Probabilistic Zero-Knowledge Proofs for Neural Network Robustness Öffentlichkeit
Han, Xu (Spring 2025)
Abstract
As machine learning (ML) models are increasingly deployed in high-stakes domains,
ensuring their robustness has become critical. However, verifying these properties
often requires access to models’ secrets, which poses a privacy risk. This thesis
proposes a novel cryptographic approach that uses Zero-Knowledge Succinct Non-
Interactive Arguments of Knowledge (zk-SNARKs) to certify the robustness of neural
networks without revealing their internal parameters. Building on prior work such
as FairProof and GeoCert, we present a scalable and privacy-preserving method that
uses verifiable randomness and circuit-based forward propagation to simulate and
prove neural network behavior. Our approach introduces a probabilistic strategy that
avoids the computational complexity of exact robustness verification and supports
real-world scenarios. Experiments on synthetic multilayer perceptrons demonstrate
that our zk-SNARK-based system can distinguish between fair and unfair models
while maintaining constant-time verification and manageable proof sizes. This work
achieves a practical and scalable method for zero-knowledge verification of machine
learning models, enabling secure and privacy-preserving model validation.
Table of Contents
Contents
1 Introduction 1
2 Background 3
2.1 zk-SNARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Things Behind the Scenes . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Writing the Circuit . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Arithmetic Circuit . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Introduction to Rank-1 Constraint System (R1CS) . . . . . . 6
2.2.4 Example of R1CS . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Trusted Setup and Groth16 in zk-SNARK . . . . . . . . . . . 9
2.3 Robustness of Machine Learning Model . . . . . . . . . . . . . . . . . 11
2.4 FairProof and GeoCert . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Approach 15
3.1 Public and Private Inputs in the Proof System . . . . . . . . . . . . . 16
3.2 Verifiable Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Inputs Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Real World Scenario Simulation . . . . . . . . . . . . . . . . . . . . . 19
3.5 Forward Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Number Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 23
i
4 Experiments 25
4.1 Fairness Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Feasibility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Conclusion 29
A Source Code 31
A.1 Code For Verifiable Randomness: . . . . . . . . . . . . . . . . . . . . 31
A.2 Code for Forward Propagation and Rounding . . . . . . . . . . . . . 33
Bibliography 36
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Stichwort | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
|
Probabilistic Zero-Knowledge Proofs for Neural Network Robustness () | 2025-04-22 14:55:36 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|