Defining the RNA signatures detected by the innate immune sensor 2’-5’-oligoadenylate synthetase 1 (OAS1) Pubblico

Schwartz, Samantha (Spring 2021)

Permanent URL: https://etd.library.emory.edu/concern/etds/x633f2142?locale=it
Published

Abstract

The innate immune system is a broad set of critical intracellular and extracellular processes that limit pathogen infectivity. To provide its essential first line of defenses, the innate immune system must identify and respond to foreign molecules. The 2’-5’-oligoadenylate synthetase (OAS) family of enzymes are important innate immune sensors of cytosolic double-stranded RNA (dsRNA), a potent signal and hallmark of viral infection. Defective or misregulated innate immune activity can cause increased persistence of and susceptibility to viral infection and human diseases, such as interferonopathies. My dissertation research investigates how specific molecular signatures within dsRNA molecules regulate OAS1 activity.

Structural studies previously revealed that dsRNA binding induces allosteric changes in OAS1 that reorganize its catalytic site and drive synthesis of 2’-5’-oligoadenylates from ATP. However, we still understand relatively little about how specific features of the dsRNA contribute to the level of OAS1 activation. I used a “simple” 18 bp dsRNA containing two copies of a previously identified OAS1 activation consensus sequence (WWN9WG, where W is A or U, and N is any nucleotide) to identify and assess the contributions of specific dsRNA features required for potent OAS1 activation. Biochemical studies coupled with cell-based assays and computational modeling reveal that the 18 bp dsRNA contains two competing OAS1 binding sites with remarkably different capacities to activate the protein in a context-dependent manner. The dsRNA binding register was dictated by the position of the consensus sequence(s) and only when optimally positioned was potency of other RNA activating motifs observed. A new role was also identified for the non-conserved (N9) nucleotides of the activation consensus in defining the dsRNA shape and flexibility important for OAS1 binding and recognition. The results indicate that OAS1 is unexpectedly sensitive to sequence, but also that the relative placement and organization of activating motifs is as critical as the sequences themselves. These studies define the molecular mechanism(s) that control OAS1 regulation by dsRNA and may reveal insight into viral evasion of the OAS1/RNase L pathway or avenues to new effective therapeutic strategies.

Table of Contents

Chapter 1: Introduction ...................................................................................................1

Innate immunity............................................................................................................2

Viral nucleic acid sensing.............................................................................................2

Viral evasion strategies for the OAS/RNase L pathway...............................................7

Roles for the OAS/RNase L pathway in normal cell function.......................................9

OAS1 consensus sequences and activating motifs...................................................10

Research goals..........................................................................................................14

References.................................................................................................................18

Chapter 2: RNA regulation of the antiviral protein 2’-5’-oligoadenylate synthetase ......................................................................................................................26

Abstract ......................................................................................................................27

Introduction ................................................................................................................28

Sidebar: The innate immune system ...................................................................29

Sidebar: Alternative splicing expands human OAS protein diversity ...................32

Molecular basis of OAS1-3 regulation by dsRNA ......................................................33

OAS1 regulation by short dsRNAs.......................................................................33

Basis of long dsRNA sensing by OAS3 ...............................................................37

OAS2 is activated by dsRNA of intermediate length............................................38

Role of RNA sequence and structure in OAS activation............................................39

RNA sequence specificity in OAS activation........................................................40

OAS1 “consensus” sequences.......................................................................40

Sequence and structural motifs: 3’-ssPy motif and nc886 RNA.....................41

Coding and non-coding viral RNAs containing dsRNA regions ...........................46

Conclusions ...............................................................................................................48

Acknowledgments ......................................................................................................51

Funding ......................................................................................................................52

References.................................................................................................................52

Chapter 3: Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs..........................................................................60

Abstract ......................................................................................................................61

Introduction ................................................................................................................62

Materials and Methods...............................................................................................65

OAS1 protein expression and purification............................................................65

Generating 18 bp dsRNA duplexes .....................................................................65

Chromogenic assay of OAS1 activity...................................................................66

OAS1/RNase L activation in A549 cells...............................................................67

OAS1-dsRNA 4-thiouridine (4-thioU) crosslinking ...............................................67

Results .......................................................................................................................68

The 3’-ssPy motif enhances OAS1 activation only when appended to the top strand of the 18 bp dsRNA................................................................................68

Short dsRNAs activate the OAS1/RNase L pathway in human A549 cells mirroring their capacity to activate OAS1 in vitro ..............................................71

The 3’-ssPy placement can alter apparent dsRNA affinity and maximal OAS1 activation ...........................................................................................................73

Altering the distance between the 3’-ssPy motif and the consensus sequence impacts its ability to enhance OAS1 activation .................................................73

OAS1 activation consensus sequence nucleotide identities (WW/WG) and their placement within a dsRNA are important for OAS1 activation..........................77

Discussion..................................................................................................................79

Acknowledgments ......................................................................................................85

Funding ......................................................................................................................85

References.................................................................................................................85

Chapter 4: Basis for sequence-dependent activation of the innate immune dsRNA sensor oligoadenylate synthetase 1 ............................................................................91

Abstract ......................................................................................................................92

Introduction ................................................................................................................93

Materials and Methods...............................................................................................96

OAS1 protein expression and purification............................................................96

Generating 18 bp dsRNA duplexes .....................................................................96

Chromogenic assay of OAS1 activity...................................................................97

OAS1/RNase L activation in A549 cells...............................................................97

Immunoblotting ....................................................................................................98

RNA UV melting analysis.....................................................................................99

Thermal difference spectra (TDS)........................................................................99

dsRNA molecular dynamics (MD) simulations...................................................100

Results .....................................................................................................................101

A-to-I “editing” does not prevent OAS1 activation..............................................101

OAS1 activation is enhanced by inosine and mismatches in the center of short dsRNAs ..............................................................................................................104

Stabilization with G-C substitutions can also enhance OAS1 activation by short dsRNAs ..............................................................................................................106

Differences in dsRNA structure correlate with their capacity to activate OAS1 .108

MD simulation reveals a role for helical dynamics in OAS1 activation ..............112

Specific base pair changes pre-dispose helical parameters to favor the short dsRNA adopting an OAS1-bound-like conformation..........................................116

Additive effects of distinct helical features on OAS1 activation .........................117

Short dsRNA-mediated OAS1/RNase L activation in human cells mirrors their activity in vitro ....................................................................................................118

Discussion................................................................................................................120

Acknowledgments ....................................................................................................123

Funding ....................................................................................................................123

References...............................................................................................................123

Chapter 5: OAS1 activation is determined by competing activating and non- activating binding sites in double-stranded RNA.....................................................135

Introduction ..............................................................................................................136

Materials and Methods.............................................................................................138

OAS1 protein expression and purification..........................................................138

Generating 18 bp dsRNA duplexes ...................................................................138

Chromogenic assay of OAS1 activity.................................................................139

OAS1/RNase L activation in A549 cells.............................................................140

OAS1-dsRNA 4-thiouridine (4-thioU) crosslinking .............................................140

Results .....................................................................................................................141

Mutation of the conserved guanine nucleotide (WWN9WG) reveals that two activating consensus sequences within the same dsRNA are not equivalent 141

OAS/RNase L pathway activation in human A549 cells mirrors OAS1 activity in vitro .................................................................................................................145

Consensus 1, but not Consensus 2, requires both the guanine and Watson-Crick base pairing for potent OAS1 activation .........................................................146

Consensus sequence changes impact both dsRNA affinity (Kapp) and maximal OAS1 activation (Vmax) ....................................................................................149

Discussion................................................................................................................149

References...............................................................................................................153

Chapter 6: Discussion.................................................................................................155

Define the molecular mechanism(s) of action for enhancement of OAS1 activation by RNA sequence and structural motifs ....................................................................159

Expand the model dsRNA to test the action of the OAS1 activation consensus sequence and other activating motifs in the context of longer or more structured RNA ......................................................................................................................161

Identify the impact (if any) these OAS1 activation sequences have on other OAS family members, OAS2 and OAS3 .......................................................................161

Pathway crosstalk and the additional role RNAs could play in regulating multiple arms of the innate immune system.......................................................................162

Determine the molecular basis of dsRNA-independent OAS1 activation conferred by clinical mutations with gain-of-function phenotypes..............................................163

Develop novel OAS1 inhibitors (and activators) for therapeutic implementation.....164

Final remarks ...........................................................................................................167

References...............................................................................................................167

TABLE OF FIGURES

Chapter 1

Figure 1. Overview of the innate immune system: cytosolic dsRNA receptors...........4

Figure 2. A-to-I editing by ADAR1 is proposed to reduce self-activation of innate

immune response pathways .....................................................................................6

Figure 3. Viral evasion strategies to circumvent the OAS/RNase L pathway .............8

Figure 4. dsRNA binding induces conformational changes required for 2-5A synthesis by OAS1 .................................................................................................11

Figure 5. Overview of research objectives................................................................15

Chapter 2

Graphical/Visual Abstract and Caption .................................................................28

Figure 1. Overview of the OAS/RNase L pathway ....................................................30

Figure 2. Conformational changes induced by dsRNA binding promote synthesis of 2-5A by OAS1.........................................................................................................34

Figure 3. Double-stranded and structured RNA activators of OAS...........................42

Figure 4. Model for enhancement of OAS1 activation by RNA sequence and structural motifs ......................................................................................................45

Figure 5. Summary of OAS protein activation by RNA .............................................50

Chapter 3

Figure 1. The OAS1/RNase L pathway and 18 bp dsRNA design............................63

Figure 2. The 3’-ssPy motif impacts OAS1 activity only when appended to the top strand ......................................................................................................................70

Figure 3. OAS/RNase L pathway activation in A549 cells by the short dsRNAs correlates with their ability to activate OAS1 in vitro...............................................72

Figure 4. The 3’-ssPy motif differentially alters the kinetics of OAS1 activation when appended to the top or bottom strand.....................................................................74

Figure 5. The relative context of the 3’-ssPy motif and consensus sequence is important for OAS1 activation.................................................................................76

Figure 6. The OAS1 activation consensus sequence (WWN9WG) and its placement within dsRNA are also important for OAS1 activation ............................................78

Figure 7. Models of OAS1 interactions with 18 bp dsRNA variants and the 3’-ssPy motif ........................................................................................................................82

Chapter 4

Figure 1. IU base pairs do not diminish OAS1 activation by a short dsRNA.........102

Figure 2. OAS1 activation is potentiated by inosine substitutions and mutations that introduce non-canonical Watson Crick base pairing................................................105

Figure 3. Homopolymer sequence strongly influences OAS1 activation ................107

Figure 4. dsRNA helix stabilizing G-C base pairs enhance OAS1 activation..........108

Figure 5. Thermal difference spectra (TDS) identify structural changes in dsRNA that correlate with increased OAS1 activation ................................................................110

Figure 6. Increased dsRNA dynamics and specific helical features underpin enhanced OAS1 activation by short dsRNAs ..........................................................114

Figure 7. Sequence changes resulting of enhancement of OAS1 distinct via distinct molecular mechanisms have additive activity ..........................................................118

Figure 8. Activation of the OAS1/RNase L pathway by WWN9WG dsRNA variants mirrors their capacity to activate OAS1 in vitro ........................................................120

Figure S1. Native gel analysis showing purity of ssRNAs and stable formation of each dsRNA.............................................................................................................128

Figure S2. Workflow for determining thermal difference spectra (TDS)..................129

Figure S3. The poly(rG:rC) homopolymer is a poor activator even at high

concentrations..........................................................................................................129

Figure S4. MD analysis of benchmark sequence and dsRNA RMSD.....................130

Figure S5. Mismatch base pairings (I•U and A•C) cause major alterations helical structure ...................................................................................................................131

Figure S6. Analysis of helical and base pair/ base step parameters for GC2 and GC3 dsRNAs ...........................................................................................................132

Figure S7. Analysis of helical and base pair/ base step parameters for AC1-GC2 dsRNA......................................................................................................................133

Chapter 5

Figure 1. A short 18 bp dsRNA can contain two OAS1 activation consensus

sequences (WWN9WG) with vastly different capacities to activate OAS1............142

Figure 2. CS1-AC (non-activator) and CS2-AC (hyper-activator) form stable OAS1- dsRNA complexes ................................................................................................144

Figure 3. OAS/RNase L pathway activation in A549 cells mirrors OAS1 activity by the short dsRNAs in vitro ......................................................................................145

Figure 4. Consensus 1 requires both the conserved guanine and Watson-Crick base pairing for potent OAS1 activation ........................................................................147

Figure 5. OAS1 activation does not require the conserved guanine in Consensus 2, and in specific contexts, altering the base content in this location significantly improves OAS1 activity.........................................................................................148

Figure 6. Changes in the two OAS1 activation consensus sequences dramatically alter apparent dsRNA affinity and maximal OAS1 activation................................150

Chapter 6

Figure 1. Overview of main research findings.........................................................159

Figure 2. dsRNA-independent OAS1 gain-of-function activity is favored by allosteric loss of structural constraints .................................................................................165

LIST OF TABLES

Chapter 3

Table 1. Summary of OAS1 activation by short dsRNAs in vitro and A549 cells ......90

Chapter 4

Table 1. Summary of short dsRNA stability and OAS1 activation...........................127

Table S1. Summary of dsRNA UV melting analysis................................................134

Chapter 5

Table 1. Summary of OAS1-dsRNA kinetic parameters..........................................154 

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Parola chiave
Committee Chair / Thesis Advisor
Committee Members
Ultima modifica

Primary PDF

Supplemental Files