On Pisier type problems Público

Sales, Marcelo (Spring 2023)

Permanent URL: https://etd.library.emory.edu/concern/etds/5t34sk889?locale=es
Published

Abstract

A subset $A\subseteq \ZZ$ of integers is \textit{free} if for every two distinct subsets $B, B'\subseteq A$ we have 

\begin{align*}

  \sum_{b\in B}b\neq \sum_{b'\in B'} b'.

\end{align*}

Pisier asked if for every subset $A\subseteq \ZZ$ of integers the following two statement are equivalent:

\begin{enumerate}

  \item[(i)] $A$ is a union of finitely many free sets.

  \item[(ii)] There exists $\epsilon>0$ such that every finite subset $B\subseteq A$ contains a free subset $C\subseteq B$ with $|C|\geq \epsilon |B|$.

\end{enumerate}

In a more general framework, the Pisier question can be seen as the problem of determining if statements (i) and (ii) are equivalent for subsets of a given structure with prescribed property. We study the problem for several structures including $B_h$-sets, arithmetic progressions, independent sets in hypergraphs and configurations in the euclidean space. 

Table of Contents

1

Introduction

1

1.1

Arithmetic progressions and

B

h

-sets . . . . . . . . . . . . . . . . . . .

3

1.2

Euclidean configurations

. . . . . . . . . . . . . . . . . . . . . . . . .

6

1.3

Organization

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

2

Independent sets on hypergraphs

10

2.1

μ

-fractional property

. . . . . . . . . . . . . . . . . . . . . . . . . . .

11

2.2

A version for simple graphs

. . . . . . . . . . . . . . . . . . . . . . .

15

2.3

Independent sets of shift graphs . . . . . . . . . . . . . . . . . . . . .

18

3

Pisier type problem for

B

h

-sets

20

3.1

A local version of the Pisier problems for sets

. . . . . . . . . . . . .

20

3.2

Proof of Theorem 1.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . .

30

4

Pisier type problems for arithmetic progressions

34

4.1

A modification of Hales–Jewett theorem

. . . . . . . . . . . . . . . .

34

4.2

The partite construction

. . . . . . . . . . . . . . . . . . . . . . . . .

36

4.3

A property of the construction . . . . . . . . . . . . . . . . . . . . . .

42

4.4

Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . .

49

5

Euclidean configurations

52

5.1

Segments are P-Ramsey

. . . . . . . . . . . . . . . . . . . . . . . . .

52

5.2

Robust configurations . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

5.3

Simplices are P-Ramsey

. . . . . . . . . . . . . . . . . . . . . . . . .

59

6

Concluding remarks

66

6.1

Pisier type problems for linear system of equations

. . . . . . . . . .

66

6.2

Euclidean considerations

. . . . . . . . . . . . . . . . . . . . . . . . .

67

Bibliography

69

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Palabra Clave
Committee Chair / Thesis Advisor
Committee Members
Última modificación

Primary PDF

Supplemental Files