Abstract
A significant amount is known regarding the molecular mechanisms
underlying the processing of emotional stimuli in the central
nervous system; however, fewer studies have investigated the
mechanisms accompanying emotional learning at the level of specific
sensory modalities. This dissertation utilizes the olfactory
system, whose primary sensory receptive field maps are exquisitely
organized, respond dynamically to cues in the environment, and
remain plastic from development through adulthood, to understand
the mechanisms underlying fear learning and memory at the primary
sensory system level. Using a transgenic mouse in which olfactory
sensory neurons (OSNs) expressing the M71 odorant receptor (OR) may
be visualized by LacZ histochemistry (M71-LacZ mouse line), we have
previously demonstrated that olfactory fear conditioning leads to
increased odorant-specific receptor representation in the main
olfactory epithelium (MOE) and in glomeruli within the olfactory
bulb (OB). This dissertation reports on the effects of cue-specific
extinction, as well as on the mechanisms underlying the behavioral
and structural plasticity of the olfactory system in mice following
the acquisition of cued olfactory fear. We first demonstrate that
olfactory extinction training specific to the conditioned odor
stimulus reverses the conditioning-associated freezing behavior and
odor learning-induced structural changes in the olfactory
epithelium and olfactory bulb in an odorant ligand-specific manner.
These data suggest that learning-induced freezing behavior,
structural alterations, enhanced neural sensory representation, and
histone modifications at the M71 locus can be reversed in adult
mice following extinction training. Second, we used
5-Ethynyl-2'-deoxyuridine (EdU) labeling of MOE OSNs to understand
the dynamics of OSN cell turnover as a function of fear learning.
Finally, using intranasal or intraperitoneal (I.P.) administration
of Tropomysin receptor kinase B (TrkB) agonists and antagonists
prior to olfactory fear conditioning, we demonstrate a role for
brain-derived neurotrophic factor (BDNF) signaling through its
receptor, TrkB in mediating the structural plasticity accompanying
olfactory fear learning. The studies contained in this dissertation
provide novel evidence of the mechanisms underlying the behavioral
and structural plasticity of the olfactory system in mice following
the acquisition and extinction of cued olfactory fear, and
contribute to a growing body of literature suggesting a critical
role for primary sensory systems, particularly the olfactory
system, in emotional learning and memory.
Table of Contents
Table of Contents CHAPTER 1:
INTRODUCTION..........................................................................................
1 Preamble
................................................................................................................................................1
Context, Author's Contribution, and Acknowledgement of
Reproduction.................................1
Introduction...........................................................................................................................................2
PTSD as a disorder of fear dysregulation
........................................................................................3
Factors and stages underlying the development of
PTSD.............................................................6
How we model fear responses in animals: classical Pavlovian fear
conditioning ....................9 The fear response is a hardwired
process involving the amygdala
........................................... 11 Odors can be potent
and long lasting emotional and trauma memory
cues............................ 14 The value of the olfactory
system as a model to study learning and plasticity
........................ 16 Anatomy and circuitry of the olfactory
system
.............................................................................
18 Olfactory signal transduction and upstream stages of olfactory
processing: From the main olfactory epithelium to the olfactory
bulb..............................................................................................18
Downstream olfactory processing: From the olfactory bulb to higher
brain regions..............20 Adult neurogenesis in the olfactory
system...........................................................................................21
Associative plasticity in the rodent olfactory system
....................................................................
22 Olfactory plasticity across
development.................................................................................................22
Olfactory plasticity in
adulthood...............................................................................................................24
Transgenerational and in utero olfactory plasticity
............................................................................
27 Overview of Dissertation
Goals:......................................................................................................
30 CHAPTER 2: EXTINCTION REVERSES OLFACTORY FEAR CONDITIONED
INCREASES IN NEURON NUMBER AND GLOMERULAR SIZE
........................ 39 Context, Author's Contribution, and
Acknowledgement of Reproduction.............................. 39
Abstract
...............................................................................................................................................
39 Significance Statement
.....................................................................................................................
40
Introduction........................................................................................................................................
40 Methods
...............................................................................................................................................
42 Animals
..............................................................................................................................................................
42 Olfactory fear conditioning, extinction and
testing.............................................................................43
Freezing behavior data
analysis.................................................................................................................46
Beta-galactosidase staining of the MOE OSNs and OB glomeruli
............................................... 46 Quantitation of
M71-positive OSNs in the MOE
................................................................................
46 Measurement of glomerular area in the olfactory
bulb......................................................................47
Native Chromatin Immunoprecipitation (N-ChIP) on the
MOE....................................................48
Statistics.............................................................................................................................................................
48 Results
.................................................................................................................................................
49 Behavioral responses following olfactory fear acquisition and
extinction ................................. 49 Cue-specific
olfactory extinction 3 weeks following acquisition reverses
M71-specific neuroanatomical
enhancements.................................................................................................................50
Cue-specific olfactory extinction immediately following acquisition
blocks M71-specific neuroanatomical
enhancements.................................................................................................................52
Olfactory fear acquisition and extinction are accompanied by a
dynamic regulation of histone marks around the M71 locus
.......................................................................................................
53
Discussion...........................................................................................................................................
54 CHAPTER 3: REGULATION OF CELL SURVIVAL IN THE STRUCTURAL
PLASTICITY ACCOMPANYING OLFACTORY FEAR CONDITIONING.........80
Context, Author's Contribution, and Acknowledgement of
Reproduction.............................. 80
Introduction........................................................................................................................................
80 Methods
...............................................................................................................................................
83 Animals
..............................................................................................................................................................
83 Olfactory fear conditioning, extinction and
testing.............................................................................84
Freezing behavior data
analysis.................................................................................................................84
Zinc Sulfate administration and experimental
timelines...................................................................85
EdU administration and experimental
timelines..................................................................................88
Perfusion............................................................................................................................................................
89 Beta-galactosidase staining of the MOE OSNs and OB glomeruli
............................................... 90 Quantitation of
whole mount M71-positive X-gal-labeled OSNs in the MOE
......................... 90 RNAscope investigation of the
MOE......................................................................................................91
GFP, EdU, TUNEL and Caspase-3 immunohistochemical staining of the
MOE ....................91 Quantitation of M71-positive and
EdU-positive OSNs in the
MOE.............................................92 Measurement of
glomerular area in the olfactory
bulb......................................................................92
Statistics.............................................................................................................................................................
93 Results
.................................................................................................................................................
93 RNAscope in the mouse MOE.
.................................................................................................................
93 Experiment 3.1: Time course of epithelial recovery following
zinc sulfate (ZnSO4) induced ablation of the
MOE......................................................................................................................................94
Experiment 3.2: Investigation of the OB glomeruli 2 days following
zinc sulfate (ZnSO4) induced ablation of the MOE.
....................................................................................................................
94 Experiment 3.3: Olfactory fear conditioning 3 days post- zinc
sulfate (ZnSO4) induced ablation of the
MOE......................................................................................................................................95
Experiment 3.4: Olfactory fear conditioning followed 1 week later
by zinc sulfate (ZnSO4) induced ablation of the MOE.
....................................................................................................................
96 EdU and TUNEL labeling of the mouse
MOE.....................................................................................96
Experiment 3.5: Baseline labeling of M71-expressing OSNs using
EdU...................................97 Experiment 3.6: Examining
the proliferation of M71-expressing OSNs following olfactory fear
conditioning.............................................................................................................................................98
Experiment 3.7: Examining the survival of M71-expressing OSNs
following olfactory fear conditioning.
....................................................................................................................................................
99
Discussion.........................................................................................................................................101
CHAPTER 4: BDNF-TRKB SIGNALING IN OLFACTORY FEAR LEARNING AND
MEMORY
...................................................................................................................
126 Context, Author's Contribution, and Acknowledgement of
Reproduction............................126
Introduction......................................................................................................................................126
Brain-derived neurotrophic factor (BDNF) signaling mechanisms in
PTSD and fear learning
...........................................................................................................................................................................
127 BDNF-TrkB signaling in the olfactory
system..................................................................................
129 Methods
.............................................................................................................................................130
Animals...........................................................................................................................................................
130 Drug administration
....................................................................................................................................
131 Olfactory fear conditioning and testing
...............................................................................................
131 Freezing behavior data
analysis..............................................................................................................
135 Beta-galactosidase staining of the MOE OSNs and OB glomeruli
............................................ 135 Quantitation of
M71-positive OSNs in the MOE
.............................................................................
135 Measurement of glomerular area in the olfactory
bulb...................................................................
136
Statistics..........................................................................................................................................................
136 Results
...............................................................................................................................................137
Experiment 4.1: Both I.P. and intranasal administration of the TrkB
agonist 7,8-DHF prior to olfactory fear conditioning lead to
increases in M71
structure............................................... 137
Experiment 4.2: Intranasal administration of the TrkB agonist
7,8-DHF prior to olfactory fear conditioning leads to increases in
M71 structure, but no differences in freezing behavior, compared to
vehicle-administered controls.
...................................................................
138 Experiment 4.3: Intranasal administration of the broad spectrum
TrkB antagonist K252a prior to olfactory fear conditioning leads to
decreases in M71 structure, but no differences in freezing
behavior, compared to vehicle-administered controls.
.................................................. 139 Experiment
4.4: I.P. administration of the TrkB antagonist ANA-12 prior to
olfactory fear conditioning leads to decreases in M71 structure
compared to vehicle-administered controls.
...........................................................................................................................................................................
140 Experiment 4.5: Intranasal administration of the TrkB
antagonist ANA-12 prior to olfactory fear conditioning leads to
decreases in M71 structure, but no differences in freezing
behavior, compared to vehicle administered
controls.....................................................................
141
Discussion.........................................................................................................................................142
CHAPTER 5:
DISCUSSION.............................................................................................
161 Summary of results
.........................................................................................................................161
Integration of
findings....................................................................................................................164
Implications and future directions
...............................................................................................167
Associative plasticity in the human olfactory sensory system
..................................................... 168 Olfactory
cues potent and salient trauma reminders and triggers in
individuals with posttraumatic stress disorder (PTSD)
...................................................................................................
170 Clinical relevance of the olfactory system and its potential
for inclusion in therapeutic treatment
.........................................................................................................................................................
173 Conclusion
........................................................................................................................................175
REFERENCES
.....................................................................................................................
176
About this Dissertation
Rights statement
- Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School |
|
Department |
|
Subfield / Discipline |
|
Degree |
|
Submission |
|
Language |
|
Research Field |
|
Parola chiave |
|
Committee Chair / Thesis Advisor |
|
Committee Members |
|