On Pisier type problems Público
Sales, Marcelo (Spring 2023)
Abstract
A subset $A\subseteq \ZZ$ of integers is \textit{free} if for every two distinct subsets $B, B'\subseteq A$ we have
\begin{align*}
\sum_{b\in B}b\neq \sum_{b'\in B'} b'.
\end{align*}
Pisier asked if for every subset $A\subseteq \ZZ$ of integers the following two statement are equivalent:
\begin{enumerate}
\item[(i)] $A$ is a union of finitely many free sets.
\item[(ii)] There exists $\epsilon>0$ such that every finite subset $B\subseteq A$ contains a free subset $C\subseteq B$ with $|C|\geq \epsilon |B|$.
\end{enumerate}
In a more general framework, the Pisier question can be seen as the problem of determining if statements (i) and (ii) are equivalent for subsets of a given structure with prescribed property. We study the problem for several structures including $B_h$-sets, arithmetic progressions, independent sets in hypergraphs and configurations in the euclidean space.
Table of Contents
1
Introduction
1
1.1
Arithmetic progressions and
B
h
-sets . . . . . . . . . . . . . . . . . . .
3
1.2
Euclidean configurations
. . . . . . . . . . . . . . . . . . . . . . . . .
6
1.3
Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
2
Independent sets on hypergraphs
10
2.1
μ
-fractional property
. . . . . . . . . . . . . . . . . . . . . . . . . . .
11
2.2
A version for simple graphs
. . . . . . . . . . . . . . . . . . . . . . .
15
2.3
Independent sets of shift graphs . . . . . . . . . . . . . . . . . . . . .
18
3
Pisier type problem for
B
h
-sets
20
3.1
A local version of the Pisier problems for sets
. . . . . . . . . . . . .
20
3.2
Proof of Theorem 1.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . .
30
4
Pisier type problems for arithmetic progressions
34
4.1
A modification of Hales–Jewett theorem
. . . . . . . . . . . . . . . .
34
4.2
The partite construction
. . . . . . . . . . . . . . . . . . . . . . . . .
36
4.3
A property of the construction . . . . . . . . . . . . . . . . . . . . . .
42
4.4
Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . .
49
5
Euclidean configurations
52
5.1
Segments are P-Ramsey
. . . . . . . . . . . . . . . . . . . . . . . . .
52
5.2
Robust configurations . . . . . . . . . . . . . . . . . . . . . . . . . . .
54
5.3
Simplices are P-Ramsey
. . . . . . . . . . . . . . . . . . . . . . . . .
59
6
Concluding remarks
66
6.1
Pisier type problems for linear system of equations
. . . . . . . . . .
66
6.2
Euclidean considerations
. . . . . . . . . . . . . . . . . . . . . . . . .
67
Bibliography
69
About this Dissertation
- Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Palabra Clave | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
|
On Pisier type problems () | 2023-04-07 18:30:17 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|