Design and Development of Novel Bis(amidophenyl)amine Redox-active Ligands to Promote Novel Reactivity at First-row Transition Metal Centers Restricted; Files & ToC

Villanueva, Omar (2015)

Permanent URL:


To address the Nation's environmental and energy challenges, chemical catalysis research has shifted its focus to discover new methodologies that can produce alternative fuels and reduce the use of harmful pollutants. At the center of this grand challenge lies the need to discover sustainable transition metal catalysts that utilize environmentally benign reagents for the activation of strong bonds. Developing such systems will bring upon significant technological advances. In Chapter 1, the significance of using earthabundant first-row transition metal ions in catalysis is highlighted and the role of redoxactive ligands in promoting this reactivity is discussed. In chapter 2, the development of coordinatively versatile bis(amidophenyl)amine redox-active ligands as novel motifs to control catalyst structure and reactivity is described. Chapter 3 discloses fundamental spectroscopic, mechanistic, and structural investigations on the reactivity of cobalt(II) complexes of bis(amidophenyl)amine ligands with dioxygen to carry out aerobic oxidation reactions. Given the multi-electron reactivity observed with dioxygen, cobalt(II) complexes were investigated as catalysts for C-H amination catalysis. This dissertation concludes with chapter 4, which deliberates the selective catalytic C-Hamination of aryl azides facilitated by a robust and versatile cobalt(II) catalyst to form medicinally relevant heterocycles. The results presented herein constitute a significant advance in sustainable catalysis technology.

Table of Contents

This table of contents is under embargo until 24 May 2021

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
  • English
Research field
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files