Suppression of Calcineurin Signaling and PGC-1α Expression During the Chronic Skeletal Muscle Atrophy Associated with Diabetes Mellitus: Implications for Muscle Function Open Access
Roberts-Wilson, Tiffany Karla (2010)
Abstract
Skeletal muscle atrophy frequently indicates a poor prognosis
for patients with systemic pathologies, including diabetes mellitus
(DM). These patients demonstrate reduced muscle size as well as
decreased strength and endurance, indicating that a link exists
between muscle size and functional capacity in these conditions.
PGC-1α is a transcriptional coactivator that controls energy
homeostasis through regulation of glucose and oxidative metabolism.
Both PGC-1α expression and oxidative capacity are decreased in
skeletal muscle of diabetic patients and animals undergoing
atrophy, suggesting that PGC-1α participates in the regulation
of muscle mass. This dissertation focuses on elucidating the
mechanisms that regulate PGC-1α expression in vivo in a
model of DM as well as the potential physiological effects of
PGC-1α downregulation.
Our work reveals that suppressed calcineurin (Cn) signaling
contributes to decreased PGC-1α expression in chronic DM rat
skeletal muscle and this may result in a muscle fiber-type switch
from an oxidative phenotype to a more glycolytic phenotype.
Specifically, we demonstrate that expression of Cn, a
calcium-dependent phosphatase, was decreased in the skeletal muscle
of rats with streptozotocin-induced diabetes (STZ-DM) for 21 days.
PGC-1α expression is regulated by two Cn substrates, MEF2 and
NFATc, both of which showed significantly reduced activity in the
same muscles. MEF2 and NFATc activity as well as PGC-1α
expression were also decreased in muscles of
CnAα-/- and CnAβ-/- mice without
diabetes indicating that decreased Cn signaling, rather than
changes in other signaling pathways, were responsible for decreased
PGC-1α expression. These findings demonstrate that Cn activity
is a major determinant of PGC-1α expression in skeletal muscle
during diabetes and possibly other conditions associated with loss
of muscle mass. We also found that STZ-induced atrophy is
associated with fiber type switching from MHCI and the oxidative
phenotype towards MHCII
and the glycolytic phenotype along the MHC gene expression
continuum. Furthermore, there was a preferential decrease in the
cross-sectional area of MHCII fibers in the skeletal muscles of
STZ-DM animals. These results indicate that the chronic muscle
atrophy associated with DM predominantly affects MHCII fibers and
that switching from MHCI to MHCII may serve as a mechanism to
sustain atrophy. A more thorough understanding of the signaling
pathways that regulate protein degradation in different fiber types
will be important for the development of therapies to treat the
chronic atrophy associated with DM and other systemic diseases.
Table of Contents
TABLE OF CONTENTS
CHAPTER 1
......................................................................................................................
1
INTRODUCTION.............................................................................................................
1
DIABETES: ATROPHY AND FIBER-TYPE SWITCHING
......................................................... 2
The role of Cn/NFAT/MEF2 signaling
.......................................................................
3
The role of PGC-1α
....................................................................................................
4
CHAPTER 2
......................................................................................................................
6
BACKGROUND AND SIGNIFICANCE
.......................................................................
6
SKELETAL MUSCLE STRUCTURE
......................................................................................
8
SKELETAL MUSCLE FIBER TYPES
..................................................................................
11
PROTEIN DEGRADATION
................................................................................................
14
The Lysosomal System
..............................................................................................
14
The Ubiquitin Proteasome System
............................................................................
15
The Calpains
.............................................................................................................
22
The Caspases
............................................................................................................
23
MOLECULAR MECHANISMS REGULATING PROTEIN HOMEOSTASIS
............................... 25
PI3K/Akt
....................................................................................................................
25
MEK/ERK
.................................................................................................................
28
NFκB
.........................................................................................................................
30
Calcineurin/NFAT/MEF2 signaling
.........................................................................
31
MEF2
........................................................................................................................
34
PGC-1α
.....................................................................................................................
35
CHAPTER 3
....................................................................................................................
43
MATERIALS AND METHODS
...................................................................................
43
MATERIALS
....................................................................................................................
44
ANIMALS
.......................................................................................................................
44
STZ-DM rats
.............................................................................................................
44
STZ-DM transgenic mice:
.........................................................................................
46
Calcineurin knock-out mice
......................................................................................
46
MEASUREMENT OF MUSCLE PROTEIN DEGRADATION
................................................... 46
Rate of Tyrosine
release............................................................................................
46
Actin
degradation......................................................................................................
47
WESTERN BLOT ANALYSIS
............................................................................................
47
REAL-TIME RT-PCR
.....................................................................................................
49
IMMUNOHISTOCHEMISTRY
.............................................................................................
49
ENDOGENOUS NFATC ACTIVITY ASSAY
.......................................................................
50
SINGLE FIBER
ANALYSIS................................................................................................
50
Single Fiber Preparation
..........................................................................................
50
Single fiber force assay
.............................................................................................
51
Single fiber MHC-type determination
.......................................................................
51
STATISTICAL ANALYSIS.
.................................................................................................
52
CHAPTER 4
....................................................................................................................
53
CALCINEURIN SIGNALING AND PGC-1α EXPRESSION ARE
SUPPRESSED
DURING MUSCLE ATROPHY DUE TO DIABETES
.............................................. 53
INTRODUCTION
..............................................................................................................
54
RESULTS
........................................................................................................................
56
Rats treated with streptozotocin experience skeletal muscle
atrophy due to increased
protein degradation.
.................................................................................................
56
PGC-1α expression is decreased in muscle from
STZ-treated rats. ......................... 56
Decreased PGC-1α transcription is not due to
decreased CREB activity. .............. 60
Calcineurin signaling is down-regulated in muscle from
STZ-treated rat. .............. 60
Loss of calcineurin signaling results in decreased
PGC-1α transcription in skeletal
muscle.
......................................................................................................................
68
DISCUSSION
...................................................................................................................
71
CHAPTER 5
....................................................................................................................
75
SINGLE SKELETAL MUSCLE FIBER TYPE SPECIFICITY AND
SWITCHING
IN ATROPHY ASSOCIATED WITH STREPTOZOTOCIN-INDUCED INSULIN-
DEFICIENCY
.................................................................................................................
75
INTRODUCTION
..............................................................................................................
76
RESULTS
........................................................................................................................
78
STZ reduced body weight by elevating protein breakdown in
skeletal muscle. ........ 78
STZ did not affect specific force or structural integrity of
fibers. ............................ 81
STZ caused muscle fiber type switching from MHCI to MHCII.
.............................. 81
STZ caused a preferential reduction of CSA of MHCII fibers.
................................. 81
DISCUSSION
...................................................................................................................
87
CHAPTER 6
....................................................................................................................
90
DISCUSSION AND CONCLUSIONS
..........................................................................
90
CELLULAR MECHANISMS REGULATING PGC-1α IN STZ-DM
........................................ 92
CREB signaling is abnormal in STZ-DM
.................................................................
92
Cn signaling is supressed in STZ-DM
......................................................................
99
PHYSIOLOGICAL IMPACT OF SUPPRESSED PGC-1α EXPRESSION IN STZ-DM
............... 100
Muscle fibers transition from MHCI to MHCII in STZ-DM
................................... 100
MHCII fibers are more susceptible to atrophy in STZ-DM
.................................... 101
The link between fiber-type and atrophy
................................................................
104
CONCLUSIONS
..............................................................................................................
106
REFERENCES
..............................................................................................................
109
FIGURES
2.1 Schematic of human skeletal muscle sarcomere structure and
protein
components...9
2.2 The ubiquitin proteasome system...16
2.3 Insuling signaling activates both the PI3K/Akt and MEK/ERK
pathways...26
2.4 Transcriptional regulation of PGC-1α...41
4.1 The rate of protein degradation and ubiquitin expression are
increased in 21day
STZ-treated rat muscle...58
4.2 PGC-1α expression is decreased in 21day STZ-treated rat
muscle...59
4.3 CREB signaling is abnormal in 21day STZ-treated rat
muscle...61
4.4 Cn catalytic A subunit protein is decreased in 21day
STZ-treated rat muscle...63
4.5 NFATc activity is decreased in 21 day STZ-treated rat
muscle...64
4.6 GSK-3β signaling is unchanged in 21day STZ-treated rat
muscle...66
4.7 MEF2 activity is decreased in 21day STZ-treated rat
muscle...69
4.8 MEF2 and NFATc signaling and PGC-1α mRNA are
decreased in muscles of
CnAα-/- and CnAβ-/- mice...70
5.1 STZ-treated rats have elevated blood glucose, decreased body
mass, increased
protein degradation...79
5.2 Fibers from STZ-treated rats maintained structural
integrity...82
5.3 Fiber type switching from MHCI to MHCII in soleus muscle of
STZ-treated
rats...83
5.4 MHCII fibers are more susceptible to STZ-induced atrophy than
MHCI fibers in
both the soleus and gastrocnemius...84
6.1 Phosphorylation-dependent regulation of TORC...95
6.2 Hypothetical model showing the role of fiber-type switching in
sustaining skeletal
muscle atrophy...102
About this Dissertation
School | |
---|---|
Department | |
Subfield / Discipline | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Suppression of Calcineurin Signaling and PGC-1α Expression During the Chronic Skeletal Muscle Atrophy Associated with Diabetes Mellitus: Implications for Muscle Function () | 2018-08-28 15:14:39 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|