FriendsQA: Open-Domain Question Answering Dataset on TV Show Transcripts Público
Yang, Zhengzhe (Spring 2019)
Abstract
This thesis presents FriendsQA, a challenging question answering dataset that contains 1,222 dialogues and 10,610 open-domain questions, to tackle machine comprehension on everyday conversations. Each dialogue, involving multiple speakers, is annotated with six types of questions {what, when, why, where, who, how} regarding the dialogue contexts, and the answers are annotated with contiguous spans in the dialogue. A series of crowdsourcing tasks are conducted to ensure good annotation quality, resulting a high inter-annotator agreement of 81.82%. A comprehensive annotation analytics is provided for a deeper understanding in this dataset. Three state-of-the-art QA systems are experimented, R-Net, QANet, and BERT, and evaluated on this dataset. BERT in particular depicts promising results, an accuracy of 74.2% for answer utterance selection and an F1-score of 64.2% for answer span selection, suggesting that the FriendsQA task is hard yet has a great potential of elevating QA research on multiparty dialogue to another level.
Table of Contents
Contents
1 Introduction 1
2 Background 6
2.1 QA Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 QA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Character Mining . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Friends QA vs. Other Dialogue QA . . . . . . . . . . . . . . . 11
3 The Corpus 12
3.1 FriendsQA Dataset . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Phase 1: Question-Answer Generation . . . . . . . . . . . . . 16
3.4 Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Phase 2: Verication and Paraphrasing . . . . . . . . . . . . . 19
3.6 Four Rounds of Annotation . . . . . . . . . . . . . . . . . . . 19
3.7 Question/Answer Pruning . . . . . . . . . . . . . . . . . . . . 21
3.8 Inter-annotator Agreement . . . . . . . . . . . . . . . . . . . . 22
3.9 Question Types vs. Answer Categories . . . . . . . . . . . . . 23
4 Approach 26
4.1 R-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 QANet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Experiments 29
5.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 Conclusion 41
Appendix 7 - Complete Results 43
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Palavra-chave | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
FriendsQA: Open-Domain Question Answering Dataset on TV Show Transcripts () | 2019-04-02 16:58:37 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|