Linear Preserver Problems and Cohomological Invariants Pubblico

Bermudez, Hernando (2014)

Permanent URL: https://etd.library.emory.edu/concern/etds/rv042t787?locale=it
Published

Abstract

Let G be a simple linear algebraic group over a field F. In this work we prove
several results about G and it's representations. In particular we determine
the stabilizer of a polynomial f on an irreducible representation V of G for
several interesting pairs (V; f). We also prove that in most cases if f is a
polynomial whose stabilizer has identity component G then there is a correspondence
between similarity classes of twisted forms of f and twisted forms
of G. In a different direction we determine the group of normalized degree 3
cohomological invariants for most G which are neither simply connected nor
adjoint.

Table of Contents

1 Introduction 1 1.1 Algebraic Group Schemes . . . . . . . . . . . . . . . . . . . . 1 1.2 Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 The Lie Algebra of an Algebraic Group . . . . . . . . . . . . . 4 1.5 Split Semisimple Algebraic Groups . . . . . . . . . . . . . . . 5 1.6 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.7 Tits Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.8 Galois Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 7 1.9 Twisted Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.10 Galois Cohomology of Algebraic Groups . . . . . . . . . . . . 8 2 Linear Preservers and Representations with a 1-dimensional Ring of Invariants 9 2.1 Irreducible representations and the closed orbit . . . . . . . . 11 2.2 The normalizer of G in GL(V ) . . . . . . . . . . . . . . . . . . 16 2.3 Linear transformations preserving minimal elements . . . . . . 19 2.4 The stabilizer in PGL(V ) . . . . . . . . . . . . . . . . . . . . . 25 2.5 Interlude: non-split groups . . . . . . . . . . . . . . . . . . . . 26 2.6 Representations with a one-dimensional ring of invariants . . . 27 2.7 Transformations that preserve minimal elements and f . . . . 32 2.8 Lines 15 of Table A . . . . . . . . . . . . . . . . . . . . . . . 34 2.9 Lines 611 of Table A . . . . . . . . . . . . . . . . . . . . . . . 39 2.10 Some representations omitted from Table A . . . . . . . . . . 43 2.11 An alternative formulation of the linear preserver problem . . 45 3 Classifying forms of simple groups via their invariant poly- nomials 46 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Constructing invariants with large stabilizer groups . . . . . . 48 3.3 Two cohomology sequences . . . . . . . . . . . . . . . . . . . . 53 3.4 The Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5 The Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6 Groups of type E8, F4, and G2 . . . . . . . . . . . . . . . . . . 66 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Degree 3 Cohomological Invariants of Split Quasi-Simple Groups that are Neither Simply Connected nor Adjoint 68 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 Decomposable Invariants . . . . . . . . . . . . . . . . . . . . . 70 4.3 Indecomposable Invariants . . . . . . . . . . . . . . . . . . . . 71 4.4 SLn =m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.1 Q(G) for SLn =m . . . . . . . . . . . . . . . . . . . . . 74 4.4.2 Dec(G) for SLn =pr . . . . . . . . . . . . . . . . . . . 74 4.4.3 A Fibration . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5 HSpin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.5.1 Q(G) for HSpin . . . . . . . . . . . . . . . . . . . . . . 81 4.5.2 Dec(G) for HSpin4n . . . . . . . . . . . . . . . . . . . . 82 4.6 Restriction of Invariants to Subgroups . . . . . . . . . . . . . 83 4.6.1 Restrictions in terms of Q(G)= Dec(G) . . . . . . . . . 83

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Parola chiave
Committee Chair / Thesis Advisor
Committee Members
Ultima modifica

Primary PDF

Supplemental Files