Moonshine and Elliptic Curves Público

Khaqan, Maryam (Summer 2021)

Permanent URL: https://etd.library.emory.edu/concern/etds/m613mz704?locale=es
Published

Abstract

In this dissertation, we characterize all infinite-dimensional graded virtual

modules for Thompson’s sporadic simple group, whose graded traces are

weight 3/2 weakly holomorphic modular forms satisfying certain special properties.

We then use these modules to detect the non-triviality of Mordell-

Weil, Selmer, and Tate-Shafarevich groups of quadratic twists of certain elliptic

curves. Thus proving the existence of a new kind of moonshine as well as

establishing applications of moonshine to number theory.

Table of Contents

Abstract 5

Acknowledgements 3

Contents 9

List of Tables 11

1 Introduction 1

1.1 Moonshine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Weight 3

2 moonshine for Th . . . . . . . . . . . . . . . . . . . 3

2 Background and Notation 7

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Rational Characters. . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Mock Modular Forms . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Rademacher sums . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Kohnen Plus Space Condition . . . . . . . . . . . . . . . . . . 13

2.6 Eta-Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Moonshine for Thompson’s sporadic simple group 17

3.1 McKay–Thompson Series . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Using Rademacher Sums . . . . . . . . . . . . . . . . . 20

3.1.2 Using Eta-Quotients. . . . . . . . . . . . . . . . . . . . 22

3.2 Proof of Proposition 3.1.1 . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Cusp forms . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Integer Coefficients. . . . . . . . . . . . . . . . . . . . 25

3.3 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Generalized Characters . . . . . . . . . . . . . . . . . 27

4 Elliptic Curves 33

4.1 Statements of Theorems . . . . . . . . . . . . . . . . . . . . . 33

4.2 Traces of Singular Moduli . . . . . . . . . . . . . . . . . . . . 36

4.3 Background on Elliptic Curves . . . . . . . . . . . . . . . . . . 38

4.4 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Proof of Theorem 4.1.2 . . . . . . . . . . . . . . . . . . . . . . 40

A Tables 45

A.1 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2 p-regular sections . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.3 Cusp forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Palabra Clave
Committee Chair / Thesis Advisor
Committee Members
Última modificación

Primary PDF

Supplemental Files