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ABSTRACT 

 

Introduction: 

Through gene expression profiling (GEP), two biologically distinct molecular subgroups 

of diffuse large B-cell lymphoma (DLBCL) have been identified – germinal center B-cell 

(GCB) and activated B-cell – with disparate prognostic implications. Because GEP is not 

easily implemented in clinical practice, immunohistochemical (IHC) algorithms have been 

developed and validated as surrogates for DLBCL subtype. The most commonly employed 

algorithm uses CD10, BCL6 and MUM1 to distinguish GCB and non-GCB subtypes, but 

has been shown to misclassify up to 20% of cases, partially due to the significant variability 

that exists in IHC interpretation. Advancements in digital pathology technology have led 

to the development of image analysis algorithms that allow for the extraction of 

quantitative descriptions of pathology features such as level of IHC staining. We explore 

the feasibility of developing precise, objective image analysis-based scoring algorithm for 

DLBCL digital pathology whole slide images that can effectively distinguish between GCB 

and non-GCB subtype. 

 

Methods: 

Tissue slides of the immunostains CD10, BCL6, and MUM1 for 40 DLBCL patients were 

digitized at 40x objective resolution. We developed and trained an image analysis 

algorithm on the IHC whole slide images that returns the percentage of positive regions 

over the DLBCL tissue area. Receiver operating characteristics (ROC) curves were 

calculated to assess ability of image analysis-based measurements of region positivity to 

predict pathologist classifications as positive or negative for CD10, BCL6, and MUM1. 

Using thresholds for percent positive regions established by the ROC curves, the patients 

were classified into GCB/non-GCB by the Hans algorithm using sequential application of 

the identified thresholds, and concordance with pathologist classification was calculated. 

 

Results: 

Area under the ROC curve (AUC) for predicting pathologist classifications of positivity 

from image analysis measurements for CD10, BCL6, and MUM1 were 0.92, 1.0, and 0.95 

respectively. Thresholds from the ROC curves for CD10, BCL6, and MUM1 were 13%, 

15%, and 20% respectively. Using these thresholds, classification by image analysis 

algorithm was concordant with pathologist classification in 82.5% (κ = 0.65) of cases. 

 

Conclusion: 

The image analysis algorithm could provide an effective support tool for pathologists, 

improving the IHC classification of DLBCL subtype. 
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INTRODUCTION 

 

 Diffuse large B-cell lymphoma (DLBCL), the most commonly occurring lymphoid 

malignancy in the United States, is an aggressive disease characterized by heterogenous 

outcomes. Through gene expression profiling (GEP), two biologically distinct molecular 

subgroups of DLBCL have been identified – germinal center B-cell (GCB) and activated 

B-cell – with disparate prognostic implications.(1) Due to its cost and resource 

intensiveness, GEP has not yet been implemented in clinical practice. As such, 

immunohistochemical (IHC) classification systems have been developed and validated as 

GEP surrogates to segment DLBCL into its distinct cell-of-origin subtypes.(2-4) The most 

commonly employed classification system uses CD10, BCL6 and MUM1 to distinguish 

GCB and non-GCB subtypes, but has been shown to misclassify up to 20% of cases.(2)  

Studies have shown significant variability exists in the interpretation of IHC stains in 

DLBCL, likely accounting for some of the misclassification.(5) 

 Image analysis in digital pathology presents the opportunity to decrease the 

variance in IHC interpretation and reduce subtype misclassification in DLBCL. 

Advancements in digital pathology technology have led to the development of image 

analysis algorithms that allow for the extraction of quantitative descriptions of pathology 

features such as level of IHC staining across whole slide images (WSI). Recent studies in 

other malignancies have shown that image analysis of IHC digital pathology slides can be 

accurate, be efficient, and reduce variability.(6-8)  

 We sought to develop an objective and precise IHC image analysis algorithm using 

DLBCL digital pathology WSI that can accurately distinguish between GCB and non-GCB 

subtype using the IHC stains in the Hans classification system (CD10, BCL6, MUM1). 



2 

 

 

 

BACKGROUND 

 

Non-Hodgkin lymphoma (NHL) is the most prevalent hematologic malignancy in 

the United States, and account for 4% of all malignancies in incidence and death. DLBCL 

is the most common form of NHL, comprising about 30-35% of cases, with an estimated 

27,650 new diagnoses in 2016.(9) DLBCL is an aggressive disease with an untreated 

survival on the order of just months.(10) Fortunately, chemotherapeutic regimens including 

cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) have allowed for a 

cure in about 50% of patients.(11) Since the CHOP regimen came out in 1976, only the 

addition of the immunotherapy rituximab to the CHOP regimen (R-CHOP) has been shown 

to improve DLBCL survival.(12-15) Despite the effectiveness of the modern 

chemoimmunotherapy regimen, outcomes for DLBCL remain heterogenous, with a sizable 

portion of DLBCL patient who progressing early or experiencing relapse, and about 40% 

still dying from their disease.(12, 16-18) 

 Given the variability in outcomes, research has focused on studying the underlying 

biological diversity of DLBCL. In 2000, gene expression profiling (GEP) was used to 

identify two molecularly distinct subgroups of DLBCL based on their cell-of-origin: one 

that clusters with normal germinal center B-cells (GCB) and one that clusters with activated 

B-cell (ABC).(1) Despite their identical histologic appearance, the ABC subtype of 

DLBCL was shown to have a significantly worse than the GCB subtype. Although GEP is 

widely used in bench research, it has not been readily adopted into clinical practice, and 

only recently into clinical trials, as it is expensive and requires abundant fresh-frozen 

paraffin embedded tissue (FFPET). A recent study on early-stage breast cancer found a 
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substantially higher cost-effectiveness ratio for GEP use in community practice relative to 

ideal conditions.(19) 

 To molecularly stratify the cell-of-origin subtypes for DLBCL in the clinical 

setting, immunohistochemical (IHC) classification systems have been developed as 

surrogates for GEP. The first such classification system was developed in 2004 by Hans et 

al. and used the differential expression of the proteins CD10, BCL6, and MUM1 to separate 

GCB and non-GCB phenotypes.(2) CD10 is a membrane-associated, neutral endopeptidase 

that has restricted expression in activated germinal center cells; BCL6 is a zinc-finger 

protein that acts as transcription repressor and is expressed in germinal center B cells; and 

MUM1 is a transcription factor expressed in a subset of germinal center cells. When 

sequentially combined in a classification system (See Figure 1), these IHC stains are able 

to stratify GCB and non-GCB DLBCLs with a sensitivity of 70% and 87% and positive 

predictive value of 84% and 75% for the GCB and non-GCB groups, when compared to 

GEP classification, respectively.(2) The Hans classification system resulted in an 86% 

concordance with GEP, and therefore misclassifies 14% of patients.(2) Eight other IHC 

classification systems have subsequently been developed that reported higher concordance 

with molecular-based classification of DLBCL, though none have been as readily used in 

clinical practice as the Hans classification system likely due to its simplicity and historical 

use. (3, 4, 20-24) 

Although IHC staining have been a mainstay in the determination of oncologic 

diagnosis and prognosis, pathologist IHC interpretation is fraught with limitations. In IHC 

staining, the “brown” diaminobenzidine (DAB) chromogenic stain represent positive 

protein expression and provides a contrast to the “purple” hematoxylin counterstain. One 
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issue is that the brown DAB stain has a narrow dynamic range relative to the purple 

hematoxylin stain, meaning it is difficult for the human eye to distinguish the brown 

“signal” from the purple “noise”.(25)  Another limitation is the subjective interpretation of 

protein expression levels by pathologists, generally resulting in ordinal outputs and leaving 

the potential for a pathologist artifact.(26) Further, interpretation of IHC staining by 

pathologists has been shown to be subject to significant interlaboratory and interobserver 

variability.(5, 27, 28) This has particularly been the case when pathologists are asked to 

estimate percentages of stained areas (28), which is what is required in DLBCL. 

 Studies examining interlaboratory and interobserver variation in interpretation of 

the various IHC biomarker stains for DLBCL have produced uninspiring results.  De Jong 

et al. found interrater agreement among 24 pathologists examining DLBCL tissue 

microarray for CD10, BCL6, and MUM1 to be just 65% (κ = 0.39), 34% (κ = 0.17), and 

34% (κ = 0.16) respectively.(5) This resulted in an interrater agreement for subtype by the 

Hans classification system of 57% (κ = 0.36). Pathologist reliability improved somewhat 

when optimizing staining technique, controlling for interlaboratory variability, to 70% (κ 

= 0.72), 53% (κ = 0.42), and 54% (κ = 0.41) for CD10, BCL6, and MUM1 respectively 

and to 77% (κ = 0.62) for subtype classification.(5) Based on this data, there remains a 

need for the reduction of IHC interobserver variability in practice, improving accuracy and 

utility of the IHC classification systems. 

 Significant advancements in digital pathology technology, such as scanning and 

storage, have allowed for the full digitalization of the stained tissue sections. The digital 

whole slide images (WSI) are able to capture histopathological details in high resolution, 

providing a resource rich in data, in addition to the opportunities for telepathologic 
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diagnosis and education. Computational imaging of WSI allow for a quantitative 

description of disease pathology and create compelling opportunities for precision 

medicine. Histology image analysis algorithms have received significant attention and 

been developed to predict metastasis (29), survival (30-34), grade (35), and classification 

(36-38), as well as linked to genomic and biologic data (39-41).  

Several studies looking at computer-aided diagnosis have focused on using image 

analysis algorithms for interpretation of IHC stains. Estrogen receptor- (ER), progesterone 

receptor- (PR), and her2 receptor-positive status in breast cancer can be accurately 

determined by quantitative image analysis algorithm.(8, 42-45) When IHC automated 

measurements are provided to pathologists as a diagnostic aid, inter- and intra-observer 

agreement improves substantially.(6, 7) Meanwhile, automated her2 IHC scores can 

provide more reliable data, closely estimating consensus visual scores by multiple expert 

pathologists.(46) In 2016, the FDA approved the use of quantitative IHC interpretation in 

breast cancer for determination of ER/ PR status. Automated IHC analysis algorithms have 

been shown to be highly effective in quantifying Ki67 prognostic marker in breast cancer 

(47), S100A in ovarian cancer (48), and epidermal growth factor receptor in colon cancer 

(49). 

 In April 2017, the US FDA approved the use of digital pathology for primary 

diagnosis of surgical pathology slides. The FDA reviewed data on 2,000 surgical pathology 

cases and found that the diagnoses generated from the digital pathology images was 

noninferior to optical microscopy. This signifies a major step in the adoption of digital 

pathology scanners nationwide. As the use of digital pathology scanners continues to 
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expand, computer-aided diagnosis through image analysis algorithms will likely develop 

into an essential resource in clinical oncologic practice. 

 The promise of quantitative IHC interpretation of digital pathology images may 

offer a solution to the high rate of DLBCL subtype misclassification, which is partially a 

result of limitations in IHC stain interpretation. We set out to develop an objective and 

precise quantitative IHC image analysis algorithm using digital pathology WSI that can 

accurately predict pathologist classification as positive or negative for each IHC stain 

included in the Hans classification system (CD10, BCL6, MUM1), and can effectively 

distinguish between GCB and non-GCB subtype.  Such an algorithm would reduce inter-

rater reliability and establish a pathway toward improving correlations between IHC 

classification and GEP. 
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METHODS 

 

Aims 

Aim 1. Develop and apply IHC image analysis algorithm to DLBCL digital pathology WSI 

for IHC stains CD10, BCL6, and MUM1. 

Aim 2. Assess the ability of the image analysis algorithm to discriminate between 

pathologist classification of positive or negative for each IHC stains CD10, BCL6, and 

MUM1. 

Aim 3. Estimate concordance of image analysis algorithm-generated DLBCL subtype 

classification with pathologist generated DLBCL subtype classification. 

Data Source 

DLBCL patients were retrospectively identified from a database of Emory 

University DLBCL cases who had available whole slide images for each of the stains 

included in the Hans classification system (CD10, BCL6, MUM1). Each patient had been 

seen by a physician at the Winship Cancer Institute at Emory University and had their 

slides read by subspecialized hematopathologists from Emory University Hospital. 

Pathology classification by the hematopathologists for each IHC stain CD10, BCL6 and 

MUM1 as positive or negative and for DLBCL subtype was recorded from the pathology 

reports. The whole slides were de-identified and digitized at 40x objective resolution 

(specimen-level pixel size 0.226 x 0.226) using 2 different scanners: Hamamatsu 

Nanozoomer 2.0 HT or Aperio AT2.   

Image Analysis Algorithm 

An image analysis algorithm was developed and trained on the 40 IHC whole slide 

images (WSI) for each IHC stain: CD10, BCL6, and MUM1 (See Figure 2A for example 
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of WSI). The image analysis pipeline used consists of three steps: color normalization, 

segmentation, and feature extraction.  

First, each of 40 IHC whole slide images were independently normalized to a 

standard IHC stained image with desired Hematoxylin and DAB characteristics using 

Reinhard normalization (Figure 2B). This normalization process uses a linear transform in 

a perceptual color-space to match the means and standard deviation of the two color 

channels (brown and purple) between the whole slide image and the standard image, 

improving consistency of the subsequent segmentation and feature extraction.  

Second, the tissue pixels in the normalized images were masked from the 

background using linear discriminant analysis to ensure only cellular tissue is included. 

The masked tissue area was then segmented into regions through superpixelation, which 

creates compact regions (60 micron squares) based on image content and location, so that 

each region contains similar amount cellular material while remaining roughly equivalent 

in size (Figure 2C). The normalized regions have a color deconvolution algorithm applied, 

separating the purple hematoxylin stain from the brown DAB stain based on pixel 

thresholds (Figure 2D).  

Last, the features describing the distribution of both the Hematoxylin and DAB 

pixel stains were extracted using a convolutional autoencoder, which is a form of 

unsupervised learning that identifies visual features through dimensionality reduction. A 

28x28 image patch was encoded into a set of 64 features for each superpixel. The encoded 

features for the 40 IHC whole slide images were trained and classified using a random 

forest algorithm on active machine learning. 
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Active machine learning is an iterative process that first learns an unknown decision 

boundary that classifies regions as positive or negative based on the region stain features 

(Figure 2E). Regions of low confidence, those that are difficult to classify as 

positive/negative, are presented to the user for labeling. The algorithm is then retrained 

with the new labels, correcting prediction errors of low confidence regions and improving 

classification, and applied to the entire dataset. The active machine learning process was 

performed over several iterations. The algorithm classifies all the tissue regions of the WSI 

as positive or negative and outputs a percentage of positive regions. An example heatmap 

showing the positive class density determined by the image analysis algorithm of a MUM1 

WSI is shown in Figure 3.  

The image analysis algorithm uses tools from the HistomicsTK Python library for 

histologic analysis (http://github.com/DigitalSlideArchive/HistomicsTK) and 

HistomicsML pipeline for Active machine learning. 

Statistical Analysis 

The image analysis algorithm was applied to each of the WSI for the 40 DLBCL 

cases returning the percentage of positive regions across the tissue for each IHC stain. 

Receiver Operating Characteristic (ROC) curves were generated for each IHC stain to 

assess the ability of percent positive regions to discriminate between pathologist 

classification as positive or negative for CD10, BCL6, and MUM1. Area under the curves 

(AUC) and ideal classification thresholds for percent positive regions were calculated. 

Using these thresholds, DLBCL cases were classified into GCB/non-GCB by the Hans 

classification system using sequential application of the identified thresholds on the 

percentage of positive regions determined by the image analysis algorithm. Concordance 

https://github.com/DigitalSlideArchive/HistomicsTK
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of image analysis subtype classification with pathologist subtype classification was 

calculated by agreement rate and Cohen’s kappa statistic. The Cohen’s kappa statistic is a 

measure of interrater reliability that accounts for chance agreement. A random forest 

classifier was trained to use the percentage of positive regions output by the image analysis 

algorithm, as the features, to classify the DLBCL subtypes, using pathologist subtype 

classification as the training labels. Concordance of the random forest classifier using the 

image analysis algorithm outputs with pathologist subtype classification was calculated. 

Statistical analyses were performed using Python libraries SciPy and scikit-learn. 
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RESULTS 

 

Forty patients with DLBCL had staining for all IHC stains in the Hans classification 

system (CD10, BCL6, and MUM1). All patients were diagnosed between 2006 and 2016 

at a variety of hospitals around the Southeastern United States, where their histology slides 

were prepared. Pathologists classified CD10, BCL6, and MUM1 as positive in 27.5%, 

90%, and 84.9% respectively. Pathologists classified 15 patients as GCB and 25 patients 

as non-GCB. Patient characteristics are shown in Table 1. No differences in patient 

characteristics were found between GCB and non-GCB DLBCL subtypes. 

The image analysis algorithm was applied to each the 40 DLBCL cases, returning 

the percentage of positive regions across the tissue for each IHC stain. When examining 

the ability of the percent positive regions generated by the image analysis algorithms to 

discriminate between pathologist classification as positive or negative, the area under the 

ROC curves for CD10, BCL6 and MUM1 were 0.92, 1.0, and 0.95 respectively (see Figure 

4, 5, and 6 respectively). The optimal decision threshold calculated from the ROC curves, 

or the percentage of positive regions at which sensitivity and specificity for distinguishing 

pathologist classification as positive or negative are maximized, for CD10, BCL6, and 

MUM1 were 13%, 15%, and 20% respectively.  Using these decision thresholds, sensitivity 

and specificity for CD10, BCL6, and MUM1 were 82% and 90%, 100% and 100%, and 

94% and 83% respectively. 

Sequential application of these thresholds in the Hans classification system was 

used to generate subtype classification by image analysis algorithm is shown in Figure 7. 

Of the 40 DLBCL cases, 13 had percent positive regions for CD10 greater than the 13% 

optimal threshold and were therefore classified as GCB by the image analysis algorithm. 
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Of these 13 cases identified as GCB by the image analysis algorithm, 11 (85%) were 

consistent with pathologist classification as GCB. Of the 27 remaining DLBCL cases 

(those with CD10 percent positive regions < 13%), 4 had percent positive regions for BCL6 

less than the 15% threshold and were classified as non-GCB by the image analysis 

algorithm. All 4 (100%) of these cases were consistent with pathologist classification as 

non-GCB. Of the 23 remaining DLBCL cases (those with percent positive regions for 

CD10 < 13% and for BCL6 > 15%), 17 had percent positive regions for MUM1 greater 

than the 20% threshold and were diagnosed as non-GCB. Of these 17 cases, 16 (94%) were 

consistent with pathologist classification as non-GCB. The remaining 6 cases with percent 

positive regions for CD10 < 13%, BCL6 > 15% and MUM1 < 20% were classified as GCB 

by the image analysis algorithm. Of these 6, 3 (50%) were consistent with pathologist 

classification as GCB. Given the image analysis algorithm and pathologist subtype agreed 

on 34 of the 40 cases, concordance between pathologist subtype classification and subtype 

classification by image analysis algorithm was 85% (κ = 0.70).  

After training a random forest classifier using the percent positive regions from the 

image analysis algorithm for CD10, BCL6, and MUM1, the subtype from the image 

analysis algorithm agreed with the pathologist subtype on 33/40 DLBCL cases. Therefore, 

concordance between pathologist classification and subtype classification from the random 

forest classifier was 82.5% (κ = 0.63). 
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DISCUSSION 

 

Historically, DLBCL patients have been stratified into low-, intermediate-, and 

high-risk based on the international prognostic index that incorporates clinical factors.(50) 

While the IPI remains useful clinically, cell-of-origin subtyping has come to prominence 

as the most clinically useful prognostic stratification as the ABC subtype has worse 

outcomes regardless of IPI risk level.(1, 2, 4, 51) Utilizing the biologically-based cell-of-

origin classification system provides the possibility of more targeted treatment. The ABC 

subtype of DLBCL has shown a significantly increased activation of NF-kB, prompting a 

variety of clinical trials in the ABC subtype focusing on therapies affecting this pathway, 

such as bortezomib (52), lenalidomide (53, 54), and ibrutinib (55).  Although cell of origin 

differentiation by gene expression profiling has prognostic significance, the IHC surrogate 

classification systems have yielded conflicting results on its ability to predict 

outcomes.(56-61) A systematic review and meta-analysis found that IHC classification 

systems can be useful in predicting subtype, but GEP remains the preferred method for 

predicting prognosis.(62) Further, there is poor concordance in predicting cell-of-origin 

subtype even between the various IHC classification systems.(24) This could be a result of 

the significant pathologist variation in IHC stain interpretation, in addition to the imperfect 

concordance of the classification systems with GEP. An objective, efficient cell-of-origin 

classification system utilizing IHC staining is needed for current prognostic risk 

stratification, effective subtyping for clinical trials, and personalization of treatment 

strategies moving forward. 

The image analysis algorithm that we developed represents a novel, objective, 

quantitative method for classification of DLBCL subtype. The algorithm makes use of 
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whole slide images and assesses the percentage of positive regions throughout the DLBCL 

tissue. The algorithm output of percent positive regions is highly predictive of pathologist 

classification as positive or negative for each IHC stain in the Hans classification system 

with high AUC values. To our knowledge, this is the first image analysis algorithm 

showing the ability to effectively discriminate between pathologist classification as 

positive or negative for IHC stained DLBCL whole slide images. The high agreement rate 

and kappa-statistic of 0.7 suggest that the image analysis algorithm has high, though 

imperfect, concordance with pathologist classification as GCB or non-GCB by the Hans 

classification system. The high concordance with pathologist classification suggests 

potential as a decision-support tool for pathologists in clinical practice and for efficient use 

in subtyping for clinical trials. The image analysis algorithm will improve inter-rater 

reliability. In addition, the algorithm was trained and tested on slides prepared from a 

variety of laboratories, allowing it to account for inter-laboratory variation. Our future 

research will focus on investigating the correlation of the algorithm with GEP. It may have 

an improved correlation, or could be better trained to subtype DLBCL, when compared 

against the gold-standard GEP.  

In current clinical practice, pathologists examine IHC-stained DLBCL whole slides 

by examining specific representative regions in a high-power field and estimating if >30% 

of tumor cells are positive. This process introduces significant variation in selection of 

representative regions and estimation, suffers from a binary classification, and may be 

unable to include tumor heterogeneity. Our image analysis algorithm’s use of the whole 

tissue and quantitative region positivity output help to address these issues. The 

quantitative IHC stain positivity renders the possibility of generating new, more specific 
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positivity cutoff values. In addition, efficient subtype classification of the considerable 

number of patients included in clinical trials currently relies on the use of tissue 

microarrays, single slides for a given IHC stain that contain up to 100 DLBCL tissue cores, 

small regions of DLBCL selected for their perceived representativeness of the tumor. This 

allows the pathologist to read the many stains efficiently without having to regularly switch 

slides, which would take significant time, effort, and storage. However, tissue microarrays 

can be difficult to make, require FFPET, introduce variation in core selection, and fail to 

capture tumor heterogeneity.(63) In addition, tissue microarrays have produced 

inconsistent results with regard to subtype prediction based on IHC classification 

systems.(64) Our image analysis algorithm has the potential to automate this process, using 

digitized whole slides, and improve classification efficiency and consistency in DLBCL 

clinical trials. 

 We compared two different methods to predict DLBCL subtype using the image 

analysis algorithm. The first uses sequential application of the Hans classification system 

using the ROC-generated thresholds for the three IHC stains CD10, BCL6, and MUM1. 

This method (shown in Figure 7) mimics the Hans classification system used in clinical 

practice. The second method utilized a random forest classification. The random forest 

classifier is a supervised ensemble machine learning method that generates a multitude of 

decision trees, much resembling the Hans classification system (Figure 1), and outputs the 

mode classification. In our case, the decision trees are constructed from the 3 IHC stain 

image analysis outputs; each decision tree recommends a classification of either GCB or 

non-GCB; and the mode classification represents the subtype determined by the random 

forest classifier. Whereas sequential application of the Hans classification system is a rigid 
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decision tree and requires region positivity thresholds generated from the ROC curves, the 

random forest classifier provides flexibility in the classification system. Random forest 

classification does not require set thresholds for IHC region positivity and can easily 

incorporate other IHC stains into its classification process, such as those for the Choi or 

Tally classification system, as well as others. This provides a classification system that can 

be easily adapted for future research purposes. The random forest subtype classification 

provides a similar, though slightly less, concordance with pathologist classification relative 

to that of the sequential application of the Hans algorithm. We would expect that the 

random forest classifier’s concordance with pathologist subtype would improve with 

increased sample size, but our results suggests that the Hans algorithm is the most efficient 

decision tree. 

Independent of the Hans algorithm, positive IHC staining for BCL2 and MYC have 

been shown to be strong predictors of worse outcomes regardless of cell-of-origin and 

IPI.(65-68) BCL2 is an anti-apoptotic gene that plays is essential for normal B-cell 

development and differentiation, while MYC plays important roles in cell-cycle promotion 

and apoptosis.  Those with high expression of both BCL2 and MYC, referred to as “double-

hit” lymphomas, have a particularly aggressive disease course, with a 9x increased risk of 

death relative to that of those with low expression of the stains.(69, 70) Interpretation of 

the BCL2 IHC stain has been shown to be subject to variability with an agreement rate of 

just 47% (κ = 0.23).(5) In addition, the scoring of a positive BCL2 IHC stain has not been 

universally agreed upon. A recent study focused on developing a new scoring system for 

BCL2 hoping to improve consistency.(71) Meanwhile, studies looking at interrater 

reliability of pathologists on scoring whole slides for MYC positivity yielded almost 40% 
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of discordant cases.(72) This suggests a major opportunity for improving the variability of 

MYC scoring. The Lymphoma Epidemiology of Outcomes cohort study, a large multi-

institution study accumulating in-depth biologic and clinical data on lymphoma patients, 

currently has a prospective project underway further detailing interrater reliability between 

9 expert hematopathologists for both BCL2 and MYC in DLBCL. Our image analysis 

algorithm will be adjusted to run on these IHC stains, and we will compare the 

classification by our algorithm with that of the pathologists. These stains have the potential 

for incorporation into our random forest classification of subtype that uses the image 

analysis algorithm outputs. Further, including the quantitative output of the image analysis 

algorithm for BCL2 and MYC will allow for a more personalized prognostic prediction, 

especially when incorporated with BCL6, CD10, and MUM1. 

Follicular lymphoma (FL) is the second most common type of NHL and has 

similarly suffered from issues with interobserver variability in its grading, with agreement 

between pathologists ranging from 61% to 73%.(73) However, computer-aided image 

analysis has sought to address this issue. The grading of FL by pathologists relies upon the 

number of centroblast cells within a follicle center in high-power fields. However, the 

selection of high-power fields by pathologists was a major source of variability. The 

automated selection of high-power fields, through image analysis selection of 

representative tumor regions, was able to reduce lack of consensus from 41% to just 

6%.(74) Image analysis algorithms were able to effectively perform follicle detection(73, 

75, 76) and differentiate centroblast cells within the follicles (77-79). Using these 

informatics tools, Fauzi et al created an automated FL grading system, called FLAGS, that 

was used as a decision support tool for pathologists.(80) Exposure to FLAGS improved 
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grading accuracy both expert and resident hematopathologists, and reduced sampling and 

reader bias.(80) This iterative development of informatics tools for FL grading represents 

a direct pipeline for the creation of effective decision support tools for pathologist 

classification of lymphoid malignancies. Our algorithm represents an important first step 

in improving the subtype classification of DLBCL. Future research will need to focus on 

improving our algorithm for DLBCL prognostic prediction and adapting the algorithm for 

use as a decision support tool in the clinical setting. 

 Other research has gone into adapting DLBCL cell-of-origin subtyping to the 

bedside. The Lymphoma/Leukemia Molecular Profiling Project developed and validated a 

digital gene expression-based assay, called Lymph2Cx, that can determine cell-of-origin 

using fresh frozen paraffin embedded tissue biopsies with accuracy and consistency.(81) 

The Lymph2Cx assay also maintained the prognostic significance of the ABC and GCB 

subtypes.(82) However, a cost-effectiveness analysis of the use of this assay has not been 

performed, and it has not gained any traction for use in clinical practice. Of note, cost-

effectiveness studies on breast cancer did not yield promising results for routine use in 

clinical practice.(19) The need remains for improvement in IHC-based cell-of-origin 

subtype determination in clinical practice, and digital pathology presents a promising tool 

to fill the current void.  

 Our study suffered from a few limitations that present opportunities for future 

research. Due to the small sample size, no validation set was used to generate the ROC 

curves assessing the ability of the image analysis algorithm to discriminate between 

pathologist classification as positive and negative. The Lymphoma Epidemiology of 

Outcomes cohort study has been accumulating DLBCL tissue slides from several 
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institutions around the United States with staining for the Hans algorithm. These will be 

used for a future validation set.  Meanwhile, GEP remains the gold standard for classifying 

DLBCL subtype rather than pathologist classification. While we’ve shown high 

concordance of the image analysis algorithm with pathologist subtype classification, it 

remains necessary to compare subtype classification generated by the image analysis 

algorithm to that of the gold standard GEP cell-of-origin subtype. The imperfect 

concordance between the image analysis algorithm and pathologist subtype classification 

leaves the possibility of a higher concordance of the algorithm with GEP. We have begun 

the process of obtaining GEP data for DLBCL tissue that also has the proper staining for 

the Hans classification system to perform this study. In addition, although the slides all 

were classified by expert hematopathologists, some variability in classification was 

introduced by using reports from multiple pathologists. Finally, we were unable to assess 

the relationship between image analysis algorithm classification and survival in this 

retrospective cohort as many patients entered the cohort after 2015 and did not have 

adequate follow-up time for analysis. Future studies must examine the prognostic ability 

of the image analysis-determined subtype. The Lymphoma Epidemiology of Outcomes 

cohort study also can provide a large prospective dataset for analysis of the prognostic 

ability of the IHC image analysis algorithm. Our future research will build on this work by 

expanding upon the image analysis algorithm presented here: developing quantitative IHC 

profiling of digital pathology images, creating IHC scoring frameworks to classify patients 

utilizing IHC expression profiles, and integrating quantitative IHC staining with genomic 

and clinical features into personalized prognostic models for lymphoid malignancies.  
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The image analysis algorithm we’ve developed represents an important first step in 

developing IHC informatics tools for adaptation to both clinical practice and research. 

These tools present the potential to address important limitations in IHC interpretation, 

improve efficiency, reduce the rate of subtype misclassification, and provide more 

personalized prognoses in DLBCL.  
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TABLES/FIGURES 

Figure 1. Hans Classification System. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

>30% 

>30% 

>30% 



34 

 

 

 

Figure 2. Image Analysis Algorithm. 
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Figure 3.  Heatmap of positive region density (right) for MUM1 immunohistochemical 

Whole Slide Image. The red represents high positive region density, while blue represents 

low positive region density. 
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Figure 4. Receiver operator curve comparing percent positive regions from image 

analysis algorithm to pathologist classification for CD10. 
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Figure 5. Receiver operator curve comparing percent positive regions from image 

analysis algorithm to pathologist classification for BCL6. 
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Figure 6. Receiver operator curve comparing percent positive regions from image 

analysis algorithm to pathologist classification for MUM1. 
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Figure 7. Sequential application of the Hans classification system using image analysis 

algorithm output to predict subtype. The x-axis for each of the charts on the right represents 

the percent of positive regions for each IHC stain. The line color represents pathologist-

determined subtype. The dotted lines represent the region positivity thresholds determined 

by the ROC curves. The blue and red shaded regions represent GCB and non-GCB subtype 

classification by image analysis algorithm respectively. 
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Table 1. Clinical Characteristics of DLBCL patients by Hans classification subtype. 

Characteristic GCB NonGCB All p-value* 

Total Number of Patients (%) 15  25  40    

Age, years       0.86  

   Mean  65 60  61.5   

   IQR 48-76   46-68  46-76   

    ≤60  5 9   14   

    >60 10  16  26   

Male gender 6  11   17 0.69  

ECOG performance status       0.43  

    0-1 7  14  21   

    ≥2 6  5   11   

Unknown 2 6 8  

Disease stage       0.39  

   I/II  6 6   12   

   III/IV  6  15  21   

Unknown 3 4 7  

LDH level        0.46 

   Normal 8  9 17    

   >ULN 7  16  23   

B-symptoms        0.56 

   Absent 9   11  20   

   Present  3  8  11   

   Unknown  3  6  9   

No. of extranodal sites        0.41 

   0-1 7   6 13    

   ≥2  7  14 21   

   Unknown  1  5 6    

International Prognostic Index       0.22  

   0-1  5 1 6    

   2  2 5 7   

   3  2 4  6   

   4-5  2 7  9   

   Unknown  4 8   12   

First line of treatment        0.90 

   R-CHOP 8   18  26   

   R+/- Other  4 6   10   

   Other  3  1  4   

  

 


