrees per second, or deg/s) and lick rate (in licks per second, or
licks/s). We used receiver-operating characteristics to quantify behavioral performance by determining the
likelihood of an animal being either in the AZ or in the non-reward control location (NRZ) based on animal-
specific movement speed or lick-based metrics. The NRZ was defined as the zone that appeared 30 degrees
after the RZ. The resulting receiver-operating characteristics curves were plotted against the true and false
positive rates of binary classification, where larger areas under the curves indicate better performance (Fig.

B-1D).

Rapid, position-specific learning in novel virtual environments

Mice performing in the familiar environment (Track A) slowed down approached the reward zone. This
behavior showed that animals reliably differentiated between rewarded and unrewarded areas based on
movement speed, with the average classification score close to 1 across three days (Fig. B-1D, shades of
black for days 1-3). Mice performing with accuracy >75% for at least two consecutive sessions progressed
to learning a novel environment (Track B or Track C). On the first day of exploration in the novel
environment, however, mice typically did not slow down regardless of position (Fig. B-1D, lightest shade
of green for day 1). After repeated exposure and trial and error, mice rapidly learned the novel reward
locations within the next 2-3 days over 4-6 sessions of 20-40 minutes each (Fig. B-1D, darker shades of
green for days 2-3). We quantified the areas under the receiver-operating characteristics curves based on

movement speed, latency to lick in the RZ, and lick rate. Consistent with rapid learning of new goal



locations, we found a significant increase in the areas under the curves (Fig. B-1E). Although mice were
exposed to two alternating environments (one novel and one familiar) multiple times on a single day, we
found that behavior in the familiar environment was generally consistent across three days (Fig. B-1E).
This consistency in familiar behavior indicated that the spatial memory previously developed had not been
lost or interrupted by the newly developing memory of the second environment. Thus, our task represents
a common form of adulthood learning during which new critical information is learned while maintaining
previously stored memories. This novel spatial learning task can be relatively easily integrated into multiple
existing experimental protocols and setups including optogenetics, in vivo imaging, and fiber photometry,

improving the utility of the paradigm.

Robustness and generalizability of the task across treadmill types

Most behavioral tasks are performed in a single type of experimental setup. This provides stability and
consistency of task experience but does not guarantee robustness or generalizability of the task across
experimental settings. Therefore, we sought to test whether mice could learn the same task on two different
treadmill systems. To examine generalizability of the behavioral paradigm across different setups, we
trained mice on both the linear treadmill and spherical treadmills. We found that incremental learning of
reward locations over sessions was reliably tracked on the both treadmill systems even though these systems
had key distinctions. First, on the linear treadmill (Fig. B-2A), mice were placed on a flat surface and
generally ran faster than on the spherical treadmill (Fig. B-2F). Stopping movement abruptly and
completely was more likely to occur on the linear treadmill. Mice were allowed to turn their bodies more
fully on the spherical treadmill. Our task does not require turning and therefore is comparable between
treadmill systems. In the earlier phases of learning, mice slowed down only after entering the RZs and
generally did not show a large difference in speed between the AZ and NRZ (Fig. B-2, B-C, session 1). By
session 9, mice clearly slowed down before entering the RZ, indicating they had learned to anticipate the

upcoming reward (Fig. B-2, B-C, sessions 9 and 17). The receiver-operating characteristics curves showed



larger deviation from chance-level performance in later sessions (Fig. B-2D). The magnitude of the reward
zone-specific reduction in movement speed depended on the phase of learning, such that we observed a
greater reduction in the later phases of learning (Fig. B-2E). The distance between two reward zones was
never the same, thus, similar speed changes across three different reward zones could not be due to mice
using nonspatial cues (e.g., distance-based strategy). The use of the spherical treadmill system produced
similar results. Specifically, mice moved at similar speeds irrespective of position in the earlier training
sessions and later slowed significantly in the AZs compared to the NRZs (Fig. B-2, F-J). Because we used
unique thresholds for determining behavioral differentiation based on the behavior of individual animal in
a given session, we could quantify and track learning over time, unaffected by variability across sessions
or across animals. Thus, these results show that our task produces robust and quantifiable learning over
time across multiple treadmill systems.

Next, we analyzed licking behavior as another measure of learning and tested whether licking
behavior was similar on two different treadmill systems. Because mice were trained to lick in the reward
zones to trigger a reward, a lick represents the chosen action of the mouse and determines the trial outcome
(reward or no reward). Consistent with not knowing the specific reward locations, mice did not show a
significant change in their lick rates regardless of position on the first day of training (Fig. B-3, A and B,
session 1). After learning, however, mice showed a higher lick rate as they approached the RZ (Fig. B-3B,
sessions 9 and 17). This increase in lick rate was rapidly abolished when the animal left the RZ. As with
speed data, the distributions of lick rates in the AZ and NRZ had a larger overlap in the first session than
later sessions (Fig. B-3C). Reflecting this learning-dependent change, the areas under the receiver-
operating characteristics curves also increased significantly from early to late phases of learning (Fig. B-3,
D-E).

Average lick rates varied per individual animal because some mice preferred to lick at all locations,
and lick counts depended on movement speed and occupancy at different locations Therefore, we used lick

latency as another lick-based behavioral metric of interest, measuring the time between arriving at the RZ



and the first lick after the arrival. We hypothesized that well-trained mice would show a minimal to no
latency to lick in the reward zone, indicating a higher level of confidence in locating the reward zone. In
support of this hypothesis, we found that lick latencies in the reward zone had a negatively skewed
distribution, where most trials had zero-second delay in licking. Since reward zone lick latencies do not
take into consideration lick behavior outside the reward zone, it is possible that the animal licked in a
spatially uniform manner. To eliminate that possibility, we also quantified lick latencies in the NRZs. We
found that the distributions of lick latencies in the two zones were significantly different. While
significantly different, individual variability in lick behavior resulted in large error bars in group averages
(Fig. B-3, E and J). Despite using timeout periods to reduce the likelihood of animals using a distance-
based learning strategy, some mice showed increased licking in an unrewarded area during earlier phases
of learning (Fig. B-3G). This behavior was typically observed around the area away from a previous reward
zone distanced similarly from another inter-reward distance. Mice eventually stopped unspecific licking
activity with prolonged training and successfully progressed to novel spatial learning regardless of the
treadmill system used. These data demonstrate that learning and performance in our tasks are not dependent

on a particular treadmill system, demonstrating the robustness of the behavioral paradigm.

Discussion

Studying how we use new spatial information to our advantage requires an appropriate behavioral task that
is robust and adaptable in many experimental settings. Prior studies have used tasks that require overtraining
of animals, the use of aversive cues, or tasks that have neither clearly defined spatial information to be
learned nor methods for animal-specific quantification of learning. Here, we introduce a novel goal-directed
navigational task in which mice rapidly learn specific reward locations in new environments. We showed
that incremental improvement in performance is clear and readily measurable across days. New learning
occurred without forgetting the old memories. We demonstrated the generalizability of our task by

comparing behavioral performance in two different treadmill systems and finding similar results. In



addition, we presented data-driven methods to establish laboratory-specific performance criteria for
determining “learned status” prior to novel exploration.

Our behavioral paradigm presents several advantages. First, it tests and measures learning that is
more nuanced, incremental, and of positive valence than fear conditioning. Second, the metrics of
incremental learning produce more data points than a single trial and thus are suitable for studying both
gradual and rapid learning. Third, the learning of novel environments is achieved rapidly within 2-3 days,
which is crucial for experimental setups with limited time for investigation. Importantly, this new learning
did not impair the animals’ performance in the familiar environment (Fig. B-1E). Thus, our task is well-
suited for testing hypotheses regarding long-term memory formation and maintenance. Lastly, our task is
robust and easy to implement in multiple experimental settings producing similar behavioral results. We
have successfully used this task with acute electrophysiological recordings and optogenetic manipulation.
In addition, this task can be used in several other experimental setups spanning spatial and temporal scales.
Experimenters may wish to combine our behavioral task with chronic calcium imaging, neuroimaging, fiber
photometry, or human intracranial recordings. Thus, our task may be useful for cross-scale or cross-species
investigation.

There are important limitations of our task. First, it is important to consider differences between
virtual reality and real-world environments when designing an experiment. For example, place cells
recorded in the hippocampus are found in both types of environments but there are differences in number,
field size, and firing activity. Second, some individual variability in strategy may be missed by our task or
interpreted as poor learning. For example, since mice are not required to lick or slow in the AZ, some mice
may not show anticipatory licking or slowing. Furthermore, we have mostly focused our task development
with male mice at around 3 months of age. There is some evidence for sex- and age-dependent differences
in strategy and performance in spatial tasks. Future work will investigate whether the task is uniformly

performed by both sexes of wider age ranges. Finally, while common in the field, reward-based learning



tasks require close monitoring of food and/or water consumption as task performance is sensitive to day-

to-day variations in motivation.

Given the flexibility and customizability of this novel behavioral paradigm to test rapid spatial learning and

recall, we expect this task will be useful in various experimental contexts and designs.

Materials and Methods

Animals

We used C57BL/6J adult male mice (N = 7; 25-35 g) at 10-11 weeks of age (12-14 weeks at the time of
behavioral training) in our study. All procedures involving animals were performed in accordance with the
guidelines provided by the Institutional Animal Care and Use Committee at the Georgia Institute of
Technology. Animals were housed in a reverse dark-light cycle room (07:00 light on, 19:00 light off) with

ad libitum access to food and water. We performed all behavioral training during the dark cycle.

Surgery

Mice were handled for at least three days prior to stereotaxic surgery. For head-plate implantations, mice
were deeply anesthetized with isoflurane and head-plates were affixed to the skull with dental cement
(Parkell C&B Metabond, Edgewood, NY). Animals were single-housed and monitored for at least three
days post-surgery. Mice received a subcutaneous injection of ketoprofen (0.5 mg/kg) for the first two days

and saline for the first three days post-surgery.

Handling and Habituation
For sensitive behavioral experiments, it was imperative that mice were comfortable with experimenters
prior to behavioral training. To minimize neophobia to sweetened condensed milk rewards in mice, we

introduced milk to mice in their home cages on the first day of habituation. We then placed our hand in the



cage with milk drops on the glove, taking care not to make abrupt movements. Only after a mouse started
to approach and/or lick for rewards on the hand, we carefully scooped the animal up, never lifting it up by
the tail. We watched for signs of mouse comfort on the experimenter’s hand such as calm stillness,
grooming, and/or consuming milk. We handled each mouse for ~5 minutes at a time, carefully returning it
back into the home cage to rest for 5-10 minutes before handling again. We repeated the handling for 3

days immediately before surgery, and 3 days immediately before habituation on the treadmill.

We started food restriction on mice on the first day of habituation, gradually bringing down the body weight
to 85-87% of the post-surgery and post-recovery body weight over ~5 days. For habituation on either a
Styrofoam ball or a linear treadmill (PhenoSys SpeedBelt, Berlin, Germany), mice were head-fixed and
introduced to the reward delivery needle, which was connected to either a piezoelectric sensor or a
photointerruptor system for lick detection. On the first day of head-fixation, the main goal was to make sure
the mouse does not vocalize discomfort and learn the position of the reward needle through manual reward
delivery. No visuals were shown on the screen during this period of habituation and mice typically learned
to lick and run consistently within a day or two on the ball and about 3-5 days on the belt. To encourage
voluntary movement on the treadmill, we manually delivered rewards early and often, every time we saw
an effort to move. Some mice tended to grab onto the reward dispenser during early sessions. To discourage
this behavior, we delivered a higher frequency of rewards when the mouse walked on all four paws. Linear
treadmill habituation additionally required ensuring that the body was centered and parallel to the belt, as
some animals tended to anchor themselves using the edges of the stationary platform and walk diagonally
as a result. We corrected the awkward body positioning by gently pushing the body into the right position
and delivering rewards. Once mice could walk or run consistently, we delivered rewards less frequently,
with longer time or distance traveled between rewards. It was critical for the animal to run sufficiently fast

before introducing it to the virtual environment to ensure consistent delivery of rewards and motivation for



running. Following a successful habituation period, mice were introduced to a virtual reality environment

for the first time.

Virtual Reality Apparatus

A cylindrical screen projected the virtual reality environment in front of the treadmill system. All virtual
tracks were created with the freely available Virtual Reality MATLAB Engine (Aronov and Tank, 2014b).
All annular tracks used in this study were of the same size but had distinct proximal wall cues and distal
cues. There were 36 fixed-distance wall cues (10 degrees per cue) and 3 of them, termed “reward zones,”
were associated with reward on each track. Reward zones were unevenly positioned so that inter-reward
zone distance was unique. Speed gain was set such that the overall experience of virtual environments was

similar on both treadmill systems.

Tracking of Position, Speed and Licking Behavior

Forward and sideways movement on the ball was detected by one or two optical mice placed in the front
and/or side of the ball. Movement on the belt was detected as an analog signal sent to a NIDAQ and to
MATLAB to automatically update the positional cues in virtual reality. Mice moved around the track
unidirectionally and never skipped a cue. Licks were detected with either a photointerruptor system as
previously described, or with a piezoelectric approach to convert mechanical or vibrational energy into

changes in voltage. Either detection system was similarly accurate in detecting mouse licks.

Virtual Reality Behavioral Training and Familiar Track Training

Following treadmill habituation, each mouse received one or more 20-40-minute session(s) per day, 6-7
days a week. During behavioral training, mice were exposed to only one track, “Track A.” During
recording, the same “Track A” was used as the familiar environment in comparisons between the familiar

and two distinct novel tracks (“Track B” and “Track C”).



Behavioral training was divided into two stages, called passive and active training. Mice first
entered passive training, in which visual feedback for movement was given through the virtual reality
apparatus for the first time. This initial phase only required mice to travel to the reward zones to receive
automatically delivered rewards. Over sessions, we looked for signs of anticipatory behavior, specifically
slowing down and increasing lick rate when in the zone preceding the reward zone. We defined this zone,
which was the same size as the reward zone, as the anticipatory zone to quantify learning over training
sessions. Similarly, to analyze position-specific behavior, we defined the non-reward zone as the zone
starting 30 degrees past the end of the reward zone and ending at the start of the following anticipatory
zone. We wanted this zone to begin not too close to the reward zone, where the animal could still be
consuming rewards, but also not too far away, where the behaviors might be confounded by the upcoming
anticipatory zone of a different reward zone. In the non-reward zone, we monitored for consistently high
speeds as well as low lick rates.

Once consistent discrimination between reward zones and non-reward zones was evident (typically
taking anywhere from 3-5 days), mice were moved to active training, in which reward dispense was
behavior dependent. In these sessions, animals were required to lick in the reward zones to trigger a reward
delivery. Once again, we looked for consistent discriminatory behavior between reward and non-reward
zones during sessions. To prevent generalized licking irrespective of position on training days, licking more
than 25-50 cumulative times in zones outside the anticipatory and reward zones triggered a 4-second time-
out period. While we used both 25 and 50 licks as the timeout threshold, we found the latter to be more
effective and generalizable across mice. During a time-out period, the animal was teleported to a grey box
with no reward delivery and teleported back to the original location and resumed where it had left off.
Occasionally, a mouse would miss multiple rewards in a row during these active sessions; to disrupt this
pattern of behavior, we would temporarily move the mouse back to passive training until discriminatory

behavior ensued. Once a mouse consistently demonstrated expert behavior, qualitatively defined as high



levels of lick and speed discrimination between reward zones and non-reward zones in the familiar

environment, the animal was exposed to a novel environment.

Novel Track Training

After learning the familiar track, mice were exposed to two different tracks, familiar Track A and a novel
track (either Track B or Track C), alternating between the novel and familiar environments throughout the
day for three consecutive days. We started each day with the same familiar track before the novel track.
Mice initially spent 15-20 minutes in the familiar environment, followed by a baseline period of ~10
minutes in the dark. During the baseline periods, we tracked movement around the familiar track and licking
behavior, but the projector was covered so no cues were visible to the animal. After the baseline period,
mice spent 20-30 minutes on the novel track, followed by another baseline period. This sequence was
repeated at least twice per day. On the first day of novel exposure, the lick threshold for a timeout was set
very high (over 100 licks) as not to trigger timeouts and not to discourage animals from sampling different
positions as they sought novel reward zones. By novel day 3, this threshold was brought down to the level

consistent with normal training days.

Quantification of Running and Licking Behaviors

Raw behavioral data were divided based on an animal’s position (in degrees) into either 360-degree “laps”
spanning the entire environment or 70-degree ““trials” that spanned the area 30 degrees before and after each
reward zone. Each reward zone was 10 degrees. These laps or trials were then divided into 2-degree position
bins (~3 cm on the belt). Mean speed (in degrees/s) was calculated by dividing the total distance traveled
within a position bin by the total time spent in that bin. Lick rate (in licks/s) was calculated by dividing the
number of total licks per position by the total time spent in that bin over all position bins. Lick probability

was calculated by taking the ratio of the number of licks per position bin to the total number of licks within

the lap or trial so that the numbers would sum up to 1. Speed and lick behavior for each lap or trial was



smoothed using the robust lowess method with a moving average window of 11 bins. Once learned, mice
tended to show stereotyped behavior in all three reward zones. Therefore, speed and lick behavioral data
during all trials were concatenated and averaged for each session regardless of the absolute position on the

track.

Receiver Operating Characteristic Curves Based on Speed and Licking Behavior

We used receiver operating characteristic (ROC) curves to quantify and visualize learning performance
over sessions or days. We used position-based binned speed or lick rate data in the anticipatory and non-
reward zones for binary classification between these two zones at varying discrimination threshold levels
of mean speed or lick rate. This ROC metric is useful because it uses animal-specific criteria for each
session independently as opposed to using a fixed criterion applied to all sessions. This approach is
especially useful because mice usually increase their maximum speed with training making a fixed criterion
unsuitable. The areas under the curves (AUC) range between 0.5 and 1, with 0.5 being chance-level
classification, or differentiation between curves, and 1 being perfect classification. We averaged AUC
values across animals for each environment. Because mice differed in their learning speeds and total
number of sessions received, we divided total learning sessions into three blocks as early, mid, and late
phases of learning. To quantify performance over these phases of learning across animals, we used the
average of the first and last two sessions as the early and late phases, respectively, and two sessions in the

mid-point as the mid-phase of learning.

Statistical Analyses
Analyses of behavioral performance were performed with custom scripts in MATLAB (MathWorks, MA).
Unless noted otherwise, we used the Wilcoxon signed-rank test and Bonferroni correction for multiple

comparison where appropriate.
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Figure B-1. Novel rapid virtual reality spatial learning paradigm. A. lllustration of head-fixed mouse
surrounded by a virtual reality screen (left) and close-up of the head-fixed setup. B. Top, example virtual
reality environments with distinct cues. Bottom, example timeline of track exposure. C. Experimental
timeline used in the study. D. Speed-based receiver-operating characteristic curves across three days in
the familiar (“Fam DI-3,” shades of black) or novel (“Nov DI-3,” shades of green) environments in an
example animal. E. Areas under the receiver-operating characteristic curves based on speed (left), lick

latency (middle), or lick rate (right) in familiar (black) and novel (green) environments across three days.
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Figure B-2. Generalizable movement speed-based quantification of learning across two different
treadmill systems. A. lllustration of linear treadmill setup. B. Session average speed as a function of track
position across three example sessions where darker shades of color indicate later phases of training of an
example animal. C. Distributions of speed in the AZ (blue bars) and the NRZ (white bars) in the three

sessions indicated in B. D. Receiver-operating characteristic curves for each of the three sessions indicated



in B and C. E. Average speed-based behavioral performance across all trained animals (N = 7). Early,
middle, and late stages of training indicate the first, second, and last third of sessions, respectively. F.
Illustration of spherical treadmill setup. G. Same as B, but for an example session with the spherical
treadmill system. H. Same as C, but for an example session with the spherical treadmill system. 1. Same as
D, but for an example session with the spherical treadmill system. J. Same as E, but for the spherical

treadmill system.
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Figure B-3. Generalizable lick rate-based quantification of learning across two different treadmill
systems. A. lllustration of linear treadmill setup. B. Session average lick rate as a function of track position
across three example sessions where darker shades of color indicate later phases of training of an example
animal. C. Distributions of lick rates in the AZ (pink bars) and the NRZ (white bars) in the three sessions
indicated in B. D. Receiver-operating characteristic curves for each of the three sessions indicated in B

and C. E. Average lick-based performance across all trained animals (N = 7). Early, middle, and late



stages of training indicate the first, second, and last third of sessions, respectively. F. Illlustration of
spherical treadmill setup. G. Same as B, but for an example session with the spherical treadmill system. H.
Same as C, but for an example session with the spherical treadmill system. I. Same as D, but for an example

session with the spherical treadmill system. J. Same as E, but for the spherical treadmill system.
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