Application of Global Optimization to Image Registration Open Access

Zhu, Huiying (Fall 2017)

Permanent URL: https://etd.library.emory.edu/concern/etds/2j62s487q?locale=en
Published

Abstract

Given two images, image registration aims to transform an image into a given reference image so that the two images look alike. This technique is vital in many applications, such as medical imaging and astronomy. Finding the best transformation can be phrased as solving a mathematical optimization problem. Due to the non-convexity of the objective function, commonly employed optimization techniques often generate local minimizers, limiting the accuracy of the registration. This thesis evaluates the applicability of a global optimization method, called DDNCID, for image registration. Direct application of DDNCID in image registration could cause minimizers to be infeasible. Thus, a focus of this thesis is to add a bound constraint by imposing a barrier function into the objective function to extend DDNCID.

Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Optimization in Image Registration 5

2.1 Image Registration . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Double Descent and Color Intermittent Diffusion . . . . . 9

3 Global Optimization with Log Barrier Constraint 15

3.1 Logarithmic Barrier Method . . . . . . . . . . . . . . . . . 15

3.2 Improvements of DDNCID in Image Registration . . . . . 18

4 Numerical Experiments 20

4.1 2D Affine Registration without Boundary Constraints . . . 20

4.2 2D Affine Registration with Boundary Constraints . . . . . 22

4.3 2D Rigid Registration . . . . . . . . . . . . . . . . . . . . 22

5 Conclusion 25

5.1 Current Work . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . 25

A MATLAB Code 26

A.1 Log Barrier Constraint . . . . . . . . . . . . . . . . . . . . 26

A.2 Hessian Approximation . . . . . . . . . . . . . . . . . . . . 28

 

Bibliography 30

About this Honors Thesis

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files