Semagenesis in Nonparasitic Plants Pubblico
Young, Phoebe Hope (2012)
Abstract
Abstract
Semagenesis in Nonparasitic Plants
The parasitic plant Striga asiatica detects monocot
host roots by semagenesis: Striga's root tip exudes reactive
oxygen species which oxidize phenols on nearby hosts' cell walls,
releasing quinones, which trigger parasitism in Striga. In
another plant-plant detection phenomenon, many nonparasitic plants
adjust their root architecture so that their roots avoid or grow
toward competitor roots. This density-dependent phenotype is not
fully explained by the detection of limited resources around
another root or by the toxicity of allelochemicals. Semagenesis may
be used by nonparasitic plants as a third mechanism of detecting
nearby competitors. This study considers the two unconfirmed steps
of semagenesis in nonparasitic dicots: 1) do reactive
oxygen species (e.g. H2O2) result in the
release of quinones from nonparasites' roots? and 2) is the
response to semagenesis signals the same as the response to high
population densities? When ten day old Arabidopsis thaliana
seedlings were treated with 0, 10, 25, or 50 µM
H2O2, dimethoxy-p- benzoquinone (DMBQ)
and methoxy-quinone were not detected in an ethyl acetate
extraction of the growth medium, possibly because this dicot plant
does not have enough phenols in its cell walls to produce high
levels of quinones. The same extraction of the growth media showed
that 48 h treatment with 25 or 50 µM
H2O2 causes an increase in exudation of both
camalexin and indole-3-carboxylic acid, indicating that such
treatments elicit a stress response. In the second step of
semagenesis, elicited quinones should trigger a morphological and
physiological change consistent with density-dependent morphology.
Ten day old Arabidopsis seedlings treated with DMBQ had
shorter roots and more lateral roots than untreated seedlings.
With Arabidopsis seedlings grown at varying densities, no
consistent density-dependent morphology was observed. Semagenesis
is more likely to occur in 20 day old Arabidopsis, as these
older plants have more phenols and a known root exudate-dependent
root architecture. Semagenesis may serve as a detection mechanism
for stressed dicots, which release phenols in quantity, or as a
mechanism for dicots to detect monocots, which have more phenols in
their walls than do dicots.
Table of Contents
Table of Contents
Introduction
..........................................................................................................................1
Chemical signaling between organisms
..........................................................................................1
Competition in plants
................................................................................................................6
Semagenesis in nonparasitic plants-a method of detecting
competition? .............................................9
Testing the semagenesis model in
nonparasites..............................................................................13
Methods
...............................................................................................................................14
Germination of seeds
................................................................................................................14
Treatment with H2O2
...............................................................................................................14
Sample extraction of DMBQ
.......................................................................................................15
Aqueous extraction of root exudate
............................................................................................15
Organic extraction of root exudate
.............................................................................................16
Effect of population on root morphology and on
·O2- accumulation in the root tip
................................17
Effect of DMBQ on morphology and
.............................................................................................17
Effect of population density on morphology
...................................................................................18
Data analysis
..........................................................................................................................19
Results
.................................................................................................................................20
DMBQ
extraction.......................................................................................................................20
Treatment with
H2O2................................................................................................................20
Organic extraction of root exudate
..............................................................................................32
Effect of population on root morphology and on
·O2- accumulation in the root tip
................................33
Effect of DMBQ on morphology
...................................................................................................36
Effect of population density on morphology
...................................................................................37
Discussion.............................................................................................................................42
References ............................................................................................................................48
Figures
Figure 1
..................................................................................................................................5
Figure 2
..................................................................................................................................9
Figure 3
..................................................................................................................................11
Figure 4
..................................................................................................................................16
Figure 5
..................................................................................................................................18
Figure 6
..................................................................................................................................21
Figure 7
..................................................................................................................................22
Figure 8
..................................................................................................................................23
Figure 9
..................................................................................................................................24
Figure 10
................................................................................................................................25
Figure 11
................................................................................................................................25
Figure 12
................................................................................................................................27
Figure 13
................................................................................................................................27
Figure 14
................................................................................................................................28
Figure 15
................................................................................................................................28
Figure 16
................................................................................................................................29
Figure 17
................................................................................................................................29
Figure 18
................................................................................................................................30
Figure 19
................................................................................................................................30
Figure 20
................................................................................................................................31
Figure 21
................................................................................................................................31
Figure 22
................................................................................................................................32
Figure 23
................................................................................................................................33
Figure 24
................................................................................................................................34
Figure 25
................................................................................................................................35
Figure 26
................................................................................................................................36
Figure 27
................................................................................................................................37
Figure 28
................................................................................................................................39
Figure 29
................................................................................................................................40
Figure 30
................................................................................................................................41
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Parola chiave | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Semagenesis in Nonparasitic Plants () | 2018-08-28 14:04:36 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|