Hyperbolic 3-Manifolds as Discretized Configuration Spaces of Simple Graphs Público
Chu, Michelle (2011)
Abstract
A discretized configuration space is a topological space of
possible configurations
of particles in a graph in which multiple particles are not allowed
in neighbouring
edges. In this paper, we consider discretized configuration spaces
of three particles on
1-dimensional simple graphs, in particular, the discretized
configuration spaces D3(K7)
and D3(K4,4). We prove that in both cases, removing certain
vertices from the discretized
configuration spaces on three particles results in complete
finite-volume hyperbolic
3-manifolds. We describe their construction and triangulations by
cubes and
tetrahedra. We also discuss their commensurability class in
relation to each other and
to the complement of the figure-8 knot.
Table of Contents
Contents
1 Introduction 1
2 Prerequisites 2
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 2
2.2 Manifolds and Hyperbolic Geometry . . . . . . . . . . . . . . .
. . . . . . . 3
2.3 Cell Complexes . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 7
2.4 Group Theory and Algebraic Topology . . . . . . . . . . . . . .
. . . . . . . 7
3 Preliminaries and Denitions 9
3.1 Motion-Planning . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 9
3.2 Formal Denition of Conguration Spaces . . . . . . . . . . . . .
. . . . . . 12
3.3 The Premise . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 13
4 Discretized Space of K7 18
4.1 2-dimensional forerunner: D2(K5) . . . . . . . . . . . . . . .
. . . . . . . . . 18
4.2 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 19
4.3 Geometric Properties of M1 . . . . . . . . . . . . . . . . . .
. . . . . . . . . 21
4.4 Other Discoveries . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 24
5 Discretized Space of K4;4 27
5.1 2-dimensional forerunner: D2(K3;3) . . . . . . . . . . . . . .
. . . . . . . . . 27
5.2 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 28
5.3 Geometric Properties of M2 . . . . . . . . . . . . . . . . . .
. . . . . . . . . 30
5.4 Other Discoveries . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 32
6 The Relationship 36
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Palabra Clave | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Hyperbolic 3-Manifolds as Discretized Configuration Spaces of Simple Graphs () | 2018-08-28 12:19:10 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
MChu Thesis.zip () | 2018-08-28 12:22:40 -0400 |
|