Freudenthal triple systems via root system methods Open Access

Helenius, Fred William (2009)

Permanent URL: https://etd.library.emory.edu/concern/etds/05741s219?locale=en
Published

Abstract

For a Lie algebra 𝔤 of type B, D, E or F, we can apply a grading 𝔤 = 𝔤−2⊕𝔤−1⊕𝔤0⊕𝔤1⊕𝔤2 and then define a quartic form and a skew-symmetric bilinear form on 𝔤1, thereby constructing a Freudenthal triple system. The structure of the Freudenthal triple system is examined using root system methods available in the Lie algebra context. In the important cases 𝔤= E8 and 𝔤 = D4, we determine the groups stabilizing the quartic form and both the quartic and bilinear forms.

Table of Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Technical background 8
2.1 Root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Classification of root systems . . . . . . . . . . . . . . . . . . 12
2.3 Structure constants . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Our situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Roots of α-height 1 . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 General Results 27
3.1 The bilinear and quartic forms . . . . . . . . . . . . . . . . . . 27
3.2 Strictly regular elements . . . . . . . . . . . . . . . . . . . . . 34
3.3 Freudenthal triple systems . . . . . . . . . . . . . . . . . . . . 44
3.4 Computation of the 4-linear form . . . . . . . . . . . . . . . . 45
4 Special Results 51
4.1 Eigenspace decomposition of 𝔤1 . . . . . . . . . . . . . . . . . 51
4.2 Characterization of the orbits . . . . . . . . . . . . . . . . . . 53

4.3 Related groups . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 The stabilizer of the quartic form: G = E8 . . . . . . . . . . . 56
4.5 The stabilizer of the quartic form: G = D4 . . . . . . . . . . . 66
5 Conclusion 73
5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Bibliography 77

About this thesis

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files