Radical Chain Reduction and C(sp2/sp3) Carboxylation via Formate Activation Öffentlichkeit

Smith, Gavin (Fall 2024)

Permanent URL: https://etd.library.emory.edu/concern/etds/0k225c55c?locale=de
Published

Abstract

Over the last several decades, various modes of catalysis in chemical synthesis have emerged at the forefront of synthetic organic chemistry to make carbon-carbon bond formation more efficient and selective. While single electron transformations have maintained synthetic utility for decades, the emergence of photoredox catalysis has reinvigorated the field of single electron processes by introducing mild and catalytic conditions for single electron activation of organic molecules via redox manipulations. While many photoredox methodologies have relied on highly reducing or oxidizing photocatalysts for radical formation, we utilized previous methodologies in our group to access potent reductants via mild hydrogen atom transfer processes. We have demonstrated through a polarity matched hydrogen atom transfer between an electrophilic thiyl radical and abundant formate salts, we are able to mildly generate the radical anion of carbon dioxide (CO2•−), a potent reductant (E ½ o = -2.2 V vs SCE). We demonstrate the utility of this reaction in a variety of reductive transformations including hydroarylation, defluoroalkylation, ketyl radical formation, detosylation, and radical deamination of aryl ammonium salts. Furthermore, our research shows CO2•− as a nucleophilic source of CO2 as it adds across alpha, beta-unsaturated alkenes in a 1,4-addition. In addition, formate activation with phenyl triflimide is used nickel-catalyzed cross coupling to generate aryl/vinyl carboxylic acids from their corresponding aryl/vinyl bromide precursors. Finally, we utilize computational chemistry to help elucidate the mechanistic features of a protocol for catalytic dearomatization of unactivated arenes via catalytic hydroalkylation.

Table of Contents

Chapter 1: An overview of Single Electron Transformations, the Emergence of Photoredox Catalysis, and Nickel-Catalyzed Cross-Couplings……………………………………………........................................................................1

1.1 Single Electron Transformations………………………………………………………………......................................2

1.1.1 Hydrogen Atom Abstraction……………………………………………………………….........................................2

1.1.2 Halogen Atom Abstraction………………………………………………………………….........................................4

1.1.3 The Emergence of Photoredox Catalysis……………………………………………………....................................6

1.2 An Overview of Nickel-Catalyzed Cross Couplings………………………………………......................................10

1.3 References……………………………………………………………………………………............................................11

Chapter 2: Radical Chain Reduction via the Carbon Dioxide Radical Anion (CO2•−)……..................................15

2.1: An Overview of Photoredox in the Jui Lab………………………………………………….....................................17

2.2: An Overview of the Carbon Dioxide Radical Anion………………………………………....................................19

2.2.1 Mechanistic Investigations into CO2•– as an Upconverted Reductant……………………............................20

2.2.2: Investigations into Radical Chain Generation of CO2•– …………………………………...............................25

2.2.3: Generation of CO2•– with Alternative Initiators………………………………………….................................26

2.2.4: Reductive Process Enabled by CO2•–……………………………………………………......................................29

2.3 References……………………………………………………………………………………...........................................36

Chapter 3: Hydrocarboxylation of Electron-Deficient Alkenes via the Carbon Dioxide Radical Anion (CO2•−)………………………………………………………………………….................................................................42

3.1: Discovery and Optimization of the CO2•− as a Nucleophilic Source of CO2……………...........................….44

3.2: References………………………………………………………………………………...........................................…..52

Chapter 4: Nickel/Visible-Light Catalyzed Carboxylation of C(sp2) Bromides via Formate Activation…………………………………………………………………………………..............................................……58

4.1: Incentive and Overview of C(cp2) Carboxylations……………………………...................................…………..60

4.2: Initial Investigations Using Alternative Initiators……………………………….................................………....62

4.3: Reaction Optimization Under Photochemical Conditions……………………................................……………64

4.4: Mechanistic Investigations into Phenyl Triflimide………………………………………….................................67

4.5 References……………………………………………………………………………............................................……..77

Chapter 5: Supporting Information……………………………………………….........................................…………..82

S2.4 Supporting Information………………….………………………………………….......................................………82

S2.4.1 General Information………………………………………………………………….......................................……82

S2.4.2 Optimization of Hydrodehalogenation with CO2•−…………………………….............................……….....84

S2.4.3: General Procedures………………………………………………………………….......................................……87

S2.4.4: Alternative Initiators……………………………………………………………......................................………..89

S2.4.5: Preparation of Starting Materials………………………………………………....................................………..90

S2.4.6: Preparation of Substrates from the Substrate Table……………………..............................……………….102

S2.4.7: Fluorescence Quenching Experiments………………………………………………...................................…117

S2.4.8: Transient Absorption Spectroscopy…………………………………………………...................................….118

S2.4.9: Quantum Yield Experiments…………………………………………………………........................................123

S2.4.10: Chain Length Approximation……………………………………………………….....................................…125

S2.4.11: Computational Details………………………………………………………….…......................................…..125

S2.4.12: Electrochemical Measurements………………………………………………....................................……….141

S2.4.13: References…………………………………………………………………………..........................................….143

S3.3.1 General Information……………………………………………………….........................................……………149

S3.3.2: Optimization of Carboxylation of Michael Acceptors………………….................................……………...152

S3.3.3: Preparation of Substrates………………………………………………….......................................…………...153

S3.3.4: Preparation of Products from Figure 3.5………………………....................................……………………...155

S3.3.5: Computational Details……………………………………………........................................…………………...160

S3.3.6: References…………………………………………………………...........................................…………………..161

S4.6.1 General Procedures………………………………………………….......................................…………………...164

S4.6.2 Electrochemical Measurements……………………………….....................................…………………………165

S4.6.3. Optimization Details……………………………………….......................................……………………………166

S4.6.4: Investigations into the Role of Phenyl Triflimide…………….................................………………………..170

S4.6.5: Preparation of Starting Materials……………………………....................................….………………………173

S4.6.6: Preparation of Products from Substrate Table………………..................................…………………………176

S4.6.7: References……………………………………………………………...........................................………………..189

5.1: Appendix: Spectra………………………………………………………………….........................................………193

List of Figures

Figure 1.1: Common Photoredox Catalysts Alongside their Excited State Redox Potentials and max……………………………………………………………………………………………..........................................…...7

Figure 1.2: Graphic representation of oxidative/reductive quenching cycles shared by all photoredox-catalyzed

systems alongside common stoichiometric donors and acceptors………............................................................8

Figure 1.3: Graphic representation of a Jablonski diagram (A) alongside the different energy transfer mechanisms

—Forster (B) and Dexter (C)………………………………….................................................…………...................….9

Figure 2.1: A representative catalytic cycle for thiol/formate catalyzed photoredox systems in the Jui lab…………………………………………………………………………………..................................................………..….19

Figure 2.2: Modified Catalytic Cycle Generating Electrophilic Thiyl Radical via SET……............................….....21

Figure 2.3: Factors Contributing to the Feasibility of HAT from Formate……………….............................…..…...21

Figure 2.4: Formate Catalyzed Reduction of an Aryl Chloride via Thiol Oxidation………..............................……23

Figure 2.5: HAT catalyst Screen and Control……………………………………………….....................................…....24

Figure 2.6: A Summary of Mechanistic Evidence for CO2•– Generation…………….................................…………25

Figure 2.7: The Formation of Electrophilic Radicals under Alternative Conditions…………..............................27

Figure 2.8: Alternative Initiators Screen…………………………………………………......................................…….27

Figure 2.9: Proposed Mechanistic Scenario for Aryl Chloride Reduction…………................................………….28

Figure 2.10: A Summary of Intermolecular Hydroarylation Protocols via (Hetero)aryl Radical Giese Addition………………………………………………………………………….......................................................………29

Figure 2.11: Modern Examples of Unactivated Alkene Hydroarylation with Unactivated Arenes……………………………………………………………………………................................................……………30

Figure 2.12: Solvent Screen for Hydroarylation……………………………......................................…………………31

Figure 2.13: Potential Solvent Factors Impacting Reaction Effiacy……….................................…………………..32

Figure 2.14: Cosolvent Screening for Hydroarylation……………………………....................................…………...33

Figure 3.1: Potential Reaction Mechanism for CO2 Incorporation via CO2•−…….............................……………44

Figure 3.2: Optimization/Controls for Hydrocarboxylation of Michael Acceptors…….............................………45

Figure 3.3: Optimization of Carboxylation for 1,1-Diphenylethylene……………...............................……………46

Figure 3.4: Investigations into Michael Acceptor Single Electron Reduction………................................……….48

Figure 3.5: Reduction Potential Series Demonstrating the Split Reactivity for Michael Acceptors…………………………………………………………………………………................................................…..49

Figure 3.6: Evaluation of Olefin Conjugate Addition with Different Formyl C-H Sources...............................…50

Figure 3.7: Graphic Representation of the Anomeric Effect in Formyl C-H Systems…...............................…....52

Figure 4.1: Classical Methods of Constructing Carboxylic Acids……………………….....................................…..60

Figure 4.2: Catalytic Strategies for C(sp2) Carboxylation………………………………......................................…..61

Figure 4.3: Initial Mechanistic Scenario for C(sp2) Carboxylation…………………....................................………62

Figure 4.4: Overview of Reaction Screening for Alternative Initiators…………………........................................63

Figure 4.5: Reduction Pathway and CV of Phenyl Triflimide………………………….......................................……68

Figure 4.6: Evaluation of Alternative Sulfonylating Agents…………………………….....................................……71

Figure 4.7: Nickel Photocatalyst Dependence…………………………………………........................................…….74

List of Schemes

Scheme 1.1: General Overview of Radical Philicity and Polar Effects………………................................…………..4

Scheme 1.2: Classical Example of XAT-mediated Tin cyclization in the Racemic Total Synthesis of Hirustene……………………………………………………………………………………...............................................…..5

Scheme 1.3: Generation of alpha-amino radicals under Photocatalytic Conditions for XAT from Aryl/Alkyl Halides……………………………………………………………………………...........................................................…..6

Scheme 1.4: Standard catalytic cycle for nickel-catalyzed reductive cross-electrophile coupling………………………………………………………………………………….............................................……….11

Scheme 2.1: Radical Hydroarylation and Defluoroalkylation of Olefins………..............................……………….18

Scheme 2.2: Initial hypothesis regarding the generation of CO2•– via HAT……...........................……………….19

Scheme 4.2: Reaction Pathway for CO Generation………………………………………...................................……..69

Scheme 4.3: Carbon Monoxide Recycling System…………………………………………....................................…..72

Scheme 4.4: Proposed Mechanistic Scenario………………………………………………....................................……75

List of Tables

Table 2.1: Hydroarylation Substrate Scope…………………………………………………….......................................34

Table 2.2: Alternative Reduction Scope…………………………………………………......................................………35

Table 4.1: Solvent Screen Under Photochemical Conditions……………………................................………………64

Table 4.2: Reaction Screening with Electron-Rich/Neutral Arene……………………...............................…………65

Table 4.3: HAT Catalyst Screen…………………………………………………………........................................……....66

Table 4.4: Reaction Controls……………………………………………………………........................................……….70

Table 4.5: Phenyl Triflimide Loading……………………………………………......................................………………73

Table 4.6: Substrate Scope for C(sp2) Carboxylation…………………………..................................…………………47

List of Abbreviations

3DPAFIPN 2,4,6-tris(diphenylamino)-5-fluoroisophthalonitrile

4CzIPN 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene

4CzTPN 2,3,5,6-tetrakis(carbazol-9-yl)-1,4-dicyanobenzene

AcOH acetic acid

AIBN azobisisobutyronitrile

APCI atmospheric-pressure chemical ionization

CySH cyclohexanethiol

CV cyclic voltammetry

DABCO 1,4-diazabicyclo[2.2.2]octane

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCM dichloromethane

DFT density functional theory

DMSO dimethyl sulfoxide

DMF dimethylformamide

Et2O diethyl ether

EtOAc ethyl acetate

GCMS gas chromatography mass spectrometry

HAT hydrogen atom transfer

HMPA hexamethylphosphoramide

HPLC high performance liquid chromatography

HRMS high-resolution mass spectrometry

LCMS liquid chromatography mass spectrometry

MeCN acetonitrile

MeOH methanol

MHz mega hertz

MTBE methyl tert-butyl ether

NMR nuclear magnetic resonance

Oxidative Addition

PC photocatalyst

PCET proton-coupled electron transfer

PhSH thiophenol

PTFE polytetrafluoroethylene

PTH 10-phenylphenothiazine

RE Reductive Elimination

SCE saturated calomel electrode

SET single electron transfer

TAS transient absorption spectroscopy

TBDPS tert-Butyldiphenylsilyl

TEA triethylamine

TFE 2,2,2-trifluoroethanol

THF tetrahydrofuran

TLC thin layer chromatography

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Stichwort
Committee Chair / Thesis Advisor
Committee Members
Zuletzt geändert

Primary PDF

Supplemental Files