The role of lysine specific demethylase 1 (LSD1) and the functional consequences during development Public

Scott, Alyssa (Fall 2021)

Permanent URL: https://etd.library.emory.edu/concern/etds/x633f225k?locale=fr
Published

Abstract

The importance of lysine specific demethylase 1 (LSD1) during cell fate transitions has been established as a crucial step for developmental processes. We add to the accumulating body of evidence that LSD1 is critical in erasing epigenetic memory during these cell fate transitions. In neural stem cells in mice, we have shown that LSD1 is required for survival and appropriate neurodevelopment. We also examined the role of LSD1 during the maternal-to-zygotic transition. In C. elegans, LSD1/KDM1A (lysine specific demethylase 1) acts as part of the CoREST repressor complex to enable this transition by removing H3K4me1/2 and preventing the transgenerational inheritance of transcription patterns. In mouse, the loss of maternal LSD1 results in embryonic arrest at the 1-2 cell stage, with arrested embryos similarly failing to undergo the maternal-to zygotic transition. This suggests that LSD1 maternal reprogramming is conserved. Moreover, partial loss of maternal LSD1 results in striking phenotypes weeks after fertilization, including perinatal lethality and abnormal behavior in surviving adults. To explore the mechanism underlying these heritable defects further, we developed a new maternally hypomorphic LSD1 allele that predominantly affects the binding of LSD1 to CoREST. This new hypomorphic allele phenocopies our mouse model with reduced LSD1, suggesting that the maternal reprogramming function of LSD1 is CoREST dependent. In addition, we find that the incidence of perinatal lethality in our new model is higher in a mother’s first litter, as well as with advanced maternal age (>9 months). This modulation of the phenotype by maternal age is reminiscent of the epidemiological data in autism, raising the possibility that defective maternal epigenetic reprogramming can contribute to neurodevelopmental disorders.

Table of Contents

Chapter 1: An introduction to epigenetic mechanisms and cellular reprogramming

Epigenetic modifications influence gene expression………………………………..Page 12

H3K4 methylation is an active mark…………………………………………………..Page 15

LSD1 is an amine oxidase demethylase…………………………………….……….Page 16

Figure 1: LSD1 protein domains……………………………………………………....Page 16

Binding partners affect LSD1 function………………………………………………..Page 17

Figure 2: LSD1 demethylase specificity changes depending on complex composition...……………………………………………………………………………Page 18

LSD1 decommissions enhancers in stem cell populations……………………...…Page 18

LSD1 plays a role in neural stem cell development…………………………………Page 19

The maternal to zygotic transition requires extensive epigenetic regulation……..Page 20

DNA methylation is inherited between generations and must be reprogrammed.Page 22

LSD1 is required for the maternal to zygotic transition……………………………..Page 24

Figure 3: Maternally-provided LSD1 is required for epigenetic reprogramming at fertilization……………………………………………………………………………….Page 26

A partial loss of LSD1 maternally results in defects that manifest postnatally…...Page 27

Mutations in epigenetic proteins cause human disease…………………………....Page 28

Outstanding questions………………………………………………………………….Page 29

Chapter 2: Maternally provided LSD1 prevents defects that manifest postnatally

Generation of a novel hypomorphic LSD1 allele…………………………………….Page 31

Figure 1: Generation of M448V hypomorphic allele………………………………...Page 33

Maternally hypomorphic LSD1 leads to perinatal lethality which may be modified by maternal age…………………………………………………………………………….Page 33

Figure 2: Genetic crosses to obtain mutant and control progeny………………….Page 35

Figure 3: Maternally hypomorphic LSD1 leads to higher rates of perinatal lethality…………………………………………………………………………………...Page 38

Reasons underlying perinatal lethality are unclear……………………...……….…Page 39

Figure 4: Maternal mutants do not have craniofacial defects……………………...Page 40

Figure 5: RNA sequencing analysis of blastocysts………………………………….Page 44

Lsd1M448V progeny may have imprinting defects…………………………………….Page 44

Figure 6: Maternal mutants do not display developmental delay………………….Page 45

Figure 7: Zac1 imprinting is defective in maternal mutants………………………...Page 48

Maternal mutant behavioral phenotypes are modified by genetic background…..Page 48

Figure 8: There are no detectable behavioral differences in maternal mutants in the B6 background………………………………………………………………………………Page 50

Figure 9: Maternal mutants in the CAST background display looping behavior…Page 52

Chapter 3: Materials and methods

Solutions and buffers…………………………………………………………………...Page 53

Mouse lines……………………………………………………………………………...Page 54

Mouse genotyping by PCR…………………………………………………………….Page 55

Morris water maze………………………………………………………………………Page 56

Skeletal preps…………………………………………………………………………...Page 57

Developmental delay…………………………………………………………………...Page 57

Flushing blastocysts for RNA seq……………………………………………..…...…Page 57

RNA sequencing analysis……………………………………………………………...Page 58

Chapter 4: SPR-5/LSD1 functions through CoREST to maternally reprogram histone methylation

Abstract…………………………………………………………………………………..Page 61

Introduction………………………………………………………………………………Page 61

Results…………………………………………………………………………………...Page 66

            spr-1 mutants have reduced fertility but do not exhibit germline mortality..Page 66

            met-2; spr-1 double mutants exhibit germline mortality…………………….Page 67

            The sterility of met-2;spr-1 mutants resembles spr-5;met-2 mutants……..Page 68

            Transcriptional misregulation in met-2;spr-1 progeny resembles that observed in 

spr-5;met-2 progeny but is less effected……………………………………..Page 68

MES-4 germline genes are enriched in met-2;spr-1 mutants, but less affected 

compared to spr-5;met-2 mutants…………………………………………….Page 71

LSD1 and CoREST are expressed during each stage of mouse oocyte 

development………………………………….…………………………………Page 72

Reducing the function of maternally-provided LSD1 causes perinatal 

lethality…………………………………………………………………...………Page 72

Discussion……………………………………………………………………………….Page 76

            CoREST regulated LSD1 maternal reprog of histone methylation………..Page 76

            Evidence from diverse developmental processes across multiple phyla support a 

role for CoREST in LSD1 function…………………………………………….Page 79

Potential roles for CoREST in regulating LSD1 activity…………………….Page 81

Potential implications for CoREST function in humans…………………….Page 82

Acknowledgements…..…………………………………………………………………Page 82

Materials and methods…………………………….………………………………...…Page 83

            C. elegans strains………………………………………………………………Page 83

Generation of M448V hypomorphic allele……………………………………Page 84

Mouse husbandry and genotyping……………………………………………Page 85

Perinatal lethality………………………………………………………………..Page 86

Germline mortality assay………………………………………………………Page 86

RNA sequencing and analysis……………………………………………...…Page 87

Differential interference contrast (DIC) microscopy…………………………Page 88

Figure 1: Germline mortality in spr-1 and met-2;spr-1 mutants……………………Page 89

Figure 2: Transcriptional misregulation in met-2;spr-1 progeny resembles that observed in spr-5;met-2 progeny but is less affected…………………………………………..Page 90

Figure 3: MES-4 germline genes are enriched in met-2;spr-1 mutants, but less affected compared to spr-5;met-2 mutants…………………………………………………….Page 91

Figure 4: LSD1 and CoREST are expressed during each stage of mouse oocyte development…………………………………………………………………………….Page 92

Figure 5: Hypomorphic maternal LSD1 results in perinatal lethality………….…..Page 94

Supplementary material……………………………………………………………….Page 95

            Figure S1: Germline mortality in spr-1 and met-2;spr-1 mutants replicate 

experiment………………………………………………………………………Page 95

Figure S2: Sterile spr-5;met-2 and met-2;spr-1 double mutant gonads….Page 96

Figure S3: Differential gene expression spr-1, met-2, and met-2;spr-1 progeny 

compared to wild type………………………………………………………….Page 98

Figure S4: Differential expression and replicate comparison of RNA seq 

experiments performed on wild type, spr-1, met-2, and met-2;spr-1progeny………………………………………………………………………….Page 99

Figure S5: Generation of M448V hypomorphic allele……………………..Page 100

Figure S6: Percent survival by genotype per experimental condition…...Page 101

Chapter 5: LSD1 is required for neural stem cell development in vivo in mice

Introduction……………………………………………………………………………Page 102

Materials and methods………………………………………………………………Page 104

            Mouse husbandry and genotyping………………………………………….Page 104

Histological methods…………………………………………………………Page 104

Primary motor neuron culture and transfection……………………………Page 105

Results…………………………………………………………………………………Page 106

            LSD1 is expressed in neural stem cells in vivo……………………………Page 106

            Figure 1: LSD1 is expressed in neural stem cells…………………………Page 107

            Lsd1NSC animals die postnatally with motor defects……………………….Page 107

Figure 2: Lsd1NSC animals do not survive past weaning and show stunted growth……..……………………………………………………………………Page 108

            Figure 3: Differentiation of motor neurons in Lsd1NSC animals do not appear to be 

affected…………………………………………………………………………Page 110

Motor neurons differentiated from LSD1-deficient NSCs inappropriately express 

stem cell genes……………………………………………………………….Page 110

Figure 4: Lsd1NSC-derived motor neurons inappropriately express stem cell genes.. …………………………………………………………………………Page 111

Postnatal Lsd1NSC mutants show abnormal brain morphology in vivo…..Page 112

Figure 5: Lsd1NSC animals show brain morphology defects in vivo……..Page 113

Discussion……………………………………………………………………………..Page 114

Chapter 6: A discussion on LSD1 and its role during developmental processes

Major findings…………………………………………………………………………Page 116

Future experiments…………………………………………………………………..Page 116

Figure 1: Schematic of GFP imprinting reporter mice……………………………Page 121

Implications in humans………………………………..…………………………….Page 122

A model for maternal LSD1 and maternal age……………………………………Page 124

Figure 2: A model for the relationship between LSD1 and maternal age………Page 125

References……………………………………………………………………………Page 126

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Subfield / Discipline
Degree
Submission
Language
  • English
Research Field
Mot-clé
Committee Chair / Thesis Advisor
Committee Members
Dernière modification

Primary PDF

Supplemental Files