Towards the Development of Non-Toxic Therapeutics in the Fight Against Cancer Pubblico
Baillie, Mark (2011)
Abstract
Abstracts
Towards the Development of Non-Toxic Therapeutics in the Fight
Against Cancer
Chapter 1: Synthesis and Application of Novel Tail-Modified
Enigmol Analogs. Sphingolipids are a set of signaling molecules
that are intricately involved in cancer progression. Enigmol
(2 S-amino-octadecane- 3 S,5 S-diol) is a
sphingoid base derivative that reregulates apoptosis in cancer
cells by interacting with the sphingolipid signaling pathways.
Herein we report the synthesis of a set of Enigmol analogs
featuring fluorination and rigidification of the tail. Geometric
alterations and rigidification between C-11 and C-12
decreased efficacy of these compounds to induce cell death in
prostate cancer cell lines (PC-3 and LNCaP) when compared to
Enigmol, while compounds with fluorination at multiple
points in the tail retained anticancer activity in vitro.
Pharmacokinetic properties and a biological distribution profile of
the C-18 trifluoromethyl analog 2 (R = CF3) dosed orally in
rats at 10 mg/kg showed nearly three fold increase in plasma levels
and tissue concentrations as compared with Enigmol. Most
notable was the substantial increase in bioavailability, which was
found to be 76% for 2 as compared to 11% for Enigmol.
Trifluoromethyl-containing compound 2 is a promising lead
molecule that we plan to further pursue as an anti-cancer compound
for the clinical treatment of prostate cancer. Chapter 2:
Following in the Steps of Otto Warburg. Design and Synthesis of
Potential Pyruvate Kinase Inhibitors. Chapter 3: Design and
Synthesis of Novel CXCR4 Modulators for Treatment of Macular
Degeneration.
Table of Contents
1 Table of Contents
Chapter 1: Synthesis and Application of Novel Tail-Modified
Enigmol Analogs ......................... 1
1.1
Introduction
......................................................................................................................
1
1.1.1
Background and Significance
...................................................................................
1
1.1.2
Developing a Cancer Therapeutic
.............................................................................
5
1.1.3
19F MRI Application
...............................................................................................
11
1.2
Synthesis of Target Compounds
....................................................................................
12
1.2.1
Liebeskind-Srogl Route and Side Reaction Investigation
...................................... 12
1.2.2
Synthesis Via Aldol Reaction
.................................................................................
20
1.3
Biological Evaluation
.....................................................................................................
28
1.3.1
In vitro Evaluation of Enigmol Analogs Against Prostate
Cancer ......................... 28
1.3.2
Pharmacokinetic Evaluation
...................................................................................
29
1.3.3
19F MRI Study Results
............................................................................................
32
1.4
Discussion
......................................................................................................................
35
1.5
Conclusions
....................................................................................................................
37
1.6
Methods and Experimental Protocol
..............................................................................
38
1.6.1
Experimental Procedure for the Synthesis of Tail-modified Enigmols:
................. 38
1.6.2
Biological Protocols
................................................................................................
75
Chapter 2: Following in the steps of Otto Warburg. Design and
Synthesis of Potential Pyruvate
Kinase Inhibitors
.............................................................................................................................
1
2.1
Introduction
....................................................................................................................
82
2.1.1
Background and Significance
.................................................................................
82
2.1.2
Design of Novel PK Inhibitors
...............................................................................
85
2.2
Results
............................................................................................................................
87
2.2.1
Synthesis of Novel PKI's
........................................................................................
87
2.2.2
Chemical Routes Attempted to Obtain the Difluorophosphonate PKI's
................ 90
2.3
Biological Evaluation
.....................................................................................................
92
2.3.1
In vitro Cell-based Assays
......................................................................................
92
2.3.2
In vitro Cell-free Assay
...........................................................................................
94
2.4
Discussion
......................................................................................................................
95
2.5
Conclusion
......................................................................................................................
96
2.6
Methods and Experimental Protocol
..............................................................................
96
2.6.1
Experimental Protocol for Synthesis
......................................................................
96
2.6.2
Biological Evaluation of anti-cancer agents
......................................................... 107
Chapter 3: Design and Synthesis of Novel CXCR4 Modulators for
Treatment of Macular
Degeneration
.................................................................................................................................
82
3.1
Introduction
..................................................................................................................
109
3.1.1
Background and Significance
...............................................................................
109
3.1.2
Developing a CXCR4 Modulator
.........................................................................
114
3.2
Results
..........................................................................................................................
117
3.2.1
Synthesis of Novel WZ-41 Analogs
.....................................................................
117
3.3
Biological Evaluation
...................................................................................................
119
3.3.1
In vitro Cell-based TN-14003 Binding Assay Results
......................................... 119
3.3.2
In vitro Vasculature Formation Assay Results
..................................................... 122
3.4
Conclusions
..................................................................................................................
123
3.5
Methods and Experimental Protocol
............................................................................
124
3.5.1
Experimental Procedure for the Synthesis of Novel WZ-41 Analogs
.................. 124
3.5.2
Experimental Protocol for TN-14003 Binding Assay
.......................................... 138
Figure 1: Common structural examples of the sphingolipid family.
Sphingoid bases sphinganine
and sphingosine showed above the sphingolipids ceramide and further
functionalized derivative
sphingomyelin.
................................................................................................................................
2
Figure 2: Highly simplified de novo sphingolipid synthetic
pathway. In the ceramide/S1P
rheostat, ceramide and sphingosine inhibit cell growth while S1P
increases cell growth. ............. 3
Figure 3: Pictorial representation of the ceramide/S1P rheostat9
for a healthy cell (A) and a
cancerous cell (B).
..........................................................................................................................
4
Figure 4: Conception of an anti-cancer agent, Enigmol, which drew
from sphingosine and
fumonisin B1.
..................................................................................................................................
6
Figure 5: Mouse xenograft study comparing the efficacy of Enigmol
to hormone ablation in
androgen-dependant tumors (A) or docetaxel in androgen-independent
tumors (B).23 .................. 8
Figure 6: Proposed sites for modification on the tail of Enigmol.
.................................................. 9
Figure 7: Proposed synthetic targets probing the affect of
fluorination and geometric restrictions
in the tail of Enigmol.
...................................................................................................................
11
Figure 8: Rationalization for the loss of stereochemistry based on
the formation of the aromatic
intermediate 65. To capitalize on the equilibrium, we proposed the
chiral directing group
attached to the nitrogen (67).
........................................................................................................
18
Figure 9: Pharmacokinetic data comparing mean plasma concentrations
of Enigmol to CF3-
enigmol (2) over 24 hours.
............................................................................................................
30
Figure 10: Mean rat tissue, plasma, and RBC concentrations at 24
hours post administration of
Enigmol verses trifluoromethyl-enigmol 2 (10 mg/kg P.O. dose).
Analysis performed by the
DMPK lab, EIDD.
.........................................................................................................................
32
Figure 11: 1H (left) and 19F (right) MRI images of rat brain, dosed
with 2. ................................. 34
Figure 12: Structures of molecules that take advantage of the
dependence of a cancer cell on
glycolysis.
.....................................................................................................................................
84
Scheme 13: Conversion of phosphoenolpyruvate (PEP) to pyruvate,
catalyzed by Pyruvate
Kinase. This reaction results in the net gain of one unit of ATP by
the consumption of ADP. ... 84
Figure 14: Comparison of phosphoenolpyruvate (PEP) with our
proposed phosphonate PKI's.
The red bond highlights the removal of the cleavable P-O bond,
replaced by a P-C bond. Blue
atoms show site of halogenations, which hold potential to tune PK
isoform specificity. ............ 85
Figure 15: Specific examples of proposed pro-drug PKI's.
......................................................... 86
Figure 16: PEP analog pro-drugs 4-8 previously reported in
literature,65 synthesized for
comparison in this study. 3-BrPA and its ester derivative are
commercially available. .............. 86
Figure 17: Pyruvate Kinase inhibition assay performed with the 2
tri-acid compounds 33 and 34.
.......................................................................................................................................................
95
Figure 18: Cross section of the human eye.
................................................................................
109
Figure 19: A schematic representation of the cornea, showing the
possible pathways for
molecules to diffuse through to the anterior chamber.81
.............................................................
111
Figure 20: Predictive relationship between solute distribution
coefficient Φ and permeability of
the individual layers (A) and the whole cornea (B). Molecular
radius is represented by line
type.81 These trends for over 150 compounds were calculated based
on models determined and
tested in a composite porous medium.81
.....................................................................................
112
Figure 21: Structure of the bicyclam compound AMD3100, an inhibitor
of CXCR4. .............. 114
Figure 22: Lead CXCR4 antagonists developed in our laboratory by
Weiqiang Zhan. ............. 115
Figure 23: A) CXCL12 displacing peptide TN14003 used in the
competitive binding assay. B)
Bioassay used to measure interaction of novel compounds with CXCR4
on MB-231 breast
cancer cells. Novel compound (green) competes with high affinity
biotinylated-peptide
TNF14003 (blue/purple). After washing away the unbound substrate,
streptavadin-rhodamine
conjugate complexes with biotinylated peptide. Inhibition of
peptide binding by drug dampens
fluorescent signal output.
............................................................................................................
121
Table 1: Optimization of reaction conditions for
cyclization utilizing Liebeskind-Srogl
conditions. Followed by LCMS. Yield reported was isolated yield.
(-) means isolation not
attempted.
......................................................................................................................................
17
Table 2: Survey of oxidative conditions for removal of
N-benzyl protecting group from 35a. All
reaction progress was followed by LCMS. No inert atmosphere or
exclusion of water was
utilized in these small scale reactions (20 - 80 mg).
....................................................................
25
Table 3: Optimized conditions for oxidative removal of
N-benzyl protecting group with Dess
Martin periodinane.
.......................................................................................................................
25
Table 4: Efficacy of Enigmol analogs against prostate cancer cells
for 24 h, and cytotoxicity was
assessed by WST-1 assay. cLogP calculated with QuikProp on Maestro.
................................... 28
Table 5: Mean pharmacokinetic parameters for Enigmol and
CF3-enimgol (2). Performed by the
DMPK lab, EIDD.
.........................................................................................................................
30
Table 6: Mean rat tissue concentrations of Enigmol and
trifluoromethyl-enigmol 2 shown in
Figure 10.
......................................................................................................................................
32
Table 7: Summary of cancer cell growth inhibition assays results.
IC50's were calculated for
various synthetic PKI's in breast (MDA-MB231) and prostate (PC-3)
cancer cells in culture. .. 93
Table 8: Computational and biological testing values for WZ-41 and
analogues. cLogP values
were calculated with QuikPro in Maestro.
..................................................................................
121
Table 9: Tubule formation assay results from S.R.I.
..................................................................
123
About this Dissertation
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Parola chiave | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Towards the Development of Non-Toxic Therapeutics in the Fight Against Cancer () | 2018-08-28 15:49:23 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|