Smoothing Tensor Factorization on Spatio-Temporal Data 公开
Yue, Sihan (Spring 2019)
Abstract
As spatio-temporal data violates many assumptions required in traditional machine learning/ data mining algorithms, tensor factorization (TF) has often been adopted in analyzing such data. Yet, the non-smooth factors that TF outputs sometimes misrepresent the underlying structure of the data and hinder the interpretability without domain knowledge. With the goal of smoothing the factors, we proposed three approaches: i) adopting Tikhnov regularization to CP_OPT; ii) adopt CP_OPT_SMOOTH in ParCube; iii) ParCube with neighbor padding. In order to examine the performance of these algorithms, we performed numerical experiments on the New York Uber Pickups dataset provided by FROSTT. Our results show that i) CP_OPT_SMOOTH improves the smoothness and the runtime with certain cost of accuracy; ii) with CP_OPT_SMOOTH, CP_OPT can now be adopted in ParCube but with some sacrifice in accuracy; iii) neighbor padding improves the smoothness while maintaining high accuracy.
Table of Contents
1 Introduction 1
1.1 Contributions ............................... 4
2 Background 6
2.1 Notation .................................. 6
2.2 Tensor and Common Operators .................... 7
2.3 Matrix & Tensor Factorization...................... 9
2.3.1 CP_ALS............................... 11
2.3.2 CP_NMU.............................. 12
2.3.3 CP_OPT .............................. 14
2.4 Parallelizable Tensor Factorization (ParCube) . . . . . . . . . . . . 15
2.5 Smoothing................................. 17
3 Approach 19
3.1 CP_OPT_SMOOTH ............................ 20
3.2 ParCube with CP_OPT_SMOOTH ................... 22
3.3 ParCube_Neighbor ............................ 22
4 Experiments 25
4.1 Data Description and Preprocessing.................. 25
4.2 Evaluation Metrics ............................ 26
4.3 Results ................................... 28
4.3.1 Smoothing on CP_OPT...................... 28
4.3.2 ParCube with CP_OPT_SMOOTH ............... 36
4.3.3 ParCube_Neighbor........................ 40
5 Conclusion 43
5.1 CurrentWork ............................... 43
5.2 FutureDirections............................. 45
Appendix A - ParCube Algorithms 46
Appendix B - Complete Result of CP_OPT_SMOOTH 49
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
关键词 | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Smoothing Tensor Factorization on Spatio-Temporal Data () | 2019-04-08 22:03:17 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|