Molecular Pathogenesis of DYT1 Dystonia Público

Giles, Lisa Mariko (2008)

Permanent URL: https://etd.library.emory.edu/concern/etds/41687h77v?locale=es
Published

Abstract

Abstract

Molecular Pathogenesis of DYT1 Dystonia By Lisa Mariko Giles Early onset-generalized torsion dystonia (DYT1) has been linked to two mutations in the C-terminal tail of the protein torsinA. The most common mutation is a 3-bp in-frame deletion that results in the loss of one of a pair of glutamate residues at position 302 or 303 (torsinA ΔE). The second mutation, identified in a single family, is an 18-bp in- frame deletion that results in the loss of six amino acids from position 323-328 (torsinA Δ323-8). It is unclear why torsinA mutations result in a neuronal phenotype despite widespread expression in multiple tissues. Here we report a neuronal cell-type specific nuclear envelope (NE) preference for torsinA. Further, ATP-bound and dystonia-associated mutant torsinA display an enhanced NE preference compared to WT and ATP-unbound torsinA. We find that the N-terminal portion of torsinA is sufficient for oligomerization, and that dystonia- associated mutations do not disrupt oligomerization. We also demonstrate that, while torsinA WT is a long-lived protein that is processed through the autophagy-lysosomal pathway, both dystonia-associated mutations destabilize torsinA protein and result in premature degradation through the ubiquitin proteasome pathway and the autophagy- lysosome pathway. We conducted a yeast-two hybrid screen for torsinA-interacting proteins and identified a novel protein, which we named printor (protein interactor of torsinA). Printor co-distributes with torsinA in brain and other tissues, and exists in both cytosolic and membrane-associated pools. Printor co-localizes with torsinA at the endoplasmic reticulum (ER), however, unlike torsinA, printor shows a distinct ER preference. Printor shows reduced co-localization with ATP-bound and dystonia-associated mutant torsinA, and does not interact with ATP-bound torsinA or torsinA ΔE. Together, our findings

demonstrate a neuronal cell-type specific phenotype for torsinA and implicates premature degradation as a possible mechanism for mutant torsinA loss of function. Further, our findings suggest that printor is a novel component of the DYT1 pathogenic pathway.

Table of Contents

TABLE OF CONTENTS

CHAPTER I. INTRODUCTION AND BACKGROUND

Opening Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Dystonia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Primary dystonia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Dystonia-plus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Secondary dystonia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Heredodegenerative dystonia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DYT1 and the Identification of TorsinA . . . . . . . . . . . . . . . . . . . . . . . . 6

TorsinA is Localized to the ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

TorsinA Belongs to the AAA+ Superfamily and has Molecular

Chaperone Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

TorsinA is involved in neurite extension and plays a role

in the secretory pathway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

TorsinA transgenic animals reveal loss of function phenotype. . . 15

Torsin Family Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Human torsinA family members. . . . . . . . . . . . . . . . . . . . . . . . . . .17

TorsinA orthologues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

TorsinA interacting proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Kinesin light chain1 (KLC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Dopamine Transporter (DAT). . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Lamina Associated Polypeptide 1 (LAP1)/Lumenal Domain

Like Lap 1 (LULL1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Vimentin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Snapin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

e -Sarcoglycan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Mechanisms of Protein Quality Control in the ER . . . . . . . . . . . . . . . . 22

Unfolded Protein Response (UPR). . . . . . . . . . . . . . . . . . . . . . . . .22

ER-Associated Degradation (ERAD). . . . . . . . . . . . . . . . . . . . . . . 24

Ubiquitin Proteasome System. . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

ERAD II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Autophagy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Hypotheses and Organizational Overview . . . . . . . . . . . . . . . . . . . . . . .31

CHAPTER II. Dystonia-associated mutations cause premature degradation of torsinA protein and cell type-specific mislocalization to the nuclear envelope

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..42

Expression constructs and antibodies. . . . . . . . . . . . . . . . . . . . . . 42

Cell transfections and co-immunoprecipitation. . . . . . . . . . . . . . . 42

Primary cell culture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Immunofluorescence confocal microscopy. . . . . . . . . . . . . . . . . . .43

Quantitative analysis of the NE/ER distribution. . . . . . . . . . . . . . 43

[35S]Methionine pulse-chase analysis. . . . . . . . . . . . . . . . . . . . . . 44

Treatment of cells with proteasome, autophagy, and

lysosome inhibitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Analysis of torsinA localization reveals neuronal cell

type-specific enrichment in the nuclear envelope. . . . . . . . . . . . . .46

Dystonia-associated mutations cause neuronal cell

type-specific translocation of torsinA from the ER

to nuclear envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Dystonia-associated mutations do not disrupt torsinA

Oligomerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TorsinA oligomerization does not require its C-terminal

region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Dystonia-associated mutations destabilize torsinA protein. . . . . .50

Dystonia-associated mutations promote the degradation of

torsinA by both the proteasome and autophagy-lysosome

pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

CHAPTER III. PRINTOR, A NOVEL TORSINA-INTERACTING PROTEIN IMPLICATED IN DYSTONIA PATHOGENESIS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Expression constructs and antibodies. . . . . . . . . . . . . . . . . . . . . . 75

Yeast two-hybrid screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Western blot analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Immunofluorescence microscopy. . . . . . . . . . . . . . . . . . . . . . . . . 76

Immunohistochemistry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Co-immunoprecipitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Subcellular fractionation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Opti-Prep gradient fractionation. . . . . . . . . . . . . . . . . . . . . . . . . . 79

Quantitative analysis of the NE/ER distribution. . . . . . . . . . . . . 79

Quantitative analysis of co-localization. . . . . . . . . . . . . . . . . . . . . 80

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Identification of printor, a torsinA interacting protein. . . . . . . . . . 81

Printor co-distributes with torsinA in brain as well as

other tissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Printor interacts and co-localizes with torsinA in cells. . . . . . . . . 85

Printor exists in both cytosolic and membrane-associated

pools and is localized to ER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Printor co-localizes with torsinA in the ER but not the NE. . . . . . 87

Printor shows reduced co-localization with ATP-bound

form of torsinA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Printor co-localization with torsinA is reduced by

dystonia-associated mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Printor does not interact with torsinA ΔE or torsinA E171Q. . . . .91

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

CHAPTER IV. DISCUSSION AND CONCLUSIONS

Summary of Findings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Neuronal Cell-Type Specific NE Localization of TorsinA. . . . . . . . . 113

TorsinA Protein Degradation Pathways . . . . . . . . . . . . . . . . . . . . . . . 115

Printor, a Novel TorsinA-Interacting Protein May Belong

to the BBK Superfamily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

BTB/POZ domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

BACK domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Kelch domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

BBK protein superfamily. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Printor Does Not Interact with ΔE TorsinA or ATP-Bound

TorsinA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Discerning the functional role of torsinA. . . . . . . . . . . . . . . . . . . 127

How do the dystonia-associated mutations disrupt

torsinA function?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Discerning the functional role of printor. . . . . . . . . . . . . . . . . . . 133

Final Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

LIST OF FIGURES

CHAPTER I. INTRODUCTION AND BACKGROUND

Figure II-1 Schematic of the ubiquitin proteasome system. . . . . . . . . . . . . . . .35

CHAPTER II, DYSTONIA-ASSOCIATED MUTATIONS CAUSE PREMATURE DEGRADATION OF TORSINA PROTEIN AND CELL-TYPE SPECIFIC MISLOCATION TO THE NUCLEAR ENVELOPE

Figure II-1. TorsinA is enriched in the nuclear envelope in SH-SY5Y

cells but not in HeLa cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure II-2. Endogenous torsinA shows preferential NE localization

in primary cortical neurons compared to fibroblasts. . . . . . . . . . . 60

Figure II-3. Dystonia-associated mutations cause torsinA translocation to

the nuclear envelope in SH-SY5Y cells but not in HeLa cells. . . .62

Figure II-4. Dystonia-associated mutations have no effect on torsinA

oligomerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure II-5. The N-terminal region of torsinA is sufficient for torsinA

oligomerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure II-6. Dystonia-associated mutations cause premature degradation

of torsinA protein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Figure II-7. Effects of proteasome, autophagy, and lysosome inhibition

on wild-type and mutant torsinA levels. . . . . . . . . . . . . . . . . . . . .68

Figure II-8. Degradation of torsinA mutants by both the proteasome

and lysosome pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

CHAPTER III. PRINTOR, A NOVEL TORSINA-INTERACTING PROTEIN IMPLICATED IN DYSTONIA PATHOGENESIS

Figure III-1. Isolation of rat printor as a torsinA interacting protein

from yeast-two hybrid screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Figure III-2. Printor co-distributes with torsinA in multiple tissues

and brain regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure III-3. Immunohistochemical analysis of printor protein

distribution in mouse brain. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 101

Figure III-4. Printor and torsinA interact in vivo. . . . . . . . . . . . . . . . . . . . . . . 103

Figure III-5. Printor is found in both cytosolic and membrane-associated

fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure III-6. Co-localization of printor and torsinA in the ER but not

the NE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Figure III-7. Printor displays ER preference in both HeLa and

SH-SY5Y cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure III-8. Printor interaction and co-localization is disrupted by D E

and E171Q torsinA mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure III-9. ATP-bound torsinA displays enhanced NE preference. . . . . . . . 110

CHAPTER IV. DISCUSSION AND CONCLUSIONS

Figure IV-1 A model of torsinA degradation. . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure IV-2 BTB domain alignment demonstrates printor P/Q

insertion coincides with RhoBTB2 insertion. . . . . . . . . . . . . . . . 138

Figure IV-3 Printor is capable of self-interaction. . . . . . . . . . . . . . . . . . . . . . 139

Figure IV-4 Printor interacts with cullin-3. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure IV-5 WT and dystonia-associated mutant torsinA can be

ubiquitinated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure IV-6 Printor increases the turnover of WT but not dystonia-

associated mutant torsinA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

LIST OF TABLES

CHAPTER I. INTRODUCTION AND BACKGROUND

Table I-1 Identified genes and proteins associated with dystonia disease. . . 34

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Subfield / Discipline
Degree
Submission
Language
  • English
Research Field
Palabra Clave
Committee Chair / Thesis Advisor
Committee Members
Última modificación

Primary PDF

Supplemental Files