Challenge Reading Comprehension on Daily Conversation: Passage Completion on Multiparty Dialog 公开

Ma, Kaixin (Spring 2018)

Permanent URL: https://etd.library.emory.edu/concern/etds/gh93gz508?locale=zh
Published

Abstract

This thesis expands a previously constructed corpus and presents a robust deep learning architecture for a task in reading comprehension, passage completion, on multiparty dialog. Given a dialog in text and a passage containing factual descriptions about the dialog where mentions of the characters are replaced by blanks, the task is to fill the blanks with the most appropriate character names that reflect the contexts in the dialog. Previous researcher constructed a dataset by selecting transcripts from a TV show, generating passages for each dialog through crowdsourcing, and annotating mentions of characters in both the dialog and the passages. This work expands the previously constructed dataset following the same pipeline and fixes errors in the entire dataset. Given this dataset, a deep neural model is developed that integrates rich feature extraction from convolutional neural networks (CNN) into sequence modeling in recurrent neural networks (RNN), optimized by utterance and dialog level attentions. The model outperforms the previous state-of-the-art model on this task in a different genre using bidirectional LSTM, showing a 13.0+% improvement for longer dialogs. The analysis shows the effectiveness of the attention mechanisms and suggests a direction to machine comprehension on multiparty dialog.  

Table of Contents

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CHAPTER 1 : Introduction . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 : Related Work . . . . . . . . . . . . . . . . . . . . . 3

2.1 Passage Completion . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Reading Comprehension . . . . . . . . . . . . . . . . . . . . 5

2.3 Neural Architecture . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 3 : Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Passage Generation . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Mention Annotation . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 4 : Approaches . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 CNN + LSTM . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Utterance-level Attention . . . . . . . . . . . . . . . . . . . . 16

4.3 Dialog-level Attention . . . . . . . . . . . . . . . . . . . . . 18

4.4 Entity Centric . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Attention over Attention . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 5 : Experiments . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Utterance Pruning . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Datasets with Longer Dialogs . . . . . . . . . . . . . . . . . 24

5.3 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 Attention-over-Attention . . . . . . . . . . . . . . . . . . . . 26

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 6 : Analysis . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Attention Visualization . . . . . . . . . . . . . . . . . . . . . 29

6.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

CHAPTER 7 : Conclusion . . . . . . . . . . . . . . . . . . . . . . . 32

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

 

About this Master's Thesis

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
关键词
Committee Chair / Thesis Advisor
Committee Members
最新修改

Primary PDF

Supplemental Files