Edge Detection and Enriched Subspaces 公开
Yin, Ziyi (Spring 2019)
Abstract
We describe an image reconstruction algorithm that reconstructs the image using approximate image basis obtained from the image segmentation algorithm. Unlike similar approaches which reconstruct the image directly, our algorithm highly improves the accuracy of reconstruction in most cases especially with only a limited range of X-ray projection angles. We first use the image segmentation method to detect the edge of the object, then use the segmentation result as the approximate image basis to reconstruct the image. Moreover, our algorithm can be applied to different kinds of objects, such as a single object, separated objects and overlay objects, and the accuracy of the reconstruction image is always improved.
Table of Contents
1 Introduction 1
2 Background 4
2.1 Computational Diculties . . . . . . . . . . . . . . . . . . . . 5
2.2 Regularization Methods . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Truncated SVD . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Tikhonov Regularization . . . . . . . . . . . . . . . . . 9
2.2.3 Modied Tikhonov Regularization . . . . . . . . . . . . 11
3 Image Reconstruction 13
3.1 Math Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Reconstruction Example . . . . . . . . . . . . . . . . . . . . . 16
4 Image Segmentation 19
4.1 Segmentation Example . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Segmentation Method . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Step 1: Forward Model . . . . . . . . . . . . . . . . . . 23
1
4.2.2 Step 2: Attenuation Update . . . . . . . . . . . . . . . 24
4.2.3 Step 3: Curve Update . . . . . . . . . . . . . . . . . . 25
4.3 Comparison of Reconstruction and Segmentation . . . . . . . 28
5 Enriched Krylov Subspace Methods 30
5.1 Krylov Subspace Method . . . . . . . . . . . . . . . . . . . . . 30
5.2 Enriched Subspace . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Alternative Approach - Modied CGLS . . . . . . . . . . . . . 35
6 Numerical Experiments 40
6.1 Segmentation Experiments . . . . . . . . . . . . . . . . . . . . 40
6.1.1 Single Object . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Separated Objects . . . . . . . . . . . . . . . . . . . . 47
6.2 Reconstruction Experiment . . . . . . . . . . . . . . . . . . . 52
6.2.1 Single Object . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2 Separated Object . . . . . . . . . . . . . . . . . . . . . 63
6.2.3 Overlay Object . . . . . . . . . . . . . . . . . . . . . . 72
7 Concluding Remarks 82
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
关键词 | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Edge Detection and Enriched Subspaces () | 2019-04-12 10:36:24 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|