Toward Connecting Solvent and Surface Dynamics to Protein Function: An EPR Approach Public

Nforneh, Benjamen (Summer 2018)

Permanent URL: https://etd.library.emory.edu/concern/etds/b5644r623?locale=fr
Published

Abstract

The 12B (adenosylcobalamin)-dependent ethanolamine ammonia-lyase (EAL) is a product of the ethanolamine utilisation (eut) gene cluster, that is involved in human gut microbiome homeostasis and in disease conditions caused by pathogenic strains of Salmonella and Escherichia coli. Electron paramagnetic resonance (EPR) spectroscopy of the spin probe, TEMPOL, is used to resolve two distinct concentric solvent phases around EAL: protein-associated domain (PAD) and mesodomain. By using a continuum model, we estimate the solvent shell thicknesses around EAL (mesodomain ~ 10-40 Å and PAD ~ 6 Å) and propose a model for the system. Systematic tuning of solvent dynamics and glass transitions by using dimethylsulfoxide (DMSO) variation in the low-T mesodomain system reveals features of the mesodomain/PAD and PAD/protein surface coupling that inform the understanding of solvent and coupled protein dynamics to chemical catalysis in EAL. Toward understanding the function of the EutC N-terminal, signal sequence associated domain of wild type EAL, and the interplay between protein stability and the EAL targeting and trafficking to the Eut biomicrocompartment (BMC), spin label 4-maleimido-TEMPO (4MT) attached at the C37 of EutC and EPR spectroscopy is used. A two-state model is propose based on a single 4MT labelling site, in which fast and slow motional populations represent EAL bound and free conformations of the EutC N-terminal domain. We propose that the two states present a balance between EutC function and EAL protein stability and efficient targeting to the BMC. The observed fluidizing effect of the added % v/v DMSO on the dynamics in the mesodomain, and the coupled increase in PAD dynamics, is manifested in the lowering of the fluid-solid transitions in each phase. This provides a method to precisely control the solvent and surface dynamics around EAL as a tunable parameter in quantifying and investigating the mechanism of coupling between solvent and surface dynamics, and chemical reaction steps in EAL.

 

Table of Contents

Distribution Agreement i

Acknowledgments vi

List of Figures vii

List of Tables xv

Abbreviations xix

1 Introduction and Background, Technique, and Overview 1

1.1 INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . 2

1.1.1 Structure of B12 coenzyme adenosylcobalamin

(AdoCbl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 The ethanolamine ammonia-lyase enzyme: Reaction and

mechanism of action . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 The ethanolamine utilization bacterial microcompactment

and the role of ethanolamine ammonia-lyase . . . . . . . . . 11

1.2 EXPERIMENTAL TECHNIQUE . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Electron paramagnetic resonance spectroscopy . . . . . . . . 13

1.2.2 Generation of an electron paramagnetic resonance spectrum 22

1.3 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Mesodomain and Protein-Associated Solvent Phases with Temperature-

Tunable (200-265 K)

Dynamics Surround Ethanolamine Ammonia-Lyase in Globally Polycrystalline

Aqueous Solution Containing Dimethylsulfoxide 26

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 EXPERIMENTAL METHODS . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Continuous-wave EPR spectroscopy . . . . . . . . . . . . . . 31

2.2.3 EPR Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Temperature dependence of the TEMPOL EPR line shape

in frozen aqueous solution with EAL: 0% DMSO . . . . . . . 34

2.3.2 Temperature dependence of the TEMPOL EPR line shape

in frozen aqueous solution with EAL: 1% v/v DMSO . . . . 36

2.3.3 Temperature dependence of the TEMPOL rotational correlation

times and normalized component weights in frozen

aqueous solution with EAL: 0% DMSO . . . . . . . . . . . . 36

2.3.4 Temperature dependence of the TEMPOL rotational correlation

times and normalized component weights in frozen

aqueous solution with EAL: 1% v/v DMSO . . . . . . . . . . 39

2.3.5 Temperature dependence of the TEMPOL rotational correlation

times and normalized component weights in the absence

of EAL: 0 and 1% v/v DMSO . . . . . . . . . . . . . . 41

2.3.6 EAL protein concentration dependence of the EPR line shape

in frozen 1% v/v DMSO solution . . . . . . . . . . . . . . . . 44

2.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Origin of the mobility components in the EAL, 0% DMSO

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.2 Origin of the mobility components in the EAL, 1% v/v DMSO

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.3 Mobility transition in the EAL, 1% v/v DMSO system . . . 49

2.4.4 Behavior at T-values above the mobility transition in the

EAL, 1% v/v DMSO system . . . . . . . . . . . . . . . . . . . 51

2.4.5 Relative volumes of the PAD and mesodomain . . . . . . . . 51

2.4.6 Origin of the temperature-dependence of TEMPOL tumbling

mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Ice Boundary and Protein Suface Confinement Effects Govern Proteinassociated

and Mesodomain Solvent Dynamics Around the B12-Dependent

Ethanolamine Ammonia-Lyase Protein in Frozen Aqueous-Dimethylsulfoxide

Solutions 59

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 EXPERIMENTAL METHODS . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2 Continuous wave EPR spectroscopy and EPR Simulations . 64

3.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Temperature dependence of the TEMPOL EPR line shape

in frozen aqueous solution with EAL: 0.5, 2.0 and 4.0% v/v

DMSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Temperature dependence of the TEMPOL rotational correlation

times and normalized component weights in frozen

aqueous solution with EAL: 0.5, 2.0 and 4.0% v/v DMSO . . 67

3.3.3 Temperature dependence of the TEMPOL spectral line

shape in the absence of EAL: 0.5, 2.0 and 4.0% v/v DMSO . 69

3.3.4 Temperature dependence of the TEMPOL rotational correlation

times and normalized component weights in solution,

in the absence of EAL: 0.5, 2.0 and 4.0% v/v DMSO . . 71

3.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Added DMSO resides predominantly in the mesodomain . 72

3.4.2 Relative dimensions of mesodomain, PAD and EAL . . . . . 75

3.4.3 Resolution of an order-disorder transition in the proteinassociated

domain . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.4 Composition and fluidity of the mesodomain . . . . . . . . . 79

3.4.5 Temperature-dependence of spin probe mobility in mesodomain

and PAD in Region III . . . . . . . . . . . . . . . . . . . . . . 80

3.4.6 Combination of protein and ice boundary confinement effects

lead to DMSO-concentration–dependence of solvent

mobility and the order-disorder transition in the PAD . . . . 82

3.4.7 Dependence of mesodomain solvent dynamics on PAD solidification

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Electron Spin-Labeling of the EutC Subunit in B12-Dependent Ethanolamine

Ammonia-Lyase Reveals Dynamics and a Two-State Conformational Equilibrium

in the N-terminal, Signal-Sequence-Associated Domain 91

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 MATERIAL AND METHODS . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Protein preparation . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.2 EPR sample preparation . . . . . . . . . . . . . . . . . . . . . 95

4.2.3 Site-directed mutagenesis . . . . . . . . . . . . . . . . . . . . 96

4.2.4 Continuous wave EPR spectroscopy . . . . . . . . . . . . . . 99

4.2.5 Continuous wave EPR simulations . . . . . . . . . . . . . . . 100

4.2.6 Criteria for detection of spin label motion . . . . . . . . . . . 101

4.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Accessibility of cysteines in wt EAL . . . . . . . . . . . . . . 102

4.3.2 Identification of the 4MT labeling site in wt EAL . . . . . . . 103

4.3.3 Temperature dependence of the 4MT-labeled EAL EPR line

shape in frozen aqueous solution, in the absence of DMSO . 106

4.3.4 Temperature dependence of the 4MT-labeled EAL EPR line

shape in frozen aqueous solution with 1% v/v DMSO . . . . 108

4.3.5 Temperature dependence of the 4MT-labeled EAL rotational

correlation time and normalized component weights in frozen

aqueous solution, in the absence of DMSO . . . . . . . . . . 108

4.3.6 Temperature dependence of the 4MT-labeled EAL rotational

correlation time and normalized component weights in frozen

aqueous solution with 1% v/v DMSO . . . . . . . . . . . . . 110

4.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 Nature of the primary betaC37 spin-labeling site in wt EAL . . 112

4.4.2 Two-state model for 4MT mobility in EAL in frozen solution

in the absence and presence of DMSO (0 and 1% v/v

DMSO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.3 Solvent- and temperature-dependence of the populations

in the two-state system . . . . . . . . . . . . . . . . . . . . . . 116

4.4.4 Equilibrium between the states, Ss and Sf . . . . . . . . . . . 116

4.4.5 Model for the origin and temperature-dependence of the

two-state, Ss, Sf system for EAL in 0 and 1% DMSO solution 119

5 The Two-State Conformational Equilibrium in the N-terminus of the

EutC Subunit of EAL Revealed by using Electron Spin-Labeling is Maintained

in Frozen added 0.5, 2 and 4% v/v Dimethylsulfoxide-Water Solution

123

5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 MATERIAL AND METHODS . . . . . . . . . . . . . . . . . . . . . . 126

5.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.2 Continuous wave EPR spectroscopy . . . . . . . . . . . . . . 127

5.2.3 Continuous wave EPR simulations and criteria for detection

of spin label motion . . . . . . . . . . . . . . . . . . . . . 127

5.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Temperature dependence of the 4MT-labeled EAL EPR line

shape in frozen aqueous solution: 0.5, 2 and 4% v/v DMSO 128

5.3.2 Temperature dependence of the 4MT-labeled EAL rotational

correlation times and normalized component weights in frozen

aqueous solution with 0.5, 2 and 4% v/v DMSO . . . . . . . 130

5.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Origin of the 4MT mobility components in the spin-labeled

EAL aqueous solution: 0.5, 2 and 4% v/v DMSO systems . . 132

5.4.2 Confirmation of an existing equilibrium between the states,

Ss and Sf in 0.5, 2 and 4% v/v DMSO systems . . . . . . . . 133

5.4.3 Temperature dependence of the rigid to mobile dynamic

transition and the role of the added DMSO . . . . . . . . . . 135

6 The Effects of added Substrate, Aminoethanol, on the Solvent Dynamics

Around the B12-Dependent Ethanolamine Ammonia-Lyase Protein in

Frozen Aqueous-Dimethylsulfoxide Solution 138

6.1 INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . . 139

6.2 MATERIAL AND METHODS . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.2 Continuous wave EPR spectroscopy and EPR Simulations . 142

6.3 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Temperature dependence of the TEMPOL EAL EPR line

shape in frozen aqueous solution with AmEtOH: 0, and 2%

v/v DMSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.2 Temperature dependence of the TEMPOL EAL rotational

correlation times and normalized component weights in frozen

aqueous solution with AmEtOH: No DMSO . . . . . . . . . 146

6.3.3 Temperature dependence of the TEMPOL EAL rotational

correlation times and normalized component weights in frozen

aqueous solution with AmEtOH: 2% v/v DMSO . . . . . . . 149

6.3.4 Fluid/solid transition of the protein-associated domain and

in the mesodomain . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.5 Quantification of the composition and uniformity properties

of the PAD and mesodomain components . . . . . . . . 152

6.4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Summary and Conclusion 157

7.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Significance of the work presented in this dissertation . . . . . . . . 159

Appendix 163

C EPR spectrum from frozen aqueous solution at 0% DMSO, in the

absence of EAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D The log�c and W values at different temperatures for the �EAL

with TEMPOL, 0 and 1% v/v DMSO system . . . . . . . . . . . . . 165

E Arrhenius parameters obtained from the rotational correlation time

for TEMPOL tumbling motion in the absence and presence of EAL,

0% and 1% v/v DMSO systems . . . . . . . . . . . . . . . . . . . . . 168

F Primers used in the development of the EAL mutants . . . . . . . . 169

G Reorientational correlation times and normalized weight values at

the different temperatures for EAL-4MT, 0 and 1% v/v DMSO . . . 170

H Enthalpy and entropy values for the equilibrium between Ws and

Wf mobility components in 1% v/v DMSO . . . . . . . . . . . . . . 172

I Reorientational correlation times and normalized

weight values at the different temperatures for EAL-4MT, 0.5, 2

and 4% v/v DMSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

J The log�c values at different temperatures for the EAL-AmEtOH

with TEMPOL, 0 and 2% v/v DMSO system . . . . . . . . . . . . . 176

K The log�c and W values at different temperatures for the �EAL

with TEMPOL, 0.5, 2, and 4% v/v DMSO system . . . . . . . . . . . 178

References 184

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Mot-clé
Committee Chair / Thesis Advisor
Committee Members
Dernière modification

Primary PDF

Supplemental Files