Identifying Orbitofrontal Cortical Neuron Populations Involved in Goal Seeking and Compulsive like Behaviors Restricted; Files Only

Yount, Sophie (Fall 2024)

Permanent URL: https://etd.library.emory.edu/concern/etds/v405sb83m?locale=en
Published

Abstract

The orbitofrontal cortex (OFC) is thought to catalog information necessary to develop strategies to obtain desired outcomes. As such, OFC activity is essential for flexible decision making, i.e., making a choice based on changes in outcome expectation. This behavioral flexibility is antithetical to habitual behavior, which is instead reflexively triggered by cues and not outcome predictability. Habitual behavior is adaptive under many circumstances, but it can also be antecedent to compulsions – intrusive thoughts that drive persistent and potentially maladaptive behavior. Activation of neurons within the OFC can cause habitual and compulsive-like behavior in otherwise healthy rodents and is associated with obsessive-compulsive behavior in humans. How can the OFC support such antithetical behaviors? This dissertation begins by describing molecular mediators within the OFC that influence reward-related behaviors. I then identify a molecularly defined OFC neuron population that controls compulsive- but not habit-like behavior. Using mice bred to display habit-based action strategies and compulsive-like grooming behavior as a tool, I discovered that they also suffered dendritic spine attrition on excitatory neurons in the OFC. Nevertheless, synaptic melanocortin 4 receptor (MC4R) content was preserved, leading to the hypothesis that MC4R-mediated signaling or Mc4r+ neurons may drive habit-like and/or compulsive-like behavior in these mice. Intriguingly, repeated chemogenetic stimulation of Mc4r+ OFC neurons triggered compulsive- and not habit-like behavior. Thus, I identify an OFC neuron population that has dissociable control of compulsive-like and habit-based behaviors. Next, I investigate a neuron population within the OFC that instead contributes to behavioral flexibility. I find that memory traces (MTs) of flexible action strategies are stored within OFC neuron ensembles. MT ensemble activity is both necessary and sufficient for behavioral flexibility. Moreover, MT neurons are distinguished by increased proportions of mature dendritic spines relative to neighboring non-MT neurons, and these patterns are associated with new learning. Activity of basolateral amygdala (BLA) neurons upon learning new information about response-outcome relationships is necessary for optimal memory encoding within the OFC and later expression of updated action strategies. I further find that BLA–MT neuron coordination supporting flexible behavior is tropomyosin receptor B (TrkB) dependent. Overall, this dissertation elucidates mechanisms driving compulsive-like and decision-making behavior, offering potential treatment targets for alleviating aberrant decision making and harmful compulsions. 

Table of Contents

CHAPTER 1: CONTRIBUTIONS OF THE ORBITOFRONTAL CORTEX TO ACTION STRATEGIES AND MOLECULAR INFLUENCERS                                                                                                                                         1

1.1            CONTEXT, AUTHOR’S CONTRIBUTION                                                                                                                      2

1.2            ABSTRACT                                                                                                                       2

1.3            INTRODUCTION                                                                                                                       2

1.3.1       Defining action strategy                                                                                                                 3

1.3.2       Role of the frontal cortex (FC) in memory                                                                                                                 4

1.3.3       Role of the Orbitofrontal cortex (OFC) in action strategy                                                                                          5

1.4            HOW RODENTS CAN BE USED TO STUDY ACTION STRATEGY                                                                             5

1.4.1       Common assays for understanding OFC function                                                                                                        6

1.5            MOLECULAR MECHANISMS CONTROLLING OFC FUCTION                         11

1.5.1       Endocannabinoid signaling                                                                                      11

1.5.2       Neurotrophin signaling                                                                                            14

1.5.3       Control of decision-making behavior by BDNF in the OFC                                   17

1.5.4       Cell adhesion molecules                                                                                           18                                                                                                                  

1.5.5       Conclusions                                                                                                             21                                                                                                                  

1.6       FRAMEWORK AND OVERVIEW OF THE DISSERTATION                               21

CHAPTER 2: A MOLECULARLY DEFINED ORBITOFRONTAL CORTICAL NEURON POPULATION CONTROLS COMPULSIVE- BUT NOT HABIT-LIKE BEHAVIOR                                                                                                                                  29

     2.1       CONTEXT, AUTHOR’S CONTRIBUTION, AND ACKNOWLEDGEMENT OF

                 REPRODUCTION      30

     2.2       ABSTRACT      30

     2.3       INTRODUCTION      31

     2.4       RESULTS      33

           2.4.1    Breeding mice for inflexibility results in habitual and compulsive-like behavior        33 

           2.4.2    Experimental breeding alters OFC neurobiology      37

           2.4.3    Preservation of MC4R systems in mice displaying compulsive-like behavior              38

           2.4.4   Control of compulsive-like behavior by molecularly defined OFC neurons                39

     2.5       DISCUSSION      42

           2.5.1    Mice experimentally bred for action inflexibility exhibit compulsive-like behavior   42

           2.5.2    OFC neurobiology associates with compulsive-like behavior                                     43

           2.5.3    Conclusions      47

     2.6       MATERIALS AND METHODS      48

           2.6.1    Subjects      48

           2.6.2    Intracranial surgery and viral vectors      48

           2.6.3    Instrumental response training      49

           2.6.4    Test of action strategies      50

           2.6.5    Breeding strategy of experimentally bred mice      50

           2.6.6    Validation of the experimentally bred phenotype      51

           2.6.7    Random interval training and reinforcer devaluation      51

           2.6.8    Instrumental omission      52

           2.6.9    Extinction      53

           2.6.10  Food intake      53

           2.6.11  Behavioral testing battery      53

           2.6.12  Stimulated grooming assay      54

           2.6.13  Drug administration      55

           2.6.14  Dendritic spine imaging and reconstruction      56

           2.6.15  In situ RNA analysis      56

           2.6.16  Viral vector validation, c-Fos immunostaining, and quantification        57

           2.6.17  Synaptoneurosome preparation and immunoblotting      58

           2.6.17  Statistical analysis                                         60

     2.7       FUNDING                                                  61

     2.8       ACKNOWLEDGEMENTS                                             61

 

CHAPTER 3: PARALLEL NEURONAL STRUCTURAL PLASTICITY WITH MEMORY TRACE FORMATION IN THE ORBITOFRONTAL CORTEX           74

     3.1      CONTEXT, AUTHOR’S CONTRIBUTION                                    75

     3.2       ABSTRACT                                                      75

     3.3       INTRODUCTION                                                   76

     3.4       RESULTS                                                        77

           3.4.1    Bidirectional control of action strategies                                    80

           3.4.2    New learning triggers dendritic spine plasticity on MT neurons                          81

           3.4.3    Amygdalo-cortical interactions coordinate action strategy                          83

           3.4.4    Neurotrophin-related signaling within amygdalo-cortical circuits supports new    learning           85

     3.5       DISCUSSION                                    86

           3.5.1    Long term memory storage within the OFC                                    86

           3.5.2    Amygdala-orbital interactions in action flexibility                               89

           3.5.3    Conclusions                                    91

     3.6       MATERIALS AND METHODS                                    91

           3.6.1    Subjects                                                        91

           3.6.2    Instrumental response training                                    92

           3.6.3    Test of response flexibility                                    93

           3.6.4    Drug administration                                    94

           3.6.5    Surgery                                    95

           3.6.6    Chemogenetic manipulation of MT neuron populations                              95

           3.6.7    vTRAP affinity purification                                    96

           3.6.8    Quantitiative PCR                                    97

           3.6.9    Strategy to visualize dendritic spines on MT neurons                               98

           3.6.10  Dendritic spine imaging, reconstruction, and quantification                          98

           3.6.11  Identifying active neurons projecting to the OFC during memory encoding    99

           3.6.12  Asymmetric viral vector infusions                                                                          100

           3.6.13  Histology                                                                                                                                101

           3.6.14  Experimental design and tissue collection for validation of chemogenetic constructs   102                        

           3.6.15  Determining the reactivation properties of neuron ensembles                                                                           103                                                                                

           3.6.16  cfos immunostaining                                                                                                                                                     103                                                                                               

           3.6.17  Analysis of expected versus actual overlap between active neuron populations                                    103                                                                                                          

           3.6.18  Statistical analysis                                                                                                                                                          104

     3.7       FUNDING                                                                                                                                                                             105

     3.8       ACKNOWLEDGEMENTS                                                                                                                                                   105

 

CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS                                                                                                             127

     4.1     ABSTRACT                                                                                                                                                                                 128

     4.2       MECHANISMS GOVERNING ORBITOFRONTAL CORTEX FUNCTION                                                                   128

     4.3       Mc4r+ NEURONS IN THE OFC: UNRAVELING A MOLECULAR BASIS OF    COMPULSIVE BEHAVIOR               128

           4.3.1    Identifying molecularly defined neuron populations that control compulsive-like behavior in the OFC     129

     4.4       ACTION STRATEGY MEMORY WITHIN THE OFC                                                                                                132

           4.4.1    Dendritic spine morphology of neurons comprising action strategy engrams within the OFC                       133

     4.5       CONCLUSIONS                                                                                                                                                            139

 

REFERENCES                                                                                                                                                                                          145

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Subfield / Discipline
Degree
Submission
Language
  • English
Research Field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified Preview image embargoed

Primary PDF

Supplemental Files