Estimation of Epidemic Model Parameters: A Spatial Analysis using Bayesian Techniques Open Access
Switchenko, Jeffrey (2011)
Abstract
Infectious disease models attempt to evaluate the effects on the
spread and trans-
mission of disease. One particular model, the
susceptible-infected-recovered (SIR)
model, places individuals into classes of disease progression,
where a series of dif-
ferential equations tracks the rates of transmission and recovery
for a given disease
through a susceptible population. Two parameters, the transmission
parameter and
the recovery parameter, drive the dynamics of the model, and their
ratio, R0, is the
average number of cases caused by one infectious individual within
a completely sus-
ceptible population. R0 is seen as one of the most important
quantities in the study of
epidemics, and signals how quickly a particular disease can spread
amongst a suscep-
tible population. Previous analyses have focused primarily on
tracking these epidemic
disease parameters over time, and classifying individuals due to
baseline differences
which reflect heterogeneity within the population. For example,
these differences can
be based on age, gender, vaccination status, or behavior.
However, we choose to quantify the spatial heterogeneity that
exists in spatially-
referenced data in an effort to define core areas of disease rates
and transmission.
We first consider geographically weighted regression (GWR) models
in an effort to
assess the spatial variability that exists between disease rates
and baseline tract-
level characteristics which can define core disease areas. Next, we
build hierarchical
Bayesian models which incorporate random effects structures,
inducing correlation
in local estimates of disease transmission with exchangeable random
effects, which
smooth local estimates based on global averages, and conditionally
autoregressive
(CAR) random effects, which smooth local estimates based on
neighboring estimates.
We extend a chain binomial model to predict the spread of disease,
while considering
two different parameterizations of the chain binomial model, and
simulate outbreaks
to assess model performance. In addition, we extend a general
epidemic model, which
incorporates aspects of frailty models in assessing heterogeneity
within the popula-
tion. Through our modeling approaches, we are able to identify
cores areas for the
transmission of sexually transmitted infections (STIs) in
Baltimore, Maryland from
2002-05.
Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 SIR Disease Modeling . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Parameters of interest . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Differential equations . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 R_O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Analysis and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Mathematical vs. Statistical Modeling . . . . . . . . . . . . . . . . 12
2.1 Calculation of R_O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Basic calculation . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Survival function . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Multitype model . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Next-generation operator . . . . . . . . . . . . . . . . . . . . . 18
2.2 Statistical Estimation of R_O . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Epidemic curve estimation . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Final outbreak size . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Least squares estimation . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Chain binomial models . . . . . . . . . . . . . . . . . . . . . . 21
3 Bayesian Inference for Epidemic Modeling . . . . . . . . . . . . . 23
3.1 Chain binomial models . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Transitional approach . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Reed-Frost approach . . . . . . . . . . . . . . . . . . . . . . . . . .30
3.2 General epidemic model . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Introduction to Conceptual Epidemic Models . . . . . . . . . . . . . . . . . 35
4.1 Initial Spatial Analysis: Tracking Spatial Patterns in Prevalence . . . . 35
4.2 Methods and Model Descriptions: A Geographically
Weighted Regression Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Application to Baltimore STI Data . . . . . . . . . . . . . . . . . . . . . . 45
5 Extending the SIR Model to Spatial Analysis . . . . . . . . . . . . . . 51
5.1 Chain Binomial: A Transitional Approach . . . . . . . . . . . . . . . . . 53
5.1.1 Random effects - Exchangeable, Conditionally Autoregressive,
and Convolution Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Transmission Estimation in Chain Binomial Models . . . . . . . . . . 60
5.3 Reed-Frost Chain Binomial Model . . . . . . . . . . . . . . . . . . . . 62
5.4 Chain Binomial Model Overview . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 A Spatial Approach to the General Epidemic Model . . . . . . . . . . 66
5.6 Results: Chain Binomial - Spatial Model . . . . . . . . . . . . . . . . 70
5.6.1 Estimation of Transmission Probability . . . . . . . . . . . . . . . . 70
5.6.2 Estimation of R_O - Transition Chain Binomial Model . . . . . . . 72
5.6.3 Estimation of R_O - Reed-Frost Chain Binomial Model . . . . . 78
5.6.4 Chain Binomial Model Comparison . . . . . . . . . . . . . . . . . . . 82
5.7 Results: General Epidemic Model - Spatial Estimation . . . . . . . . 93
5.8 Assessing Model Performance through Simulations
of the Chain Binomial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.9 Discussion - R_O Estimation Models . . . . . . . . . . . . . . . . . . . 108
6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1 Extensions to Existing Models . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Spatially-varying Coefficient Models . . . . . . . . . . . . . . . . . . . 112
6.3 Identifiability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
About this Dissertation
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Estimation of Epidemic Model Parameters: A Spatial Analysis using Bayesian Techniques () | 2018-08-28 16:09:36 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|