AudioStrike: Acoustic Identification of Keystrokes to Enhance End-to-End Session Integrity 公开
Zaiman, Zachary (Spring 2023)
Abstract
The lateral movement strategy is one of the most pervasive attack techniques in a modern hacker's arsenal. Generally, a point of entry is established through a phishing or social engineering attack to gain access to a target's broader network from where more confidential and valuable information is obtained. Time and time again this method of exploitation has beaten the most complex systems with state-of-the-art intrusion detection software and security infrastructure due primarily to human error. To effectively defend against lateral movement attacks, we propose Audiostrike, a continuous and frictionless keystroke authentication architecture that utilizes the natural acoustic emanations of a user's keyboard. We specifically show a proof of concept of this system on a single typist that achieves a 0.87 ROCAUC score of classifying keystrokes on three regions of the keyboard and can identify a potential attack within 5 keystrokes with high probability.
Table of Contents
1 Introduction 1
2 Background 7
2.1 Side Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Security by Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Threat Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Local Compromise . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Root Compromise . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Physical Compromise . . . . . . . . . . . . . . . . . . . . . . . 10
3 Materials and Methods 12
3.1 AudioStrike System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Data Collector . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 IRB Study Design For Crowd Sourcing . . . . . . . . . . . . . . . . . 24
3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Results 30
4.1 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Related Works 36
5.1 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 38
5.4 Audio Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Crowd Sourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6 Discussion 44
6.1 System Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Appendix A Full Keystroke Distribution 51
Bibliography 55
About this Honors Thesis
- Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
关键词 | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
|
AudioStrike: Acoustic Identification of Keystrokes to Enhance End-to-End Session Integrity () | 2023-04-06 17:11:50 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|