The Role of the Amygdala and Orbital frontal Cortex in Processing Socially Relevant Crossmodal Signals Público
Payne, Christa (2011)
Abstract
Abstract
The Role of the Amygdala and Orbital Frontal Cortex in
Processing
Socially Relevant Crossmodal Signals
Primate social success requires crossmodal integration of affective
social signals
from faces and voices, but little is known about the neural
substrates supporting
this ability. Hence, we assessed the contributions of amygdala and
orbital frontal
cortex in the acquisition of normal integration and affective
processing abilities. Integration
ability and scanning strategies of 16 adult rhesus macaques that
received either
lesions of the amygdala (Neo-Aibo; n = 6) or the orbital frontal
cortex (Neo-Oasp; n
= 4) or sham operations (Ne0-C; n = 6) as infants (males = females
in each
group) were quantified using eye-tracking. Four short (2-sec) video
clips
depicting novel male conspecifics producing one of four
species-typical
vocalizations (coo, grunt, scream, threat) were presented in a
preferential viewing
paradigm. Pairs of videos were played with the auditory component
matching one
of vocalizations in two conditions: Synchronized (simultaneous
onset of audio
and visual components); Desynchronized (delayed onset of audio
component).
Group Neo-C showed a preference for one of the two videos in both
conditions,
indicating integration ability. Scanning patterns of males and
females differed,
with females (eyes > mouth) attending to vocalization valence,
but males (eyes =
mouth) appeared to also attend to another stimulus feature, such as
the inferred
dominance status of the stimulus animals. Group Neo-Aibo
demonstrated normal
integration ability, but the sex-specific scanning strategies
exhibited by group
Neo-C were completely disrupted. Neo-Aibo males and females showed
the exact
opposite pattern of group Neo-C. By contrast, group Neo-Oasp showed
weakened
integration ability that was associated with increased looking to
the eye regions.
This increased salience of the eyes was attributed to higher
aggression displayed
by these monkeys in other laboratory measures. Collectively, our
data show that
both the amygdala and orbital frontal cortex are involved in the
evaluation of
socio-emotional audiovisual signals, albeit in slightly different
ways. In line with
current literature, the amygdala appears to contribute to
sex-specific assessments
of the social salience of the crossmodal stimuli, whereas the
orbital frontal cortex
is crucial for the appropriate regulation of responses to the
stimuli.
Table of Contents
Table of Contents
GENERAL INTRODUCTION 1
1- Terminology___________________________________________________________ 3
2- Dynamic vs. Static Stimuli________________________________________________ 7
3- Rhesus Macaque Vocalizations_____________________________________________ 8
4- Amygdala and Socio-emotional Processing___________________________________ 10
A) Sensory Convergence in the Amygdala______________________________________ 13
B) Amygdala and Emotion__________________________________________________ 14
i) Amygdala and Facial Emotion______________________________________________ 15
ii) Amygdala and Vocal Emotion______________________________________________ 16
iii) Amygdala and Audiovisual Emotion_________________________________________ 17
5- Orbital Frontal Cortex and Socio-emotional Processing__________________________ 21
A) Sensory Convergence in the Orbital Frontal Cortex_____________________________ 21
B) Orbital Frontal Cortex and Emotion_________________________________________ 22
i) Orbital Frontal Cortex and Facial Emotion_____________________________________ 23
ii) Orbital Frontal Cortex and Auditory Emotion__________________________________ 24
iii) Orbital Frontal Cortex and Audiovisual Emotion_______________________________ 25
6- Specific Aims and Hypotheses_____________________________________________ 27
MANUSCRIPT I: Crossmodal Integration of Conspecific Vocalizations in Rhesus Macaques 31
Abstract________________________________________________________________ 32
Introduction_____________________________________________________________ 34
Method_________________________________________________________________ 36
Subjects________________________________________________________________ 37
Crossmodal integration task________________________________________________ 37
Measures_______________________________________________________________ 39
Statistical Analyses_______________________________________________________ 40
Results_________________________________________________________________ 41
Overall Integration and Scanning Patterns_____________________________________ 41
Identity________________________________________________________________ 44
Valence________________________________________________________________ 47
Discussion______________________________________________________________ 51
Viewing of eye regions____________________________________________________ 51
Sex differences in scanning patterns_________________________________________ 53
Additional influences on looking behavior_____________________________________ 56
Conclusions____________________________________________________________ 58
Acknowledgements______________________________________________________ 60
Figures________________________________________________________________ 61
MS-I Figure 1: Schematic of Stimulus Presentation with ROIs._____________________ 62
MS-I Figure 2: Integration Assessment - All Trials.______________________________ 63
MS-I Figure 3: Scanning Patterns - All Trials.___________________________________ 64
MS-I Figure 4: Sex Differences - All Trials._____________________________________ 65
MS-I Figure 5: Integration Assessment - Relative Identity._________________________ 66
MS-I Figure 6: Scanning Patterns - Identity Trials._______________________________ 67
MS-I Figure 7: Sex Differences - Identity Different Trials.__________________________ 68
MS-I Figure 8: Integration Assessment - Relative Valence._________________________ 69
MS-I Figure 9: Scanning Pattern - Valence Trials._________________________________ 70
MS-I Figure 10: Sex Differences - Valence Same Trials.____________________________ 71
MS-I Figure 11: Relative Looking to Eyes and Mouths by Males and Females.___________ 72
MS-I Figure 11: Representative Scan Paths for Males and Females.___________________ 73
References_______________________________________________________________ 74
MANUSCRIPT II: The Role of the Amygdala in Processing Bimodal Conspecific Vocalizations in Rhesus Macaques 83
Abstract_________________________________________________________________ 84
Introduction______________________________________________________________ 86
Method__________________________________________________________________ 89
Subjects_________________________________________________________________ 89
Magnetic Resonance Imaging Procedures_______________________________________ 90
Determination of Neonatal Amygdala Injection Coordinates_________________________ 91
Surgical Procedures________________________________________________________ 92
Lesion Verification_________________________________________________________ 93
Crossmodal integration task_________________________________________________ 94
Measures_______________________________________________________________ 96
Statistical Analyses________________________________________________________ 97
Results_________________________________________________________________ 98
Overall Integration and Scanning Patterns______________________________________ 98
Identity_________________________________________________________________ 101
Valence_________________________________________________________________ 105
Discussion_______________________________________________________________ 109
Retained Integration Ability__________________________________________________ 110
Disruption of scanning strategies_____________________________________________ 112
Disruption of species-specific responses________________________________________ 113
Additional influences on looking behavior_______________________________________ 115
Conclusions______________________________________________________________ 117
Acknowledgements________________________________________________________ 117
Tables & Figures.__________________________________________________________ 119
MS-II Table 1: Extent of Lesion Assessment._____________________________________ 120
MS-II Figure 1. Intended lesion and representative case for Neo-Aibo._________________ 121
MS-II Figure 2: Schematic of Stimulus Presentation with ROIs.______________________ 122
MS-II Figure 3: Integration Assessment - All Trials._______________________________ 123
MS-II Figure 4: Scanning Patterns - All Trials.____________________________________ 124
MS-II Figure 5: Sex Differences - All Trials.______________________________________ 125
MS-II Figure 6: Integration Assessment - Relative Identity._________________________ 126
MS-II Figure 7: Scanning Patterns - Identity Trials.________________________________ 127
MS-II Figure 8: Sex Differences - Identity Different Trials.___________________________ 128
MS-II Figure 9: Integration Assessment - Relative Valence.__________________________ 129
MS-II Figure 10: Scanning Pattern - Valence Trials.________________________________ 130
MS-II Figure 11: Sex Differences - Valence Same Trials.____________________________ 131
MS-II Figure 12: Representative Scan Paths - Males._______________________________ 132
MS-II Figure 13: Representative Scan Paths - Females._____________________________ 133
References________________________________________________________________ 134
MANUSCRIPT III: The Role of the Orbital Frontal Cortex in Processing Bimodal Conspecific Vocalizations in Rhesus Macaques 143
Abstract__________________________________________________________________ 144
Introduction_______________________________________________________________ 146
Method___________________________________________________________________ 148
Subjects__________________________________________________________________ 148
Magnetic Resonance Imaging Procedures________________________________________ 149
Surgical Procedures_________________________________________________________ 150
Lesion Verification__________________________________________________________ 151
Crossmodal integration task__________________________________________________ 152
Measures_________________________________________________________________ 154
Statistical Analyses_________________________________________________________ 155
Results__________________________________________________________________ 156
Integration Assessment after Neonatal Orbital Frontal Lesions_______________________ 156
Scanning Patterns after Neonatal Orbital Frontal Lesion____________________________ 161
Discussion_______________________________________________________________ 167
Weaker ability to integrate bimodal social signals_________________________________ 167
Inflexibility of Scanning Strategies_____________________________________________ 169
Increased Aggression_______________________________________________________ 172
Conclusions_______________________________________________________________ 175
Acknowledgements_________________________________________________________ 176
Tables & Figures.___________________________________________________________ 177
MSIII - Table 1: Extent of Lesion Assessment.____________________________________ 178
MSIII - Figure 1. Intended lesion and representative case.__________________________ 179
MSIII - Figure 2: Schematic of Stimulus Presentation with ROIs.______________________ 180
MSIII - Figure 3: Integration Assessment - All Trials._______________________________ 181
MSIII - Figure 4: Integration Assessment - Relative Identity._________________________ 182
MSIII - Figure 5: Integration Assessment - Relative Valence._________________________ 183
MSIII - Figure 6: Scanning Patterns - All Trials.____________________________________ 184
MSIII - Figure 7: Scanning Patterns - Identity Trials.________________________________ 185
MSIII - Figure 8: Sex Differences - Identity Different Trials.__________________________ 186
MSIII - Figure 9: Scanning Patterns - Valence Trials.________________________________ 187
MSIII - Figure 10: Sex Differences - Valence Same Trials.____________________________ 188
MSIII - Figure 11: Representative Scan Paths - Males._______________________________ 189
MSIII - Figure 12: Representative Scan Paths - Females._____________________________ 190
References__________________________________________________________________ 191
GENERAL DISCUSSION 200
1- How do rhesus macaques integrate crossmodal social signals?_______________________ 201
A) Integration and scanning patterns_____________________________________________ 201
B) Species-specific scanning patterns_____________________________________________ 203
2- Effects of neonatal amygdala and orbital frontal cortex_____________________________ 205
A) Amygdala lesions__________________________________________________________ 205
B) Effects of orbital frontal lesions_______________________________________________ 206
C) Comparisons of the neonatal amygdala and orbital frontal lesions.___________________ 207
3- Neural network of Emotional Crossmodal Integration______________________________ 210
A) Fusiform Gyrus___________________________________________________________ 210
B) Middle and Superior Temporal Areas___________________________________________ 211
C) Amygdala________________________________________________________________ 213
D) Orbital Frontal Cortex______________________________________________________ 214
E) Summary________________________________________________________________ 216
4- Does the Amygdala Modulate Evaluations of Socio-emotional Audiovisual Information?________________________________________________________________ 216
A) Amygdala and integration of crossmodal social cues_______________________________ 216
B) Amygdala and scanning patterns of faces_______________________________________ 217
C) Amygdala and sex differences________________________________________________ 219
5- Does the Orbital Frontal Cortex Modulate Emotional Audiovisual Integration?________________________________________________________________ 220
A) Orbital frontal cortex and integration of crossmodal social cues______________________ 221
B) Orbital frontal cortex and scanning patterns of faces______________________________ 221
6- Do the Amygdala and Orbital Frontal Cortex Uniquely Contribute to Emotional Crossmodal Integration?_______________________________________________________________ 224
7- Translation to Human Neuropsychopathology___________________________________ 225
8- Concluding Remarks______________________________________________________ 228
General Discussion - Tables & Figures.___________________________________________ 230
Table 1: Summary of Crossmodal Integration Abilities and Scanning Patterns.__________________________________________________________________ 231
Figure D1: Group Summary of Integration Assessments - All Trials.____________________ 232
Figure D2: Group Summary of Integration Assessments.____________________________ 233
Figure D3: Group Summary of Scanning Patterns - All Trials._________________________ 234
Figure D4: Group Summary of Scanning Patterns - Identity and Valence._______________ 235
Figure D5: Group Summary of Sex Differences - All Trials.___________________________ 236
Figure D6: Group Summary of Sex Differences - Identity and Valence._________________ 237
Figure D7: Representation of Neural Network Subserving Emotional Crossmodal Integration. 238
GENERAL REFERENCES 239
About this Dissertation
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Palabra Clave | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
The Role of the Amygdala and Orbital frontal Cortex in Processing Socially Relevant Crossmodal Signals () | 2018-08-28 11:40:17 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|