Modeling and Predicting Storm Surges Using Machine Learning Methods Pubblico
Singhal, Arshia (Spring 2022)
Abstract
Machine learning methods offer significant potential to reduce computational cost in predictive modeling. Through a combination of unsupervised and supervised learning methods, key insights can be gleaned on past data and can be used to forecast future data. This is especially valuable in cases where the original model requires significant computational time and power, such as in the case of storm surge prediction. Although several such models exist to simulate and forecast storm surge, such as Sea, Land, and Overland Surges (SLOSH), Advanced Circulation (ADCIRC), and Delft3D, these models are often computationally expensive and time consuming due to the numerical techniques used to solve the associated partial differential equations. As a result, we aim to reduce this computational complexity by implementing k-means clustering, linear regression, decision tree, k-nearest neighbors, and artificial neural network machine learning techniques to predict storm surge based on storm characteristics.
Table of Contents
1 Introduction 1
1.1 Tropical Cyclones and Storm Surge......................................................... 1
1.2 Hydrodynamic Modeling........................................................................ 2
1.3 Background on Machine Learning Methods............................................. 6
1.4 Unsupervised Learning Methods............................................................. 7
1.5 Supervised Learning Methods................................................................. 8
1.6 Model Accuracy..................................................................................... 10
1.7 Applications to Storm Surge Modeling ................................................... 13
2 Methods 14
2.1 Data Curation....................................................................................... 14
2.2 Exploratory Data Analysis..................................................................... 16
2.3 Unsupervised Machine Learning Methods: K-Means Clustering................ 16
2.4 Supervised Machine Learning Methods................................................... 17
2.4.1 Linear Regression............................................................................... 17
2.4.2 Decision Tree..................................................................................... 18
2.4.3 K-Nearest Neighbors.......................................................................... 18
2.4.4 Artificial Neural Network.................................................................... 19
3 Results 20
3.1 K-Means Clustering............................................................................... 20
3.2 Linear Regression.................................................................................. 22
3.2.1 Using All Predictor Variables............................................................... 22
3.2.2 Using Subsets of Predictor Variables.................................................... 24
3.2.3 Separating Extreme Surges.................................................................. 26
3.3 Decision Tree........................................................................................ 28
3.4 K-Nearest Neighbors.............................................................................. 31
3.5 Artificial Neural Network....................................................................... 32
4 Discussion 35
5 Conclusion 39
Bibliography 42
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Parola chiave | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Modeling and Predicting Storm Surges Using Machine Learning Methods () | 2022-04-12 19:48:51 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|