Validation of Receptor-Based Drug Design and Applications in the Study of IKKs, Truncated Taxane and LRH-1 Público

Hu, Haipeng (2011)

Permanent URL: https://etd.library.emory.edu/concern/etds/pg15bf260?locale=es
Published

Abstract

Validation of Receptor-Based Drug Design and Applications in the Study of
IKKs, Truncated Taxane and LRH-1
By
Haipeng Hu
Since the first successful report of structure based drug design in the 1990's, it has
been utilizing routinely in modern drug discovery. The performance of the design based
on the fundamental assumption: a) the protein target does not undergo conformational
change upon ligand binding or changes the same way independent on the ligand type; b)
ligands which bind to the same protein share similar pharmacophore. In order to verify
this assumption, a protein-ligand interaction survey with templates from a selected
protein-ligand crystal structure database was performed. The result indicates that over
99% crystal structures obey the structure fundamental assumption which indicates the structure
base assumption is trustworthy in most cases. After verification of the fundamental
assumption, it is utilized in several projects:
Liver receptor homolog 1 (LRH-1) is an orphan nuclear receptor (NR) which
activates an array of genes responsible for development of endodermal organs. Based on
the highly reserved structure properties of NRs, a series of LRH-1 antagonist candidates
were developed from known NRs agonists and antagonists, yielding several compounds
with mild inhibition to LRH-1 but poor solubility based on in vitro and in vivo assays.
Further work is currently in process to improve their activities and ADME properties.
Two truncated taxane models were computationally generated by replacing the
baccatin core with different fragments based on their structure similarity with PTX, and
both of them lead to micro-molar level activities.
The inhibitor of Kappa B Kinases (IKKs) which bind with the rel homology domain
of NFκB regulate the activation of NFκB by the phosphorylation-induced ubiquitination
of the IκB proteins. Homology models were constructed and investigated in silico. The
result provides a first-step to understand the mechanism of IKKs inhibition and offers a
provisional guidance on the design and synthesis of novel IKKs inhibitors.
In the end, a quantum chemical calculation was performed to prove that the cuprate
intermediate formed between nucleophilic attach of the dimethylcopper anion to the
β-unsaturated carbon has a square-planar structure.

Table of Contents


Table of Contents

List of Figures ..............................................................................................................III
List of Table ................................................................................................................ IV
Chapter 1: Bird View of Structure Based Drug Design .................................................1
1.1 Introduction........................................................................................................1
1.2 Target Selection ....................................................................................................2
1.3 Drug Design ..........................................................................................................5
1.4 Outline of Subsequent Chapters ............................................................................7
Chapter 2: Protein Ligand Interaction Survey ...............................................................8
2.1 Interactions between Protein and Ligand ..............................................................8
2.2 Structure Base Assumption .................................................................................11
2.3 True or False? .....................................................................................................12
2.4 Experiment Detail.............................................................................................14
2.5 Classification.......................................................................................................16
2.6 Case Discussions........................................................................................19
2.6.1 Pose Difference: a. 1EPN & 5ER1 .........................................................19
2.6.2 Pose Difference: b, 1CVZ & 1BQI .........................................................22
2.6.3 Protein Movement: a, 1SRF & 1VWJ ....................................................25
2.6.4 Protein Movement: b, 1DD6 & 1JJT ......................................................28
2.6.5 Solvent Effect: a, 1EGH & 1IK4 ............................................................31
2.6.6 Solvent Effect: b, 1DMW & 4PAH ........................................................34
2.6.7 Metal Effect: 1C1U vs. 1KTT ................................................................37
2.7 Conclusions................................................................................40
Chapter 3: Computational Design of Liver Receptor Homolog 1 Antagonists Based on
Helix-12 Conformational Reorganization ....................................................................42
3.1 Nuclear Receptors ...............................................................................................42
3.2 Liver Receptor Homolog 1 .................................................................................44
3.3 Structural Comparisons...........................................................................46
3.3.1 LRH-1 vs. Estrogen Receptor-α ..............................................................47
3.3.2 LRH-1 vs. SF-1 .......................................................................................48
3.4 Computational Methods......................................................................................50
3.5 Analysis of Results .............................................................................................52
3.5.1 SID-7969543 Analogs ............................................................................52
3.5.2 Tamoxifen Analogs................................................................................59
3.5.3 Raloxifene Analogs .................................................................................67
3.5.4 Steroid Analogs......................................................................................72
3.6 Biological Evaluation..........................................................................................77
3.7 Conclusions........................................................................................................79

Chapter 4 Truncated Taxane ........................................................................................81
4.1 Tubulin and Taxane Analogs ..............................................................................81
4.2 Simplified PTX................................................................................................85
4.2.1 Replacement of the Baccatin Core ..........................................................85
4.2.2 Biological Evaluation ..............................................................................89
4.2.3 Computational Evaluation ......................................................................90
4.2.4 Conclusions.............................................................................................93
4.3 Truncated Taxanes ..............................................................................................94
4.3.1 Steroid Analogs.......................................................................................94
4.3.2 Tubulin Binding Site ...............................................................................95
4.3.3 Ligand Preparation ..................................................................................97
4.3.4 Tubulin-Taxol Site Docking ...................................................................99
4.3.5 282 Site Docking Results ......................................................................103
4.4 Conclusions......................................................................................................107

Chapter 5: Homology modeling of IKKs and Analysis of Their Binding Properties
through Molecular Modeling .....................................................................................108
5.1 NFκB Activation ...............................................................................................108
5.2 Homology Models ............................................................................................112
5.3 Analysis on ATP Competitive Compounds ......................................................118
5.4 Mechanism Determination of IKKs Inhibitors .................................................126
5.5 Conclusions......................................................................................................130
Chapter 6: Prediction of Structure of Cuprate Intermediate ......................................132
6.1 Introduction.....................................................................................................132
6.2 Experiment and Discussion...............................................................................134
6.3 Conclusions....................................................................................................140
References ..................................................................................................................141

List of Figures

Figure 1.1 Process of structure based drug design ........................................................7
Figure 2.1 Structure and binding mode comparison among vardenafil, sidenafil and
tadalafil ........................................................................................................................13
Figure 2.2 2D structures of ligands in 1EPN and 5ER1 .............................................21
Figure 2.3 Superimposed crystal structures of 1EPN and 5ER1 ................................22
Figure 2.4 2D structures of ligands in 1CVZ and 1BQI .............................................24
Figure 2.5 Superimposed crystal structures of 1CVZ and 1BQI ................................25
Figure 2.6 2D structures of MTB and short peptide CHPQGPPK .............................27
Figure 2.7 Superimposed crystal structure of 1SRF and 1VWJ .................................28
Figure 2.8 2D structures of MCL (left) and BDS (right) ............................................30
Figure 2.9 Superimposed crystal structure of 1DD6 and 1JJT ...................................31
Figure 2.10 2D structures of MCL and BDS ..............................................................33
Figure 2.11 Superimposed crystal structure of 1EGH and 1IK4 ................................34
Figure 2.12 2D structures of HBI and LNR ................................................................36
Figure 2.13 Superimposed crystal structure of 1DMW and 4PAH .............................37
Figure 2.14 2D structures of HBI and LNR ................................................................39
Figure 2.15 Superimposed crystal structure of 1C1U and 1KTT ...............................40
Figure 3.1 Structure of nuclear receptor's ligand binding domain .............................44
Figure 3.2 X-ray crystal structure of LRH-1, labeled by sub-sites and tunnels ..........47
Figure 3.3 Superimposed crystal structures of LRH-1 with ER-α and SF-1 ..............49
Figure 3.4 Four lead compounds selected for LRH-1 antagonist design ....................51
Figure 3.5 Docking and bioassay results of SID-7969543 in SF-1 and LRH-1 .........53
Figure 3.6 Best docking poses of SID-7969543 analogs 3-1 to 3-9 ...........................59
Figure 3.7 Tamoxifen 2D structure and its binding pose in ER-α and LRH-1 ...........61
Figure 3.8 Scaffold of analogs 3-15 to 3-18 ...............................................................63
Figure 3.9 Tamoxifen analogs in LRH-1 ....................................................................65
Figure 3.10 Raloxifene 2D structure and its binding pose in ER-α and LRH-1 .........69
Figure 3.11 Raloxifene analogs which show steric conflicts with H12 ......................71
Figure 3.12 The steroid analog in the bile acid receptor and LRH-1 ..........................73
Figure 3.13 Steroid analogs with ring structures on R2 ..............................................75
Figure 3.14 Steroid analogs with head group modifications .......................................76
Figure 4.1 Atomic model of wild type β-tubulin complexes with PTX ......................82
Figure 4.2 2D-structures of PTX and 282 and their activities ....................................85
Figure 4.3 General structure of second generation T-taxol mimics ............................86
Figure 4.4 low energy poses of compounds of 282 and its analogs in the PTX tubulin
binding site ...................................................................................................................88
Figure 4.5 low energy poses of compounds 282 and its analogs, 4-5 to 4-11, in 282
tubulin binding site and wild type PTX binding site ...................................................89
Figure 4.6 Reported steroid analogs which show effect on preventing microtubule
disassemble ..................................................................................................................95
Figure 4.7 Comparison of wild type PTX binding site and 282 binding site .............97
Figure 4.8 Redundant Conformer Elimination (RCE) result of the core region of the
steroid analogs. ............................................................................................................98
Figure 4.9 Docking results of steroids in tubulin-taxol binding site .........................102
Figure 4.10 Docking results of steroids in 282 binding site .....................................106
Figure 5.1 NFκB activation pathways dependent on IKKs ...................................... 110
Figure.5.2 Structures of reported IKKs inhibitors .................................................... 112
Figure5.3 Homology models of IKKs ....................................................................... 117
Figure 5.4 Compound Bayer A in IKK α unit and β unit ..........................................121
Figure 5.5 Compound ML120B in IKK α unit and β unit ........................................122
Figure 5.6 Compound NRDD1 in IKK α unit and β unit ..........................................123
Figure 5.7 Compound NRDD4 in IKK α unit and β unit ..........................................125
Figure 5.8 Compound BMCL-5a in IKK α unit and β unit ......................................128
Figure 5.9 Compound NRDD2 in IKK α unit and β unit ..........................................129
Figure 5.10 Compound NRDD6 in IKK α unit and β unit ........................................130
Figure 6.1 Conformation of the six isomers optimized with B3LYP/6-31G*/ LANL2DZ.....136
Figure. 6.2 The lowest energy conformation within two different series .................136
Figure 6.3. Calculated 1H (blue) and 13C (red) chemical shifts for lithiated 2a and
lithiated 2b relative to TMS and compared with experimental values (parentheses);
B3LYP/6-311+G*/(pCVDZ)/SDD method ...............................................................137

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Palabra Clave
Committee Chair / Thesis Advisor
Committee Members
Última modificación

Primary PDF

Supplemental Files