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Abstract 
 

Using Quantitative Structure-Activity Relationships (QSAR) to Establish 
Toxicity/Environmental Scores (TES) 

By Jona Marie Ogden 
 

The Agency for Toxic Substances and Disease Registry (ATSDR) uses 
Reportable Quantities (RQs) established by the Environmental Protection 
Agency (EPA) in order to prioritize substances subject to Toxicological Profile 
development.  RQs are calculated using two distinct criteria.  The first criteria is 
based on the intrinsic physicochemical (ignitability/reactivity) and toxicological 
properties (aquatic toxicity, acute mammalian toxicity, chronic toxicity, and 
potential carcinogenicity) of each chemical.  The second criteria is based on a 
chemical’s susceptibility to biodegradation, hydrolysis, and photolysis (BHP). 
When an RQ is not available, ATSDR uses the same criteria to develop a 
Toxicity/Environmental Score (TES).  Sufficient original data are not available to 
assign a TES to many candidate chemicals.  However, Quantitative Structure-
Activity Relationship (QSAR) methods can be used to computationally predict the 
physicochemical, toxicological and biodegradability properties needed to 
calculate TESs.  To evaluate the potential use of QSAR methods to estimate 
TESs, the physicochemical, toxicological and biodegradability properties of 102 
chemicals were computationally-predicted, and QSAR TESs estimated.  QSAR 
rat oral LD50, fathead minnow LC50, and BHP models predicted TESs that 
correlated strongly (71%, 53%, and 67%, respectively) with original TESs.  
QSAR could not predict a dose-response relationship needed to score chronic 
toxicity.  However, an alternate approach combining developmental toxicity and 
chronic LOAELs was used to estimate chronic toxicity values.  Using 1 of 4 
proposed methods, QSAR-derived TESs were identical to original TESs for 57% 
of the chemicals evaluated. 89% of predicted TESs were within 1 tier of original 
TESs. Thus, QSAR methods may be used as an alternative approach to fill in 
data gaps needed for calculation of TESs.  To optimize the use of In Silico 
prediction, an integrated approach for the use of multiple QSAR models, tools 
and approaches is needed. 
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INTRODUCTION 

In response to the congressional mandate in The Comprehensive 

Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as 

amended by the Superfund Amendments and Reauthorization Act (SARA) of 

1986, the Environmental Protection Agency (EPA) and Agency for Toxic 

Substances and Disease Registry (ATSDR) prepare and revise a priority list of 

hazardous substances most commonly found at facilities on the CERCLA 

National Priority List (NPL) every two years and develop Toxicological Profiles. 

Toxicological Profiles are comprehensive documents that detail a substance’s 

toxicological properties (ATSDR, 2008). In keeping with the mandate, ATSDR 

uses the Priority List of hazardous substances, named the Substance Priority List 

(SPL), to prioritize toxicological profile development and, subsequently, a 

candidate for the identification of priority data needs (ATSDR, 2011a). The SPL 

includes hazardous substances that have been determined to be of greatest 

public health concern to persons at or near NPL sites. The first SPL, published in 

1987, was comprised of 100 substances and expanded to include 847 hazardous 

substances by 2011.  
Ranking methodology is used to generate the SPL. Ranking of substances 

on the SPL is based on three component scores that are summed to establish 

the total score. Total scores are calculated using Formula 1: 

 
Formula 1.  Formula for Substance Priority List Ranking 

 
(1,800 max. points)        (600 points)         (600 points)       (300 conc. pts.) + (300 exposure pts.) 

 

The three components of the total score are frequency at NPL sites, 

toxicity, and the potential for human exposure to the substance.  The toxicity of a 

substance accounts for one third of the substance’s total score and, thus, is 

important to the substance’s overall ranking.  EPA and ATSDR use the 

Reportable Quantity (RQ) approach as the quantitative measure of toxicity in the 
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total score algorithm.  RQs are regulatory numbers established by EPA. If the RQ 

is exceeded, hazardous substance releases must be reported to local, state, and 

national authorities (ATSDR, 2011a).  The toxicity data used in the RQ approach 

is derived from primary peer-reviewed literature.  RQs have already been 

established for the majority of hazardous substances that are frequently detected 

at hazardous waste sites. Moreover, the determination of RQ health effect values 

uses weight-of-evidence considerations in evaluating data.  

The comprehensive approach used to establish RQS makes them strong 

indicators of substance toxicity.  RQs are established in a two-step process 

(EPA, 2011). The first step is an evaluation of intrinsic physical, chemical, and 

toxicological properties, also known as primary criteria. These include acute 

toxicity, chronic toxicity, carcinogenicity, and aquatic toxicity. Substance-specific 

rat oral lethal dose (50% kill) (LD50) data, when available, is used to estimate 

acute toxicity.  Substance-specific lethal concentration (50% kill) (LC50) data for 

fathead minnows (Pimephales promelas) or bluegills (Lepomis macrochirus), 

when available, is used to estimate aquatic toxicity.  Substance-specific 

mammalian Minimum Effective Doses (MED) are adjusted by species to derive 

human equivalent doses and multiplied by a rating value (RVd) based on type of 

effect to estimate human chronic toxicity.  Carcinogenicity data are based on rat 

or mice studies performed by the EPA or the International Agency for Research 

on Cancer (IARC).  Substances evaluated for carcinogenicity are scored “high,” 

“medium,” or “low” based on either EPA or IARC cancer classification and given 

a primary criteria RQ of 1, 10, or 100, respectively. Each criteria value is 

assigned to one of five tiered RQ categories (1, 10, 100, 1000, or 5000), and the 

lowest RQ among all criteria is selected as the primary criteria RQ for the 

substance.   

The second step is to evaluate substances for hydrolysis, photolysis, and 

biodegradation.  If by one of these processes a substance degrades rapidly in 

the environment to a less harmful form, then the substance’s primary criteria RQ 

is raised one tier, establishing a final RQ.  If the substance degrades to a more 
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harmful form, then the substance is assigned the final RQ of the more hazardous 

substance.  

When an RQ is not available, ATSDR uses the same criteria and five 

tiered categories to develop an equivalent Toxicity/Environmental Score (TES) as 

a surrogate for the toxicity component in the total score algorithm.  These scores 

are developed for use only in the ranking methodology and do not represent 

regulatory values. TESs have been assigned to more than 450 candidate 

hazardous substances. Hazardous substances that received a TES greater than 

5,000 using the RQ methodology were dropped to the bottom of the candidate 

list because of their lack of known toxicity, and they received a total score of zero 

points. 

However, data is not available to establish RQs and TESs for all 

substances found at NPL sites.  Currently, approximately 3,400 uniquely 

identifiable hazardous substances have been identified at hazardous waste sites 

according to the ATSDR database. However, many candidate substances have 

data gaps that must be filled in order to assign an RQ or TES.  Even substances 

assigned an RQ/TES may lack experimental data for one or more criteria.   

In silico models have been used by academia, pharmaceutical, 

agrochemical, food, and other industries, as well as by various advisory and 

regulatory government agencies as decision support tools to fill data gaps in the 

toxicity data base of a substance (Cronin et al., 2003; el-Masri, Mumtaz, 

Choudhary, Cibulas, & De Rosa, 2002). These tools allow for the assessment of 

substances for which no data are available. Structure Activity Relationships 

(SARs) and Quantitative Structure Activity Relationships (QSARs) are 

increasingly being used as core prediction systems in toxicology (Barratt, 1998; 

McKinney, Richard, Waller, Newman, & Gerberick, 2000). Studies of SAR/QSAR 

have proven to be powerful tools to increase our understanding of the potential 

harmful effects of substances on the environment and human health. 

In silico toxicology is an applied science that integrates mathematics, 

biology, chemistry, and computer technology to enable researchers to assess a 

substance’s potential toxicological activity when experimental toxicological data 
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are lacking (el-Masri, et al., 2002; Mumtaz et al., 1995; Ruiz, Mumtaz, & Gombar, 

2011). SAR/QSAR approaches mathematically correlate a substance structure’s 

molecular attributes to its physicochemical, biological or toxicological activity 

(Accelrys, 2006; Ruiz, et al., 2011; Rupp, Appel, & Gundert-Remy, 2010).   As 

the number and variety of potentially hazardous substances continues to 

increase, regulatory authorities have approached the challenge by applying In 

silico tools such as SAR/QSAR as guidance and/or decision support to 

substance risk-based approaches (Demchuk, Ruiz, Chou, & Fowler, 2011).  

Furthermore, the ever-increasing economic, social, and political call to reduce 

animal testing in toxicity evaluation has led to an expansion of the use of these 

tools.  It is extensively documented that there are many different In silico 

SAR/QSAR models and platforms for predicting a wide range of toxicological 

endpoints. Many of these are commercially available (e.g. MultiCASE, DEREK, 

TOPKAT®), others are open sources (e.g. OncoLogic™, ToxCast™, ECOSAR, 

OASIS) and some are proprietary in-house systems (e.g. FDA QSAR models) 

(Demchuk, et al., 2011). 

For the present study, the commercially available QSAR software, Toxicity 

Prediction by Komputer Assisted Technology (TOPKAT) was used. This software 

generates toxicity predictions based on a substance’s structural similarity to large 

data sets of toxicological information retrieved from literature and stored in 

TOPKAT’s database (Accelrys, 2006).  The QSAR tool was able to assess 

various endpoints, including those used to assign an RQ/TES (weight of 

evidence/carcinogenicity, rat oral LD50, chronic lowest observable adverse effect 

level (LOAEL), probability of biodegradability, and fathead minnow LC50), when 

experimental data were limited or unavailable.  The QSAR model can be used to 

assess the five criteria needed to develop provisional QSAR TESs for 

substances that lack the criteria.  

The purpose of this study is to assess the application of SAR/QSAR 

models to develop surrogate/provisional QSAR TES values using an In silico 

approach.  The QSAR model discussed in this study will produce surrogate TES 

values that will allow scientists to rank substances for toxicological profile 
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development when experimental data are not available.  It will also allow risk 

assessors to make decisions based on a substance’s predicted toxicity though 

experimental data are insufficiently available.  

METHODS  

DATASET 
There were 847 substances in the 2011 SPL.  All substances assigned a 

TES were selected from the 2011 SPL.  Because SAR/QSAR approaches cannot 

be used to assess metals, salts, radio nuclides, polymers, and mixtures, these 

substances were excluded from the dataset.  QSAR approaches were able to 

assess 293 of the 847 substances on the SPL. However, 191 of these 

substances were excluded because they fell outside TOPKAT’s Optimum 

Prediction Space (OPS).  The remaining 102 substances met the criteria for and 

were evaluated in this study. 

Simplified Molecular Input Line Entry Specification (SMILES) codes for the 

remaining 102 substances were entered into the software to assess the following 

endpoints:  carcinogenicity (Weight of Evidence), acute toxicity (rat oral LD50), rat 

oral chronic toxicity (chronic oral LOAEL), aquatic toxicity (fathead minnow LC50), 

and biodegradability (BHP).  

 

QSAR PROTOCOL 
TOPKAT offers three separate tests to evaluate the reliability of a 

prediction.  The first test checks for substance substructures that were not 

evaluated during TOPKAT model development (Accelrys, 2006).  Toxicity 

predictions for substances with substructures not accounted for in the existing 

TOPKAT database model are not considered to be reliable.  The second test is 

an evaluation of substance descriptor values to determine if they are in the range 

of the descriptor values in the QSAR model database.  The third test is an 

evaluation of substances to determine if they lie within the model’s OPS.  

Predictions outside of a model’s OPS are not supported by the model and thus 

deviate considerably from experimental values. Any substance that failed to meet 
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the criteria for all three tests for all models was removed from the dataset 

because of expected unreliability (n=191).   

Carcinogenicity 
The QSAR carcinogenicity model predictions were based on an overall 

weight of evidence (WOE) using a model that combined datasets from the 

National Toxicology Program (NTP) and the Food and Drug Administration (FDA) 

(Accelrys, 2006).  This model was comprised of one statistically-significant 

module.  The cross-validated accuracy of the model is shown in Table 1. 

 

Table 1.  Cross-validated accuracy of the carcinogenicity modela  

Chemical Class Number of 
Compounds 

Specificity 
(%) 

Sensitivity 
(%) 

Indeterminate 
(%) 

Aliphatics 112 93 93 0 

Single & Multiple Benzenes 244 95 95 7 

Heteroaromatics 127 97 95 3 
a(Accelrys, 2006) 

 

EPA assigned an RQ for substance carcinogenicity using an approach 

that required a dose-response relationship.  Such relationships were not 

available computationally because the QSAR model only predicted probabilities 

for carcinogenicity.  Therefore, a ranking system using only the given 

probabilities was developed.  Because human data were not available, 

classification derived from carcinogenic evidence in humans was not used (i.e. 

Group A or Group B1 WOE categories). 

A QSAR carcinogenicity predicted probability ≤0.3 was designated as a 

noncarcinogen, and probability ≥ 0.7 was designated as a carcinogen (Accelrys, 

2006).  The range between 0.3 and 0.7 was considered the “indeterminate” zone.  

A substance with a carcinogenicity probability ≤0.3 was classified a category “E” 

carcinogen (noncarcinogenic) and not assigned a score to be used in the overall 

RQ/TES scoring.  A substance with a carcinogenicity WOE probability 0.3< x 

<0.7 was classified as a “C” carcinogen (possible human carcinogen) and 

assigned a score in the lowest potency group of 100 in accordance with EPA’s 
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RQ protocol.  A substance with a WOE carcinogenicity probability >0.7 was 

classified as a “B2” carcinogen (probable human carcinogen with no human 

evidence) and assigned a score of 10 in accordance with the EPA protocol. 

Acute Toxicity 
Acute toxicity was assessed using the QSAR rat oral LD50 model available 

in the computational software. The acute toxicity QSAR model consisted of 19 

models in the rat oral LD50 module (Accelrys, 2006). The cross-validated 

accuracy of the 19 rat oral LD50 models is shown in Table 2.  The rat oral LD50 

model was based on experimental values from 4,000 substances from the 

Registry of Toxic Effects of Chemical Substances (RTECS).  Only exposure 

times ranging from 0.5 to 14 hours were used. 
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Table 2.  Cross-validated accuracy of the 19 acute toxicity modelsa  

Chemical Class Number of 
Compounds 

% of Compounds 
predicted within a 

factor of 

95% of 
Compounds 

predicted 
within a factor 

of 
2 3 4 5 

Organophosphates (P=0) 230 48 67 80 86 9 

Organophosphates (P=5) 285 58 81 90 95 5 

Carbamates 205 63 84 91 96 5 

Heteroaromatics 429 63 83 92 97 5 

Multiple Benzenes 367 70 85 92 95 5 

Fused Benzenes 75 84 100   3 

Single Benzenes (Subst =1) 196 80 96 99 100 3 

Single Benzenes (Subst =2) 274 76 93 98 100 3 

Single Benzenes (Subst =3) 162 80 92 97 100 4 

Single Benzenes (Subst >3) 101 74 92 99 100 4 

Alicyclics 361 65 85 93 97 4 

Acyclic Amines 225 68 87 93 96 4 

Acyclic Halo/Hydro-carbons 63 73 88 98 100 4 

Acyclic Acids/Esters 138 67 89 98 100 3 

Acyclic Alcohols 74 90 98 100  3 

Acyclic Carbonyls 60 81 94 100  3 

Acyclic Ethers 47 93 100   2 

Acyclic C,O,H Miscellaneous 108 90 100   2 

Acyclic (Others) 224 59 81 89 93 6 
a(Accelrys, 2006) 

 

A TES value was assigned for a given rat oral LD50 according to the Oral 

Mammalian Toxicity Scale used to assign RQs for acute toxicity shown in Table 

3. 
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Table 3.  Oral Mammalian Toxicity Scalea 
MAMMALIAN TOXICITY (ORAL) TES 

100 mg/kg ≤ LD50 < 500 mg/kg 5000 

10 mg/kg ≤ LD50 < 100 mg/kg 1000 

1 mg/kg ≤ LD50 < 10 mg/kg 100 

0.1 mg/kg ≤ LD50 < 1 mg/kg 10 

LD50 < 0.1 mg/kg 1 
a(ATSDR, 2011b)  

Chronic Toxicity 
EPA derived chronic toxicity scores from two primary attributes of each 

substance: the Minimum Effective Dose (MED) and the type of effect (EPA, 

2011).  It was important to use both attributes because the toxicity of a substance 

is a function of both its efficacy and the affect elicited (De Rosa, Stara, & Durkin, 

1985). When an MED was based on animal data, a human-equivalent dose was 

derived using Formula 2. 

 
Formula 2.  Human-equivalent dosing formula 

 
 

In order to assign an RQ for a substance, EPA conventionally multiplies a 

substance’s dose rating (RVd) developed from the MED with the dose rating 

developed from the severity of effect (RVe). Both the RVd and RVs range from 1 

to 10 with 10 being the most severe effect or highest dose. Thus, the chronic 

scores ranged from 1 to 100. However, the QSAR model was not able to predict 

an MED or the type of effect. 

The chronic toxicity value predicted by the QSAR model for each 

substance was a rat oral chronic LOAEL.  The rat oral chronic LOAEL QSAR 

model was based on experimental data from 393 substances using data from 

EPA, National Cancer Institute, NTP Technical Reports, FDA New Drug 

Applications, and citations from open literature (Accelrys, 2006). The cross-
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validated accuracy of the five rat oral chronic LOAEL QSAR models is shown in 

Table 4.  Unlike traditional LOAELS, the rat oral chronic LOAELs predicted by the 

QSAR model were not specific for any particular endpoint effect.  Therefore, a 

novel approach was developed to score chronic toxicity.   

 

Table 4.  Cross-validated accuracy of the 5 chronic toxicity modelsa  

Chemical Class Number of 
Compounds 

% of Compounds 
predicted within a 

factor of 

95% of 
Compounds 

predicted 
within a factor 

of 
2 3 4 5 

Single Benzenes 130 66 88 94 98 5 

Multiple Benzenes 83 70 92 96 97 4 

Heteroaromatics 69 78 92 98 100 4 

Alicyclics 39 94 100   3 

Acyclics 73 73 92 97 100 4 
a(Accelrys, 2006) 

 

In keeping with the approach of EPA, the predicted animal chronic LOAEL 

were used in lieu of the animal MED values. Animal chronic LOAELs were 

converted to human chronic LOAELs using Formula 1.  A substance-specific 

rating value (RVd) was determined by substituting the predicted human chronic 

LOAELs for MEDs in the chronic toxicity conversion scale using scientific 

judgment (EPA, 2011). Rating values ranged from 1-10.  

Conventionally, a substance’s RVd is multiplied by a substance’s rating 

value based on effect (RVe) ranging from 1-10. However, a specific effect was 

not identified by the QSAR model. A developmental toxicity QSAR model that 

predicted a substance’s probability of causing developmental toxicity was 

available and acceptable as a surrogate for evaluating chronic toxicity (ATSDR, 

2011a)   Consequently, developmental toxicity was used as a surrogate for level 

of effect (RVe).  The cross-validated accuracy of the three developmental QSAR 

models is shown in Table 4. The probability of potential developmental toxicity 

was multiplied by 10 and rounded to the nearest whole number to obtain a 

number ranging from 1-10 in accordance with the rating values for toxic effects.   
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Table 5.  Cross-validated accuracy of the 3 developmental toxicity modelsa  

Chemical Class Number of 
Compounds 

Specificity 
(%) 

Sensitivity 
(%) 

Indeterminate 
(%) 

Aliphatics 87 88.6 88.6 2.5 

Carboaromatics 95 97.4 87.0 2.2 

Heteroaromatics 91 86.0 86.1 2.5 
a(Accelrys, 2006) 

 

Substance-specific RVds and RVes were multiplied to get a composite 

score.  The possible range of composite scores was 1-100.  The resulting 

composite scores were assigned corresponding TES scores according to the five 

tiers of scores in Table 6. 

 
Table 6.  Chronic Toxicity Scalea 

COMPOSITE SCORE TES 
1-5 5000 

6-20 1000 

21-40 100 

41-80 10 

81-100 1 
 a(Accelrys, 2006)  

 

Aquatic Toxicity 
Aquatic toxicity was assessed using the QSAR fathead minnow LC50 

model available in the QSAR model. The aquatic toxicity QSAR model consisted 

of eight fathead minnow LC50 models developed from 444 studies (Accelrys, 

2006). The cross-validated data were derived from open literature flow-through 

LC50 bioassays and five volumes on fathead minnow LC50 model developed by 

the Center for Lake Superior Environmental Studies. The cross-validate accuracy 

of the 8 fathead minnow models is show in Table 7. 
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Table 7.  Cross-validated accuracy of 8 aquatic toxicity modelsa  

Chemical Class Number of 
Compounds 

% of Compounds 
predicted within a factor 

of 

95% of 
Compounds 

predicted within 
a factor of 2 3 4 5 

Acyclic (halo/hydrocarbon) 33 81 100   3 

Acyclic (alcohols) 38 83 100   3 

Acyclic (miscellaneous) 92 64 86 96 100 4 

Alicyclics 59 89 98 100  3 

Multiple/Fused Benzenes 43 78 90 92 100 5 

Single Benzenes (Subst= 1) 38 100    2 

Single Benzenes (Subst= 2) 88 76 92 100  4 

Single Benzenes (Subst=3) 53 78 94 96 98 4 
a(Accelrys, 2006) 

 

A QSAR TES value was assigned for a given LC50 according to EPA’s 

Aquatic Toxicity Scale used to assign RQs for aquatic toxicity shown in Table 8. 

       
Table 8.  Aquatic Toxicity Scalea 

AQUATIC TOXICITY TES 
100 mg/l ≤ LC50 < 500 mg/l 5000 

10 mg/l ≤ LC50 < 100 mg/l 1000 

1 mg/l ≤ LC50 < 10 mg/l 100 

0.1 mg/l ≤ LC50 < 1 mg/l 10 

LC50 < 0.1 mg/l 1 
a(ATSDR, 2011b)  

Biodegradability 
 EPA raised a substance’s RQ by one tier if biodegradation, hydrolysis, 

and/or photolysis (BHP) resulted in degradation when the substance was 

released into the environment (EPA, 2011). An aerobic biodegradability model in 

the QSAR software was used to estimate the probability of environmental 

degradation of substances.  The aerobic biodegradability QSAR model consisted 

of four structurally based sub-models (Accelrys, 2006).  The cross-validated 

accuracy of these models is shown in Table 9. All data were determined 
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according to a Japanese Ministry of International Trade and Industry (MITI) 1 test 

protocol on 894 compounds, as cited in (Accelrys, 2006). 

 
Table 9.  Cross-validated accuracy of 4 aerobic biodegradability modelsa  

Chemical Class Number of 
Compounds 

Validated leave-one-
out accuracy % 

Internal Accuracy 
% 

Acyclics 317 96.1 97.7 

Alicyclics 85 96.5 98.8 

Single Benzenes 290 91.2 95.1 

Multiple Benzenes 

and Heteroaromatics 
160 93.1 98.1 

a(Accelrys, 2006) 

  

The QSAR model predicted a probability of degradation for each 

substance, which was used as a surrogate for BHP activity.  If a substance had a 

biodegradation probability of ≥ 0.7, then the overall RQ/TES for the substance 

was raised one tier.  If a substance was highly volatile (boiling point ≤ 100° F), 

the RQ/TES of the parent compound was not raised one level.  If the degradation 

products were more hazardous than the parent compound, then the parent 

compound was assigned the RQ/TES of the degradation products. For this study, 

an assumption was made that when the toxicity of a parent compound was not 

known, the relative toxicity of its metabolites was also unknown. Therefore, 

scoring was performed as if all metabolites were less harmful than the parent 

compound  

Ignitability/Reactivity 
 EPA ignitability and reactivity scored were based on a substance’s flash 

point, boiling point, and reactivity with water and self. The ignitability and 

reactivity values of substances were not able to be predicted computationally.  

The flash point and boiling point values for many substances were available 

through ChemIDplus Advanced (NIH, 2011) and the Hazardous Substances Data 

Bank (NLM, 2011). When a flash point and boiling point were both available, a 

TES was established using the scale in Table 10. When only a boiling point was 
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available, a substance was assigned a TES using the boiling point scale in Table 

10 (BP <100°F, TES=100; BP>100°F, TES=1000).  

 
Table 10.  Ignitability Scalea 

Ignitability TES 

FP 100°-140°F 5000 

FP <100°, BP >100°F 1000 

FP <100°, BP <100°F 100 

Pyrophoric or self-ignitable 10 

RQ of 1 not assigned based on ignitability/reactivity 
a (ATSDR, 2011b) 

 

Each criterion was assigned a TES score based on the QSAR-predicted 

data. The lowest TES across all of a substance’s criteria was assigned to each 

substance as the overall TES.  

 
RESULTS  
 

ANAYLSIS OF INTRA-CRITERIA AGREEMENT 
ATSDR was mandated by CERCLA 1980 as amended by SARA 1986 to 

establish and revise a Substance Priority List of substances commonly found at 

NPL sites (ATSDR, 2008).  The frequency of sites at which a substance was 

found, a substance’s toxicity, and the potential for human exposure to a 

substance at NPL sites were used to rank substances on the SPL (Formula 1).  

In the past, RQs established by EPA were used by ATSDR to estimate a 

substance’s toxicity.  However, for 38 candidate SPL substances, toxicity 

information and RQs were not available.  In addition, many substances ranked 

on the SPL did not have complete toxicity data for all toxicity endpoints 

considered (carcinogenicity, acute toxicity, chronic toxicity, aquatic toxicity, 

biodegradability, and ignitability/reactivity).  Therefore, QSAR approaches were 
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used to computationally predict QSAR TES surrogates when the original data 

needed to rank substances on the ATSDR SPL were not available.  

QSAR approaches were able to assess 293 of the 847 substances on the 

SPL.  Of these substances, 191 were not able to be evaluated because they fell 

outside of TOPKAT’s OPS.  The remaining 102 substances were used this study 

 

Acute Toxicity 

Original and predicted scores for acute toxicity had a very high agreement 

(71%) (Figure 1 and Table 11).  The QSAR model for acute toxicity was 

developed with data extracted from RTECS (Accelrys, 2006).  RTECS listed the 

most toxic value when multiple values existed. Thus, acute toxicity QSAR model 

values were expected to be more conservative and overestimate toxicity, which 

corresponded to an underestimated (i.e. lower) toxicity score.  Roughly 10% of 

the substances in the highest tier of scores were under predicted, and thus 

estimated  to be more acutely toxic than shown in experimental studies (Figure 

1).  

Roughly 15% of substance TESs in the 5000 tier were over predicted by 

the QSAR model and were predicted to be less toxic than shown in experimental 

studies.   It was impossible for substances assigned an original score of >5000 

(the highest tier) to have an overestimated QSAR-predicted TES because no 

scores were assigned greater than the highest tier. 
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Figure 1.  Analysis of agreement between original and QSAR-model 
predicted TESs for acute toxicity 

 

 

Aquatic Toxicity 

Likewise, aquatic toxicity was well predicted by the QSAR model (53% 

agreement) and had a moderate availability of original data (Figure 2 and Table 

11). TESs predicted by the aquatic toxicity QSAR model that were not in 

agreement with original scores tended to be over predicted, implying an 

underestimate of the true toxicity.  This was more prevalent in the lower tiers of 

scores.   
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Figure 2.  Analysis of agreement between original and QSAR-model 
predicted TESs for aquatic toxicity 

 
 

Ignitability 

Ignitability had strong agreement (69%) between original TESs and TESs 

calculated for this study (Figure 3 and Table 11). However, ignitability was not 

computationally predicted.  TESs calculated for ignitability were based on 

experimental values obtained from peer-reviewed sources.  
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Figure 3.   Analysis of ignitability/reactivity TESs 

 

 

Biodegradation 

BHP had a high agreement between original and predicted TESs (67%) 

(Table 11).  BHP was not scored in tiers like the other criteria. Rather, it was 

scored based on a probability predicted by QSAR as “yes” if it was likely to 

degrade in the environment (p≥0.7) or “no” if it was not likely to degrade in the 

environment (p<0.7).   Thus, the percent agreement between original and 

predicted scores was high though little original data were available.   

 

Carcinogenicity 

Carcinogenicity QSAR-predicted TESs were not predicted accurately in 

this study (0%) (Figure 4 and Table 11).  A number of studies have shown that 

carcinogenicity is not accurately predicted by existing computational models 

(Cronin, et al., 2003; Prival, 2001; Richard, 1998). However, all QSAR-predicted 

carcinogenicity TESs were within 1-tier of the original scores. The carcinogenicity 

QSAR model was more conservative than the available original data, but it did 

predict the probability of carcinogenicity within a score factor of 10. 
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 If a substance was predicted to have a probability of carcinogenicity ≤0.3, 

then it was not assigned a TES for carcinogenicity (Accelrys, 2006).  Only 40% 

(n=4) of the 10 substances that had original data had a probability of 

carcinogenicity >0.3 and were assigned a corresponding TES. The QSAR model 

generally predicted toxicity to be more severe than experimental studies 

supported (Figure 4).   

Carcinogenicity/weight of evidence (WOE) had such low agreement that 

an additional overall scoring approach was performed using all criteria except 

WOE. Table 12 shows the TES agreement and percent of TESs within ± 1 tier of 

the original TES among all scoring methods. Excluding WOE from the scoring 

approach nearly doubled the final TES agreement between original and predicted 

values.   

 

Figure 4.  Analysis of agreement between original and QSAR-model 
predicted TESs for carcinogenicity 
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Chronic Toxicity 

Chronic toxicity was poorly predicted in this study (Figure 5 and Table 11).  

A novel approach substituting predicted probabilities of developmental toxicity in 

place of values for a specific effect was used to score chronic toxicity values.  

This approach nearly doubled the agreement observed within the chronic toxicity 

criteria.  This approach tended to over predict TESs and under estimate toxicity 

(Figure 5 and Figure 6). 

 

Figure 5.  Analysis of agreement between original and QSAR-model 
predicted TESs for chronic toxicity 

 
 

The agreement between original and predicted QSAR TESs is shown in 

Table 11 and Figure 6.  Percentage agreement was only calculated for criteria 

that had experimental values, thus the denominators varied across criteria. 

 



 
 

21 
 

Table 11.  Analysis of Original and Predicted TESs 

 

 

Figure 6.  Analysis of overall intra-criteria QSAR-model predictions 

 
 

 

ANALYSIS OF SCORING METHODS 
Original and predicted TESs were compared and percentage agreements 

analyzed for overall scoring methods (Table 12).  The percentage of TESs within 

1 tier of the original score was determined in order to assess prediction accuracy. 

An overall analysis utilizing all QSAR-predicted scores had very poor 

original/predicted score agreement (15%), but a number of other promising 

methods were identified. 

Analysis Weight of 
Evidence 

Acute 
Toxicity 

Chronic 
Toxicity 

Aquatic 
Toxicity 

Biodegradation/ 
Hydrolysis/ 
Photolysis 

Ignitability 

All 
chemicals in 

TOPKAT 
OPS 

0% 

(0/10) 

71% 

(54/76) 

37% 

(7/19) 

53% 

(26/49) 

67% 

(6/9) 

69% 

(43/62) 
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EPA’s original substance RQ scoring approach used only available 

experimental data. Most substances did not have sufficient data to develop an 

original TES for all the criteria (ATSDR, 2011a).  Agreement between original 

and predicted scores generally increased with increased availability of original 

data (Table 11). Therefore, overall TES agreement was not expected to be high 

among substances that lacked original data.  

Analyses were performed to how the agreement between original and 

predicted overall TESs would change if parameters without original scores were 

dropped from the scoring method. Results are shown in Table 12.   This 

approach produced the strongest TES agreement of 57%. In addition, 89% of all 

final TESs were within 1 tier of original TESs.  Such results were not unexpected 

in lieu of the fact that the highest agreement within criteria was observed for 

those substances with the most original data. All other scoring methods 

incorporate predicted scores in the calculation of overall TESs even though one 

or more of the criteria lack original data. 

QSAR-predicted carcinogenicity scores had such low agreement with 

experimental scores that these predicted scores were dropped from the scoring 

procedure in order to increase overall TES agreement.  The analysis excluding 

WOE had very low TES agreement (29%) (Table 12).  However 74 % of TESs in 

the analysis excluding WOE fell within 1 tier of the original score (Table 12). 

Additional computational models are needed that include a mechanistic approach 

to predicting carcinogenicity 

 

Table 12.  TES Final Score Agreement 

Category TES agreement TESs ± 1 tier away from 
original score 

Overall 15% (10/102) 56% (57/102) 

Overall without WOE 29% (30/102) 74% (75/102) 

Only using parameters with 
experimental data 57% (45/79) 89% (70/79) 
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DISCUSSION 
In response to the congressional mandate in The Comprehensive 

Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as 

amended by the Superfund Amendments and Reauthorization Act (SARA) of 

1986, the EPA and ATSDR prepare and revise the Substance Priority List (SPL) 

to prioritize substances for Toxicological Profile development (ATSDR, 2008).  

Substances are ranked using three criteria according to the algorithm depicted in 

Formula 1.  RQs developed by EPA are used by ATSDR as estimators of toxicity 

for the toxicity component of this algorithm.   
RQs are derived from substance-specific experimental data including 

intrinsic physicochemical (ignitability/reactivity), toxicological properties (aquatic 

toxicity, acute mammalian toxicity, chronic toxicity, potential carcinogenicity), and 

biodegradation, hydrolysis, and photolysis (BHP).  When RQs are not available, 

the ATSDR uses an equivalent approach to develop Toxicity/Environmental 

Scores (TESs).  However, sufficient original data are not available to develop a 

TES for the potentially hazardous chemicals of concern. Quantitative Structure-

Activity Relationship (QSAR) approaches can be used to computationally predict 

the physicochemical, toxicological and biodegradability properties needed to 

calculate surrogate TESs.  QSAR methods were used to computationally predict 

TES surrogates when the experimental data needed to rank substances on the 

ATSDR SPL were not available. This study was limited by the number of 

substances available from the NPL listing activity and by the substance 

structures that could be reliably predicted by the QSAR software. One hundred 

and two substances were used this study.   

Analysis of agreement within criteria (carcinogenicity, acute toxicity, 

chronic toxicity, aquatic toxicity, biodegradability, and ignitability) showed that 

agreement between original and predicted scores generally increased with 

increased availability of original data (Table 11). Toxicity estimates and TESs 

were inversely related. A substance with very high toxicity received a very low 

TES and vice versa. Thus, if a TES was overestimated, then the toxicity was 

predicted to be less severe than shown in experimental studies. 
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Agreement between original and predicted TESs is expected to be much 

higher when original data are available to compare with predicted data.  Thus, as 

more experimental data become available, the agreements observed in criteria 

and overall are expected to increase. 

Acute toxicity had the highest agreement (71%) between original and 

predicted TESs among criteria evaluated (Figure 1, Figure 6, and Table 11).  

This parameter had the most original data values, which is most likely a factor 

influencing the increased percentage agreement. Rat oral LD50 studies are less 

resource-intensive, less complex, and generally more easily interpreted than 

chronic toxicity or carcinogenic studies.  This parameter may be better 

represented in the computational software database (and thus better predicted) 

because of the wealth of information available in scientific literature on LD50s.  

Thus, rat oral LD50 toxicity predictions would be expected to be more accurate 

than predictions derived from other criteria. 
Likewise, aquatic toxicity was well-predicted by the QSAR model (53% 

agreement) and had a moderate amount of original data (Figure 2, Figure 6, and 

Table 11). If this parameter had more available original data, agreement between 

original and predicted TESs would predictably be higher.  Fathead minnow LC50 

studies are relatively less resource-intensive than other studies and are thus 

well-represented in the QSAR database, thereby leading to higher prediction 

accuracy.   

The Ignitability and Reactivity scoring approach had high agreement 

(69%) between original TESs and TESs calculated for this study (Figure 3, 

Figure 6, and Table 11).  The scores were not computationally predicted. They 

were gathered from the peer-reviewed literature. The approach used to score this 

criterion and the high agreement showed that EPA ignitability/reactivity scoring 

approach could be applied to a wide variety of data sources, though it does not 

have direct implications for QSAR methods.   

BHP was not scored in tiers like the other criteria. Instead it was scored 

based on a probability predicted by QSAR as “yes” if it was likely to degrade in 

the environment (p≥0.7) or “no” if it was not likely to degrade in the environment 
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(p<0.7).  Original s and predicted TESs in the BHP criteria are expected to have 

a higher percent agreement compared with other criteria because agreement is 

based on two available values (i.e. yes or no) instead of five as in the 5-tiered 

approach used for the other criteria.  The BHP criteria only had eight original 

scores and would have been expected, if following the trend of the other criteria, 

to have a low agreement.   However, the agreement between original and 

predicted scores is 67% (Table 11 and Figure 6).   

Carcinogenicity/WOE was not predicted well in this study (Figure 4, Figure 

6, and Table 11). The carcinogenic nature of a substance encompasses not only 

a substance’s structure, but also metabolism and potential mechanisms of action 

(MOA). Though two substances may be structurally similar, the metabolism and 

MOA of these two substances may be very different (Prival, 2001). 

Computational software does not account for metabolism and MOAs and, 

therefore, poorly predicts carcinogenicity (Prival, 2001).  Additional computational 

models are needed that include a mechanistic approach to predicting 

carcinogenicity. 

Similarly, chronic toxicity is poorly predicted in this study and previous 

studies (Rupp, et al., 2010) (Figure 5, Figure 6, and Table 11).  Original LOAEL 

scores are based on specific toxicity endpoints or biological activities related to a 

specific MOA. TOPKAT software predictions are based on combined toxicity 

endpoints (Venkatapathy, Moudgal, & Bruce, 2004).  The original and predicted 

scores are indicative of different endpoints.  This may explain the low agreement 

observed between original and predicted scores.  A novel approach substituting 

predicted probabilities of developmental toxicity in place of values for a specific 

effect was used to score chronic toxicity values.  Developmental toxicity 

probabilities are representative of the severity of developmental toxicity, which 

may or may not be indicative of overall toxicity.  Additional studies exploring this 

novel approach of chronic toxicity using more substances are needed. 

The highest agreement between overall TESs resulted from the scoring 

approach that selected final TESs only from criteria that had original TESs (Table 

12).  This is expected because the highest percent agreement within criteria is 
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observed for substances with the most original data. All other scoring 

approaches incorporate predicted scores in overall TESs, even when criteria lack 

original data. 

The original overall TESs were not reflective of the criteria that lacked 

original data. Thus, though the predicted scores may be accurate, incorporating 

them into the overall scoring influences the overall TESs in a manner not 

observed in the original and additional scoring approaches.  Therefore, a lower 

agreement is observed for these approaches. If original data existed for every 

criterion for every substance, then additional approaches may have had very 

high agreements. 

This study shows that QSAR methods can be applied to data gaps and 

used to develop surrogate values to provide a comprehensive identification of a 

substance’s toxicity.  There exists an increasingly great need for toxicity endpoint 

data as more and more substances are introduced and the need for knowledge 

pertaining to substance hazards increases.  Using the QSAR methods discussed 

in this study, these data gaps can be filled in less resource-intensive manner 

than required for experimental studies. Candidate substances for toxicological 

profile development can be ranked based on their toxicity despite existing 

experimental data gaps. This allows dissemination of pertinent health information 

and allows regulatory decisions to be made much quicker than if waiting for a 

lengthy experimental chronic or carcinogenicity study.   In the future, multiple 

QSAR methods will be applied to develop the most accurate system for 

predicting endpoint toxicity and TES values, especially for substances that fell 

outside of TOPKAT’s OPS.   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