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Abstract 

The Impact of Air Pollution and Long-term Hydroxyurea Use on Health Outcomes in Children with 
Sickle Cell Disease 

 
By Paul E. George, MD 

 
 

Sickle cell disease (SCD) is a chronic condition characterized by acute, severe pain events, lung disease, 
and other end-organ damage. Despite being a monogenetic defect, the clinical course of SCD is quite 
variable and difficult to predict, with some children remaining relatively unaffected in childhood, and 
others with severe, debilitating disease. Understanding factors that contribute to this phenotypic 
variability is crucial, as it may unveil modifiable risk factors at the patient level and areas for policy 
intervention at the population level. For this dissertation, I examine the impact of air pollution exposure 
on outcomes in children with SCD. I find that air pollution exposure, both short-term and long-term, and 
at the cohort level and individual level, is associated with significantly worse outcomes in children with 
SCD. Separately, I examine the long-term, time-varying impact of hydroxyurea, the main disease 
modifying medication in SCD. Using contemporary difference-in-differences and event study analyses, I 
find that hydroxyurea has sustained, positive impact on clinical outcomes, whereas its impact on 
hematologic parameters diminishes over time. In summary, this work contributes to a deeper 
understanding of the multifaceted influences on SCD outcomes, emphasizing the need for comprehensive 
and sustained interventions. Lastly, I study the diffusion of a specific cost-saving innovation – 
outpatient treatment for appendicitis – to better understand why it was widely-adopted.  
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Chapter 1 

 

Are children with sickle cell disease at particular risk from the harmful effects of air pollution? Evidence 

from a large, urban/peri-urban cohort.  
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Abstract   

Introduction: Pathophysiologic pathways of sickle cell disease (SCD) and air pollution involve 

inflammation, oxidative stress, and endothelial damage. It is therefore plausible that children with SCD 

are especially prone to air pollution’s harmful effects.  

Methods: Patient data were collected from a single center, urban/peri-urban cohort of children with 

confirmed SCD. Daily ambient concentrations of particulate matter (PM2.5) were collected via satellite-

derived remote-sensing technology, and carbon monoxide (CO), nitrogen dioxide (NO2), and ozone from 

local monitoring stations. We used multivariable regression to quantify associations of pollutant levels 

and daily counts of emergency department (ED) visits, accounting for weather and time trends. For 

comparison, we quantified the associations of pollutant levels with daily all-patient (non-SCD) ED visits 

to our center.  

Results: From 2010-2018, there were 17 731 ED visits by 1740 children with SCD (64.8% HbSS/HbSβ0). 

Vaso-occlusive events (57.8%), respiratory illness (17.1%), and fever (16.1%) were the most common 

visit diagnoses. Higher three-day (lags 0-2) rolling mean PM2.5 and CO levels were associated with daily 

ED visits among those with SCD (PM2.5 incident rate ratio (IRR) 1.051 (95% CI 1.010-1.094) per 9.4 

µg/m3 increase; CO 1.088 (1.045-1.132) per 0.5 ppm). NO2 showed positive associations in secondary 

analyses; ozone levels were not associated with ED visits. The comparison, all-patient ED visit analyses 

showed lower IRR for all pollutants.   

Conclusions: Our results suggest short-term air pollution levels as triggers for SCD events and that 

children with SCD may be more vulnerable to air pollution than those without SCD. Targeted pollution-

avoidance strategies could have significant clinical benefits in this population.  
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Introduction  

Air pollution is a major cause of death and disability and is particularly harmful for those with 

underlying chronic disease, including cardiovascular, cerebrovascular, and lung disease.[1, 2] Pollution 

exposure is highest among minorities and otherwise marginalized populations.[3] Young children are also 

especially sensitive to its effects: they breathe more air per bodyweight than adults and their metabolic 

pathways are unable to rapidly detoxify pollutants.[4, 5] The most well-studied air pollutant with regards 

to human health is particulate matter with a diameter of 2.5 microns or less (PM2.5) and no safe threshold 

of PM2.5 has been identified.[6] Carbon monoxide (CO), nitrogen oxides (NOx), and ozone are other key 

pollutants.[7] 

 Sickle cell disease (SCD) is one of the most common monogenetic disorders in the United States, 

with an estimated prevalence of 100 000.[8] Hallmarks of the disease are recurrent, painful, inflammatory 

vaso-occlusive events (VOE), severe pneumonias/acute chest syndrome, and multi-organ damage.[9, 10] 

VOE are the main source of morbidity and mortality in SCD, with population-wide studies showing that 

VOE and fever account for the majority (60-80%) of pediatric emergency department (ED) visits.[11, 12] 

Hydroxyurea and other disease-modifying therapies such as L-glutamine and crizanlizumab have been 

proven efficacious in reducing the number of VOE; however, they do not completely eliminate VOE and 

clinical management during an acute event consists mainly of supportive care.[13] Though there are 

several well-known causes of VOE (e.g., infection, dehydration), many patients present without a clear 

trigger.[14] As such, identifying underlying triggers and associated biologic pathways is key in improving 

patient care.   

There are well-known biologic pathways that indicate exposure to air pollution could be an 

unrecognized yet important trigger for VOE. First, it is well-established that air pollution exposure 

induces a systemic inflammatory response.[15–17] Additionally, air pollution directly damages the lungs; 

acute chest syndrome is characterized by acute lung injury, often of unknown etiology.[18, 19] Other 

pathways that connect air pollution exposure to poor health outcomes in other settings include altered 
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metabolic pathways and direct endothelial injury;[20] SCD is a chronic inflammatory disease with 

baseline oxidative stress and the ongoing endothelial damage is recognized as contributing to the disease’s 

substantial morbidity and mortality.[21, 22]   

Several studies have examined the associations of daily increases in air pollution with acute SCD 

complications, with city-wide, retrospective studies demonstrating a positive association between SCD 

complications and higher levels of daily ambient pollution.[23–25] While representing important first 

steps, these studies have all had limitations which hamper interpretation. From a pollution standpoint, 

data was obtained from a single or only a few monitoring stations, which may not account for city-wide 

pollution variability. From an SCD standpoint, they have relied on ICD-9/10 codes to identify SCD 

patients, which are subject to error and often do not reliably distinguish between different types of SCD 

(e.g. HbSS vs HbSβ+ vs HbSC). For example, an analysis of such hospital discharge coding found that 

17% of patients with HbSS/HbSβ0 and nearly 77% of patients with HbSC were misclassified by 

genotype; this is a serious limitation given the clinical, laboratory, and treatment differences across 

genotypes.[26] Studies to date have also not included a comparison group to investigate the relative 

impact of air pollution. Finally, prior studies have relied on cross-sectional snapshots of ED visits rather 

than following a single cohort of patients over time [23–25].  

In this study, we aim to measure the effects of ambient (outdoor) air pollution on pediatric SCD. 

We hypothesized that short-term changes in air pollutant levels are significantly associated with daily 

burden of ED visits in this population, with the majority of visits due to inflammatory events (e.g., VOE, 

fever). Furthermore, we hypothesize that children with SCD are especially sensitive to air pollution’s 

harmful effects as compared to the general pediatric population. This study augments existing literature 

by a) utilizing data from a large, longitudinal cohort of children with confirmed SCD in the United States, 

thereby eliminating errors inherent with ICD-9/10 codes, allowing us to analyze patients by specific SCD 

genotype, and including only patients who live within the area of interest, b) focusing on the pediatric 

population, a group uniquely vulnerable to air pollution’s effects, c) incorporating satellite-derived PM2.5 
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data and data from multiple monitoring stations, which incorporates city-wide variability in air pollution 

levels, and d) including an all-patient (non-SCD) analysis for comparison. 

Methods 

SCD Patient Database 

 Patient data were abstracted from electronic medical records of patients in an ongoing cohort of 

children with SCD at Children’s Healthcare of Atlanta (CHOA), a comprehensive, clinical database and 

linked to CHOA’s electronic health record database. Specifically, every child with SCD (verified by 

hemoglobin analysis) with ≥ 1 clinical encounter at CHOA, including the affiliated hospitals and 

outpatient clinics, is included in this database. Of note, CHOA is the primary pediatric healthcare system 

in the Atlanta metropolitan area, including three academic hospitals that provide inpatient, outpatient, and 

ED care; our analysis included data from all three hospitals. Importantly, CHOA accounts for ~95% of 

pediatric SCD hospitalizations within the Atlanta metropolitan area [27], representing a nearly complete 

population-based sample. Patient information included sociodemographic (including home address at 

time of encounter) and clinical information.   

Given variable levels of fetal hemoglobin and disease severity under 1 year of age, we limited our 

analysis to patients 1.0-17.9 years of age at time of visit. To only include patients who would plausibly 

seek ED care at a CHOA facility, our geographic area of interest (buffer zone) was defined to include 

those with a home address (and associated pollution levels) within 20 miles of the nearest CHOA ED. Of 

note, we also performed secondary analyses that further narrowed the buffer 10 and 5-mile radiuses. 

Finally, patients were excluded if they were coded as lost to follow up, which we defined as patients who 

went more than 365 days without being seen by a CHOA provider, with the goal of excluding the 

minority of patients who receive their SCD care elsewhere. Note that our analysis is ED-focused, and thus 

only includes children who have visited an ED during the study timeframe. We abstracted ICD-9/10 codes 

to determine cause of ED visit. This study was approved by the CHOA Institutional Review Board. 



6 
 

To test our hypothesis that children with SCD are especially impacted by air pollution, we 

quantified the associations of pollutant levels with daily all-patient ED visits to our center. Specifically, 

this comparison analysis included daily counts of ED visits from all children aged 1.0-17.9 years, minus 

children with SCD, at a CHOA ED (data available June 2013 – December 2018).      

Air Pollution Data 

 Daily air pollution data were acquired from two main sources. For PM2.5, we accessed publically 

avaliable, remote-sensing data developed by the NASA Socioeconomic Data and Applications Center 

(SEDAC) [28] to create a database of daily PM2.5 levels in 1km*1km grids covering the Atlanta 

metropolitan area. We then averaged the grid values over our buffer zones of interest to obtain daily PM2.5 

values for buffers around each facility. As the three CHOA EDs are all within 10 miles of each other, we 

then averaged the values to obtain one daily PM2.5 value for each buffer to apply in our analyses. Remote-

sensing data allow for measurement and inclusion of neighborhood-level variations in pollutant levels and 

have been well-validated and published in other health settings.[29–31] SEDAC data were available for 

the period January 1, 2001 – December 31, 2016.  

For other air pollutants of interest, we did not have such granular data and instead relied on four 

Environmental Protection Agency (EPA) pollution monitoring stations in the Atlanta area (Supplemental 

Figure 1). Data from EPA monitoring stations included PM2.5 (for validation of SEDAC remote-sensing 

data), CO, NO2, and ozone, with data available from January 1, 2010 – December 31, 2018. We used 

daily averages across all monitoring stations for each pollutant of interest. Weather data came from 

Atlanta Hartsfield-Jackson International Airport.  

Measures and Statistical Analysis 

 Our primary exposures of interest were individual air pollutant levels for PM2.5, CO, NO2, and 

ozone. Specifically, we assessed 3-day rolling means (i.e., average of day of ED visit, 1 day prior, 2 days 

prior) of pollutants. This strategy is consistent with air pollution literature and the clinical course of SCD, 
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which suggests children most often present to the ED 2-4 days after symptom onset.[14, 19] We also 

analyzed how specific day (relative to ED presentation) pollutant levels impacted ED visits, both for 

clinical information and as sensitivity analyses/validation of our models. Our outcome of interest was a 

count variable of the total number of ED visits per day (summed across the three CHOA EDs) by the 

1740 patients in our SCD cohort and total daily ED visits summed across the three EDs for the 

comparison group.  

 To estimate the effect of air pollution levels on daily ED visits, we created generalized linear 

models (negative binomial distribution [32, 33]), with the general form  

𝑙𝑜𝑔(𝑦) = 𝛼 + 𝛽!𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 +	𝐼"#$ + 𝐼%#&' + 𝑔(𝑡𝑒𝑚𝑝) + 𝑔(𝑡𝑖𝑚𝑒(%)'")																									(1) 

where y is total ED visits/day by our population of interest and β1 is our coefficient of interest on 

pollutant values (continuous, mean-centered and scaled by 2 times their standard deviation (s.d.) to allow 

for comparison of effects amongst different pollutants).[34] The model accounts for other factors 

potentially associated with both air pollution levels and ED visits, including day of week, rain (indicator 

variable, 1 = rainfall > 0.5 inches/day, on day of visit), temperature (cubic spline of minimum daily 

temperature with knots at 25th, 75th percentiles, on day of visit), and long-term time trends (cubic spline 

with knots at changes in season). Days with missing pollutant values were represented as missing. 

Incident rate ratios (IRR) were obtained by exponentiating the β1 coefficients (𝑒* = 𝐼𝑅𝑅), where IRR is 

the relative change in ED visits per 2 s.d. change in air pollutant levels. For example, an IRR of 1.04 can 

be interpreted as, for every 2 s.d. increase in air pollutant level, ED visits increase by 4%.    

We performed sensitivity analyses and robustness checks on our model, including quasi-Poisson 

distribution (which allows for overdispersion), different temperature and time-trend splines and lags, 

different lag-day models, lead day analyses for identifying model misspecification such as lack of 

adequate time trend control, and multi-pollutant models (see Supplement Tables S2, S3, S4). Analyses 

were performed in R, v4.1.1. We followed STROBE reporting guidelines.[35]       
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Results 

 Our final sample consisted of 17 731 ED visits by 1740 unique children with SCD (age range 1.0-

17.9, Table 1 and Supplemental Figure 1). The patient population self-identified as mainly Black/African 

American (91.4%) and most patients were hemoglobin type SS/Sβ0 (64.8% patients, 70.9% ED visits). 

The study population of interest spanned 11 counties in the Atlanta metropolitan area; 28.5% of the cohort 

lived in 2 counties with the highest annual pollution levels, and only 2.7% lived in the 2 counties with the 

lowest annual pollution levels. Table 2 shows the primary and secondary diagnoses associated with ED 

visits among the SCD cohort, with VOE (defined as SCD crisis or pain, 58.7%), respiratory diagnoses 

(17.1%), and fever (16.1%) as the most common diagnoses. Figure 1 shows the daily pollutant values 

during the study period, demonstrating significant day-to-day variability and seasonal trends.   

Figure 2 shows the results of our primary analyses, focusing on the single pollutant models from 

Equation (1). Within our a priori primary area of interest (20 miles from nearest CHOA ED), both PM2.5 

(IRR 1.051 (95%CI 1.010-1.094) per 2 s.d. (9.4 µg/m3) increase) and CO (IRR 1.087 (1.039-1.138) per 2 

s.d. (0.5 ppm) increase) were significantly associated with ED visits (see Supplemental Table S1 for all 

values). The IRR estimates for our comparison analyses of total daily ED visits (minus patients with 

SCD) were lower for all pollutants as compared to the estimates for the SCD cohort for all buffer areas. 

CO and NO2 were both positively and significantly associated with ED visits amongst the comparison 

group, which is consistent with the broader air pollution literature.    

As secondary analyses (Figure 2), we reduced the buffer area, including only those patients with 

SCD who live within 10 and 5 miles of the nearest CHOA facility. For all monitoring station-derived 

pollutants (CO, NO2, ozone), the IRRs were larger for the smaller areas (more urban environments, as all 

CHOA EDs are within the city of Atlanta) compared to the 20-mile primary area of interest. In contrast, 

the IRR for PM2.5 was similar across the different areas of interest, except for confidence interval widths 

reflecting differences in power. For remote-sensing PM2.5 exposure assignment, we were able to account 

for area of interest size by including only those 1 km x 1 km grids within each area of interest. However, 
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for the other pollutants, we were limited by the few monitoring stations available – 3 of 4 monitoring 

stations were within 5 miles of the nearest CHOA facility – and as such, our exposure variable did not 

change with area for CO, NO2, and ozone. Note that the 5 miles estimates for PM2.5, CO, NO2, and ozone 

are all positive, though only CO and NO2 were statistically significant.     

 Though our a priori exposure of interest was 3-day rolling mean pollutant levels, we also tested 

specific day (relative to ED visit) pollutant levels for the SCD analyses (Figure 3). Here, we present 

results for those pollutants, PM2.5 and CO, that were significantly associated with ED visits in our primary 

analysis. We find that individual lags 0-2 had the strongest associations, which supports the decision to 

make lags 0-2 our primary days of interest. Furthermore, that lead days (i.e., days after hospital 

admission) showed no association with ED visits suggests our models were adequately specified for 

temporal confounders, adding robustness to the models.  

Lastly, we stratified the cohort by severe SCD (i.e. HbSS, HbSβ0) vs. all other genotypes (Figure 

4), to determine if there was a differential effect based on hemoglobin type. Although our model showed 

higher estimates for children with severe SCD, especially in the 5-mile capture area, the confidence 

intervals significantly overlapped. Our models were robust to the other sensitivity analyses described in 

the methods section (Supplement).  

Discussion 

 The results of this retrospective study on a cohort of children with SCD in Atlanta, GA show that 

increases in daily PM2.5, CO (primary analyses) and NO2 levels (secondary analysis) were significantly 

and positively associated with number of ED visits; ozone levels did not show significant associations. 

For all pollutants, IRR estimates relating pollution levels to ED visits were higher for the SCD group than 

the comparison analysis of all non-SCD patient visits. Importantly, our results were robust to a variety of 

sensitivity analyses, including modifications in distributional assumptions, weather covariates, and 

inclusion/exclusion criteria.    
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 This study augments the growing literature in air pollution effects on health. First, there are 

strong pathophysiologic and sociodemographic reasons to suspect that children with SCD are especially 

prone to harms from air pollution. As previously mentioned, the key pathophysiologic pathways of air 

pollution and SCD significantly overlap.[8] From an epidemiologic standpoint, much of the pediatric air 

pollution literature has focused on children with underlying lung disease, such as children with asthma 

and cystic fibrosis, while adult data has shown pollution worsens disease outcomes in many other health 

settings, including cardiovascular and cerebrovascular conditions.[36, 37] The pathophysiology of SCD 

encompasses lung, cardiovascular, and cerebrovascular damage, potentially placing these patients at 

increased risk. Indeed, for all pollutants modeled, the IRR estimates were higher for the SCD group than 

the comparison group, which supports our hypothesis that children with SCD are especially prone to 

harms from air pollution, as compared to the general pediatric population. Furthermore, our results 

suggest that children with SCD may be even more susceptible to air pollution as compared to other high-

risk populations. A meta-analysis of 87 publications that assessed the effect of pollutants on ED visits 

among children with asthma found increases in ED visits of 2.3% per 10 µg/m3 of PM2.5 (vs. our estimate 

of IRR 1.051 = 5.1% per 2 s.d. increase, which corresponds to 9.4 µg/m3 in our data), 4.5% for 1 mg/m3 

CO (vs. 8.8%), 1.8% for NO2 (vs. 3%, not significant), and 0.9% for ozone (vs. 0.5%, not 

significant).[38]   

Another comparison of effect size can be made within the SCD field. A 2017 analysis, using a 

subset of our current study’s population, found the IRR for ED visits among patients who started 

hydroxyurea treatment compared to those not starting this treatment was 0.57 (95%CI 0.49-0.67).[27] To 

place our study into context, a reduction in daily pollution from the 97.5th to 2nd  percentile (i.e., a 4 

standard deviation change, similar to comparing the highest and lowest pollution days) results in IRRs of 

0.91 (0.84-0.98) for PM2.5 and 0.78 (0.71-0.86) for CO. While these estimates are not as large in 

magnitude as the change associated with hydroxyurea initiation, they are nonetheless within the same 

order of magnitude.      
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 Beyond the biologic basis for harm, children with SCD are at potentially higher risk due to their 

underlying sociodemographic characteristics.[39] Due to a legacy of systemic racism, racial and ethnic 

minorities are exposed to higher-than-expected levels of air pollution, even when accounting for 

neighborhood income.[40, 41] Given that SCD overwhelmingly affects the Black population and our 

findings that 28.5% of the patients in the SCD cohort lived in the two most polluted counties and only 

2.7% lived in the two least polluted counties, it is likely that the patients in our cohort are actually 

exposed to higher than the city-wide averages included here, which could cause our results to under-

estimate the true pollution effects. As such, our results suggest that improvements in air quality would 

disproportionately benefit the SCD population and lessen ongoing health disparities.   

 From a clinical perspective, our results have important implications. First, they suggest that 

pollution avoidance strategies could be considered as routine patient counseling for VOE avoidance and 

prevention. Such strategies, such as those recommended for patients with respiratory conditions, include: 

limiting outdoor exertion on high pollution days (many smart phones offer pollution warning messages 

and apps), avoiding physical exertion near major roadways and other sources of pollution, ventilating and 

isolating cooking areas (especially those with gas stoves), avoidance of indoor fires, and wearing high 

quality facemasks when near sources of pollution for prolonged or high-intensity periods.[42] High-

efficiency particulate air/arresting (HEPA) filters can substantially improve air quality and have been 

shown to have significant, cost-effective benefits to human health [43, 44]; encouraging routine (every 4-

6 months) replacement of school and household air conditioning filters significantly reduces pollution 

exposure.  

There are specific limitations to the study. We have performed an observational study, so causality 

cannot be verified. Patients may seek care at facilities not included in the database, notably urgent care 

centers or adult EDs. However, we performed a sub-analysis on patients who lived especially close 

(within 5 miles) to a CHOA facility and were therefore more likely to seek care at CHOA – that analysis 

showed similar (and, in fact, slightly larger) IRR estimates as compared to the 20-mile models, adding 
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evidence to support our main model and its assumptions. Specifically, with the underlying assumption 

that patients’ choice of care location (i.e., CHOA vs outside facility) does not systematically differ with 

air pollution levels, our results remain unbiased. Another limitation is that we did not distinguish cause of 

ED visit and our analyses therefore include some visits whose cause are unlikely to be pollution-related, 

even tangentially (e.g. broken bone). We also did not have reason-for-visit data available for the 

comparison group; it is likely these children have a different mix of reasons for visit. However, as above, 

if these other visits are not systematically correlated with air pollution levels, our results remain unbiased. 

It also warrants mention that respiratory symptoms, headache, viral and other pediatric infections, 

significant sources of ED visits, are also known to be associated with air pollution, adding validity to our 

model.[45, 46]  

Our patient population comes from an urban/peri-urban environment and caution must be used 

when extrapolating to a rural environment. Similarly, nearly 10% of our SCD cohort had an address that 

was unlisted or listed as a PO box. While our database updates a patient’s address at each visit which 

helps account for housing instability, families experiencing homelessness are an especially vulnerable 

population and those patients with unlisted or PO box addresses were not included in our analyses. 

Furthermore, our comparison analysis of daily visits by all children minus children with SCD likely 

includes different sociodemographic characteristics than the SCD group. Given the association of poverty, 

race and other sociodemographic variables with air pollution exposure, a combination of these factors, as 

opposed to air pollution alone, could contribute to the difference between the SCD and non-SCD 

analyses; due to data limitations in the non-SCD analysis, we were unable to explore individual 

contributions. However, this study’s focus was to describe associations between ambient air pollution 

levels and population-wide ED visits and we made no predictions on how patient-level characteristics, 

such as neighborhood poverty level, medication usage, or tobacco smoke, interact with pollution 

exposure; additional research is needed in this area.   
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 In conclusion, we find that increases in daily PM2.5, CO, and NO2 levels are associated with 

significantly higher ED utilization amongst our cohort of 1740 children with SCD. Furthermore, the IRRs 

obtained in the comparison analyses were lower than those of the SCD cohort, which supports the 

hypothesis that children with SCD are at especially high-risk for air pollution’s harms. These results 

provide a potential trigger and underlying pathophysiologic pathway for VOE in patients with SCD. 

Further research is needed to identify children with SCD most at-risk from air pollution’s harms, as this 

risk factor is modifiable via targeted clinical counseling, personal and family-level pollution avoidance 

strategies, and pollution reduction via home and school air filtration systems.          

 

Figure Legend List 

Figure 1: Daily Pollutant Levels, Atlanta, GA (2010-2018). 

This time series graph shows daily pollutant values during the study period. PM2.5 (SEDAC-derived data, 

average value of 20-mile buffers around 3 CHOA emergency departments) mean 10.6 (standard deviation 

(s.d.) 4.7) ug/m3; CO (EPA monitoring station data) mean 0.57 (s.d. 0.25) ppm; NO2 (EPA) mean 26.7 

(s.d. 11.4) ppb; ozone (EPA) mean 0.04 (s.d. 0.01) ppb. 

 

Figure 2: Estimated associations of 3-day rolling mean ambient pollutant levels and ED visits by 

buffer zone and SCD status 

Plot above shows results of 16 separate models (4 pollutants x 4 areas). Pollutant values are standardized 

(mean centered and divided by 2 times their standard deviation). Thus, PM2.5 20-mile radius incidence rate 

ratio of 1.051 can be interpreted as for every 2 standard deviation change in 3 day rolling mean PM2.5 

levels, the daily number of emergency visits in this cohort increases by 5.1%. All ED visits (all patients) 

refers to all children 1.0-17.9 years who visited a CHOA emergency department (excluding only patients 
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with SCD), included as comparison analysis. PM2.5 models include data from Jan 1, 2010 - Dec 31, 2016, 

all patient models from June 1, 2013 - Dec 31, 2018 (due to PM2.5 and all patient data restrictions), all 

other models from Jan 1, 2010 - Dec 31, 2018.  

 

Figure 3: Estimated associations of ambient pollutant levels and ED visits within a 20-mile buffer 

zone: comparison of pollutant lags relative to day of visit. 

Plot above shows the effect of PM2.5 and CO on daily emergency department visits for the SCD cohort. 

Lag day means day prior to encounter. For example, 2-day lag refers to the pollution levels 2 days prior to 

encounter. Solid vertical lines represent day of encounter.  

 

Figure 4: Estimated associations of 3-day rolling mean ambient pollutant levels and ED visits by 

SCD genotype (among 5-mile buffer zone cohort).  

Plot above shows results of 8 separate models (4 pollutants x 2 SCD types). Severe includes patients with 

HbSS, HbSβ0; moderate includes all other sickle cell disease variants, does not include sickle cell trait. 

Of note, analysis of 10- and 20-mile buffer zones showed similar, non-significant differences when 

grouping by genotype.   
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Tables and Figures 

 

TABLE 1. Sociodemographic Characteristics of Children with Sickle Cell 
Disease (January 2010 - December 2018).  

      

By patients               (n 
= 1 740) 

By visits                    
(n = 17 731) 

Age at visit  na  1.0-17.9 
Gender (Female)  49.2% 49.8% 
Ethnicity     
  Non-Hispanic  92.8% 94.9% 
  Hispanic  2.6% 3.6% 
  Not answered  4.6% 1.5% 
Race     
  Black/African American 91.4% 90.1% 
  White  1.1% 1.4% 
  Native American 0.1% 0.2% 
  Not answered  7.4% 7.9% 
Genotype     
  HbSS/HbSβ0 64.8% 70.9% 
  HbSC  26.3% 21.9% 
  HbSβ+  7.4% 6.4% 
  Other  1.5% 0.8% 
Insurance at visit     
  Medicaid  na 64.6% 
  Private  na 23.3% 
  Self-pay  na 1.7% 
  Not listed  na 10.3% 

Includes patients who live within 20 miles of nearest CHOA hospital and who had 
at least 1 emergency department visit from 2010-2018.                                                
Ethnicity, race, and gender are self/parent identified.  
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TABLE 2: Most Common Emergency Department Diagnoses Among Cohort  

Reason for Visit Percentage* 
Sickle cell disease crisis / pain 58.7% 
Respiratory illness** 17.1% 
Fever  16.1% 
Acute chest syndrome 6.0% 
Nausea/Vomiting/Diarrhea 1.7% 
Constipation 1.4% 
Headache 1.4% 
Priapism 0.8% 
Gallstone 0.7% 
Splenic sequestration 0.6% 
Avascular necrosis 0.5% 

*Percentages of primary and secondary diagnoses for ED visit amongst the cohort, by 
ICD9/10 code (n = 17,731). The above percentages exclude 2325 (13.1%) ED visits 
for which there was no associated diagnosis code documenting reason of visit. 
Percentages do not add to 100 due to multiple reasons per visit (e.g., patient may 
present with both fever and pain).      
                                                                                                                                                                          
**Most common respiratory diagnoses included: cough, asthma, pneumonia, 
hypoxemia. Of note, acute chest syndrome is coded separately, and patients can be 
coded as both respiratory illness and acute chest syndrome.  

 

 

Figure Legend List 

Figure 1: Daily Pollutant Levels, Atlanta, GA (2010-2018). 

This time series graph shows daily pollutant values during the study period. PM2.5 (SEDAC-derived data, 

average value of 20-mile buffers around 3 CHOA emergency departments) mean 10.6 (standard deviation 

(s.d.) 4.7) ug/m3; CO (EPA monitoring station data) mean 0.57 (s.d. 0.25) ppm; NO2 (EPA) mean 26.7 

(s.d. 11.4) ppb; ozone (EPA) mean 0.04 (s.d. 0.01) ppb. 
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Figure 2: Estimated associations of 3-day rolling mean ambient pollutant levels and ED visits by 

buffer zone and SCD status 

Plot above shows results of 16 separate models (4 pollutants x 4 areas). Pollutant values are standardized 

(mean centered and divided by 2 times their standard deviation). Thus, PM2.5 20-mile radius incidence rate 

ratio of 1.051 can be interpreted as for every 2 standard deviation change in 3 day rolling mean PM2.5 

levels, the daily number of emergency visits in this cohort increases by 5.1%. All ED visits (all patients) 

refers to all children 1-17.99 years who visited a CHOA emergency department (excluding only patients 

with SCD), included as comparison analysis. PM2.5 models include data from Jan 1, 2010 - Dec 31, 2016, 

all patient models from June 1, 2013 - Dec 31, 2018 (due to PM2.5 and all patient data restrictions), all 

other models from Jan 1, 2010 - Dec 31, 2018.  
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Figure 3: Estimated associations of ambient pollutant levels and ED visits within a 20-mile buffer 

zone: comparison of pollutant lags relative to day of visit. 

Plot above shows the effect of PM2.5 and CO on daily emergency department visits for the SCD cohort. 

Lag day means day prior to encounter. For example, 2-day lag refers to the pollution levels 2 days prior to 

encounter. Solid vertical lines represent day of encounter.  
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Figure 4: Estimated associations of 3-day rolling mean ambient pollutant levels and ED visits by 

SCD genotype (among 5-mile buffer zone cohort).  

Plot above shows results of 8 separate models (4 pollutants x 2 SCD types). Severe includes patients with 

HbSS, HbSβ0; moderate includes all other sickle cell disease variants, does not include sickle cell trait. 

Of note, analysis of 10- and 20-mile buffer zones showed similar, non-significant differences when 

grouping by genotype.   
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Supplemental text 

 

Below is a summary of the different robustness checks performed on the model, beyond those outlined in 

the main text. 

 

Model type 

As discussed in the main text, we chose a negative binomial model given the dispersion parameters. We 

also modeled using a Poisson model, accounting for overdispersion. As shown in Supplemental Table 

S2: Poisson Model Results, the estimates and standard errors assuming a Poisson distribution are very 

similar to the results assuming a negative binomial distribution.  
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Pollutant Levels (Main exposure variables) 

We also performed two pollutant models, in which PM2.5 (our main exposure of interest) was combined 

with all other pollutants in separate models, as was CO (the pollutant with the highest associated 

incidence rate ratio). See Supplemental Table S3, Two Pollutant Models for results. Finally, we 

performed a 4-pollutant model, in which only CO remained significantly associated with ED visits. 

However, there is significant correlation in air pollutant levels, which results in large standard errors and 

difficult to interpret results in the multi-pollutant models, which is why our primary analysis plan a priori 

included only single pollutant models.   

 

Temperature 

In our main model, we include a cubic spline with minimum temperature (lag 3 day rolling mean), with 

knots at 25th and 75th percentiles for daily minimum temperature (temperature = 42F and 69F, 

respectively). As a robustness check, we substituted maximum temperature (daily) cubic splines at 25th 

and 75th percentiles, which provided similar results. Additionally, we modeled day of minimum and 

maximum temperatures as linear, continuous variables, again providing similar results. Finally, we 

modeled temperature values as 3-day lagged values (similar to our pollutant exposures of interest), 

without significant changes in results.  

 

Time 

In our main model, we include a cubic spline for time with knots at seasonal locations. As a robustness 

check, we substituted for a cubic spline for time with yearly knots (i.e., day 365, 730, 1095, etc), which 

provided similar results.   
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Supplemental Figure 1 

 

Supplemental Figure 1 shows the location of the three main Children’s Healthcare of Atlanta (CHOA) 

Hospitals (beds) and Environmental Protection Agency (EPA) monitoring stations (smoke towers, EPA 

site 1312100056 1 dot, site 130890002 2 dots, site 1312100039 3 dots, site 131210055 4 dots). Carbon 

monoxide was collected from 130890002, 1312100056; nitrogen dioxide from 130890002, 1312100056; 

Ozone from 130890002, 131210055, and PM2.5 (for validation of satellite data) from 130890002, 

1312100039).    

Supplemental Figure 2 

 



29 
 

Supplemental Figure 2 explains how we arrived at our final sample of 17,731 visits by 1,740 unique 

patients. Non-ED refers to visits that were not in the emergency department; age refers to patients 

younger than 365 days of age or older than 18 years of age; address refers to those who lived outside our 

area of interest (greater than 20 miles from the nearest CHOA hospital for the main analysis, 5, 10 miles 

for secondary analyses) or had missing address (n = 221)/PO box addresses listed (n = 52); LTFU (lost to 

follow up) refers to patients who went 365 days or more without being seen in a CHOA facility, to 

exclude patients who receive their healthcare elsewhere.    

 

Supplemental Table S1: Numerical Results of Primary Analysis, as Visualized in Figure 2. 

Pollutant distance estimate std.error p.value IRR 95% CI 

PM2.5 5 mile radius 0.049 0.041 0.228 1.051 0.97 1.138 
CO 5 mile radius 0.131 0.04 0.001 1.14 1.053 1.234 

NO2 5 mile radius 0.078 0.038 0.04 1.081 1.003 1.165 
Ozone 5 mile radius 0.056 0.043 0.186 1.058 0.973 1.15 
PM2.5 10 mile radius 0.044 0.024 0.061 1.045 0.998 1.095 

CO 10 mile radius 0.083 0.023 <0.001 1.087 1.039 1.138 
NO2 10 mile radius 0.038 0.022 0.083 1.039 0.995 1.084 

Ozone 10 mile radius 0.016 0.024 0.505 1.016 0.969 1.066 
PM2.5 20 mile radius 0.05 0.02 0.015 1.051 1.01 1.094 

CO 20 mile radius 0.084 0.02 <0.001 1.088 1.045 1.132 
NO2 20 mile radius 0.03 0.019 0.114 1.03 0.993 1.069 

Ozone 20 mile radius 0.005 0.021 0.82 1.005 0.964 1.048 
PM2.5 all ED visits (all patients) 0.009 0.008 0.280 1.009 0.993 1.025 

CO all ED visits (all patients) 0.054 0.008 <0.001 1.056 1.039 1.073 
NO2 all ED visits (all patients) 0.020 0.008 0.012 1.020 1.004 1.036 

Ozone all ED visits (all patients) -0.015 0.008 0.066 0.985 0.969 1.001 

Pollutant values into the model are 3 day rolling means, standardized (mean centered and divided by 2*standard deviation).                                                                                                                                                                  
Distance refers to capture area (i.e. for our primary analysis of 20-mile capture area, the cohort included all patients who lived within 20 
miles of our facility on day of interest).                                                                                                                                   
 IRR is incident rate ratio. 
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Supplemental Table 1 shows the results of the primary analysis, as visualized in Figure 2 (main text) 

.  

Supplemental Table S2: Poisson Model Results 

Pollutant estimate std.error p.value distance IRR 95% CI 

PM2.5 0.049 0.041 0.231 5 mile radius 1.051 0.969 1.139 
CO 0.131 0.041 0.001 5 mile radius 1.14 1.052 1.234 

NO2 0.079 0.038 0.041 5 mile radius 1.082 1.003 1.166 
Ozone 0.057 0.043 0.186 5 mile radius 1.058 0.973 1.151 
PM2.5 0.044 0.024 0.063 10 mile radius 1.045 0.998 1.095 

CO 0.083 0.023 0 10 mile radius 1.087 1.038 1.137 
NO2 0.038 0.022 0.082 10 mile radius 1.039 0.995 1.084 

Ozone 0.017 0.025 0.5 10 mile radius 1.017 0.969 1.067 
PM2.5 0.049 0.02 0.016 20 mile radius 1.051 1.009 1.094 

CO 0.083 0.02 0 20 mile radius 1.087 1.044 1.13 
NO2 0.03 0.019 0.111 20 mile radius 1.031 0.993 1.07 

Ozone 0.005 0.021 0.827 20 mile radius 1.005 0.964 1.047 

Pollutant values are 3 day rolling means, standardized (mean centered and divided by 2*standard deviation), and 
distance refers to radius of buffer zone/capture area, with nearest CHOA ED as center).  
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Supplemental Table 2 shows the results of the primary analysis, with distribution changed from negative 

binomial to quasi-Poisson (to account for overdispersion of our outcome variable, ED visits/day).  

Supplemental Table S3: Two Pollutant Models 

Model Pollutant estimate std.error p.value 

PM2.5 + CO PM2.5  0.011 0.025 0.674 
  CO 0.079 0.027 0.004 

PM + NO2 PM2.5  0.041 0.025 0.094 
  NO2 0.014 0.024 0.550 

PM + Ozone PM2.5  0.054 0.022 0.015 
  Ozone -0.009 0.026 0.727 

CO + NO2 CO 0.098 0.024 0.000 
  NO2 -0.022 0.023 0.341 

CO + Ozone CO 0.078 0.021 0.000 
  Ozone -0.012 0.021 0.573 

Above are the results of the models in which we include 2 pollutants per model as exposures of 
interest.                                                                                                                 Capture area is 
20 miles from nearest CHOA facility.                                                   Exposure values are 3-day 
lag rolling means.  
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Supplemental Table 3 shows the results of our two pollutant models, in which we include 2 pollutants as 

the exposures of interest.  

Supplemental Table S4: Associations of pollutants with ED visits, by day relative to ED visit.  

Pollutant timeframe estimate std.error p.value IRR 95% CI 
PM2.5 2 day lead 0.002 0.02 0.913 1.002 0.964 1.042 

CO 2 day lead -0.024 0.019 0.211 0.976 0.94 1.014 
PM2.5 1 day lead 0.018 0.02 0.365 1.018 0.979 1.059 

CO 1 day lead -0.025 0.019 0.192 0.975 0.938 1.013 
PM2.5 Day of 0.045 0.02 0.023 1.046 1.006 1.087 

CO Day of 0.03 0.019 0.109 1.031 0.993 1.07 
PM2.5 1 day lag 0.042 0.02 0.035 1.043 1.003 1.084 

CO 1 day lag 0.07 0.019 0 1.072 1.034 1.112 
PM2.5 2 day lag 0.039 0.02 0.049 1.04 1 1.081 

CO 2 day lag 0.08 0.018 0 1.084 1.046 1.123 
PM2.5 3 day lag 0.02 0.02 0.316 1.02 0.981 1.061 

CO 3 day lag 0.034 0.018 0.06 1.035 0.998 1.073 
PM2.5 4 day lag 0.008 0.02 0.678 1.008 0.97 1.048 

CO 4 day lag 0.002 0.018 0.899 1.002 0.967 1.039 

Timeframe refers to day of pollutant measurement, relative to ED visit.                                        Lead refers to day 
after visit, lag refers to day prior to visit. For example, if day of ED visit is March 10, then 2 day lead is March 12, and 
3 day lag is March 7.                                                                          Capture area is 20 miles from nearest CHOA 
facility.                                                                                             IRR is incident rate ratio.               
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Chapter 2 

 

Impact of Annual PM2.5 Exposure on Clinical and Laboratory Outcomes in Children with Sickle Cell 

Disease: A Retrospective Cohort Study 
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Abstract 

Background: Sickle cell disease (SCD), a genetic disorder affecting approximately 7 million people 

worldwide, leads to severe morbidity and early mortality but varies phenotypically. Both air pollution and 

SCD impact the cardiorespiratory and inflammatory systems; despite this overlap, the role of air pollution 

in driving phenotypic variability in SCD has not been evaluated. We hypothesized that annual ambient 

PM2.5 concentrations at a child’s home address would be significantly associated with higher numbers of 

annual emergency department (ED) visits, hospital days, and markers of inflammation. 

Methods: Patient data for this retrospective study was obtained from a longitudinal, single-center cohort 

of children with SCD (2010-2019). Annual PM2.5 exposure was estimated using publicly available 

remote-sensing ambient air pollution datasets, with annual PM2.5 concentrations matched to each child’s 

home address. Statistical analyses employed fixed effects multivariable models to control for individual-

specific, time-invariant confounders, with additional models examining the effect modification of 

hydroxyurea use and socioeconomic status.  

Results: The cohort comprised 1,089 children with severe SCD, with a mean follow-up of 5.1 years. 

Higher annual PM2.5 concentrations were significantly associated with more annual hospital days 

(incident rate ratio (IRR)=1.16, p=0.047), higher likelihood of hospitalization (odds ratio (OR)=1.02, 

p=0.024), abnormal stroke risk screenings (OR=1.05, p<0.001), and elevated white blood cell (β=0.19, 

p=0.017) and absolute neutrophil count (β=0.14, p=0.01). No significant association was found between 

PM2.5 and ED visits. Hydroxyurea use mitigated the inflammatory response to PM2.5 but did not mitigate 

the effect of PM2.5 on clinical outcomes.  

Conclusions: By employing a novel fixed effects methodology on a large longitudinal cohort of children 

with SCD, this study isolated the impact of annual air pollution exposure on clinical and inflammatory 

outcomes. PM2.5 exposure correlated with worse clinical outcomes and increased inflammation in children 
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with SCD, highlighting the need for stringent air quality regulations. Further research should explore the 

potentially protective role of hydroxyurea in mitigating the effects of air pollution exposure.  

 

Background 

 Sickle cell disease (SCD) is one of the commonest genetic disorders, with ~100,000 Americans 

and an estimated ~7 million people worldwide living with the disease.(1) As a monogenic disorder, SCD 

arises from a mutation in the HBB gene that encodes hemoglobin. Despite being a monogenic defect, 

SCD is phenotypically variable.(2) While nearly everyone with SCD experiences ongoing morbidity and 

reduced life expectancy, the severity of the disease, especially in childhood and adolescence, is quite 

variable. Some children and young adults experience frequent pain crises, severe lung injury (acute chest 

syndrome), and frequent hospitalizations, whereas others are rarely hospitalized and are less affected by 

SCD in childhood.(3) Previous work has examined co-inheritance of other genetic factors (e.g., alpha 

thalassemia), laboratory findings (e.g., baseline fetal hemoglobin) and social-environmental factors (e.g., 

temperature, physical activity, access to healthcare) as drivers of disparate clinical outcomes, though 

characterization of the phenotypic diversity within SCD remains incomplete.(4–6)  

 Exposure to air pollutants is well-characterized as a driver of disparate health outcomes in other 

health settings, with clinical effects ranging from worse cardiovascular disease, higher rates of asthma and 

other lung disease, and poor birth outcomes.(7–10) While there are many distinct pollutants, the most 

well-known to cause adverse health effects in humans is fine particulate matter (PM2.5), particles with a 

diameter of 2.5 microns or less. From a pathophysiologic perspective, PM2.5 causes both local damage via 

direct lung injury and systemic harm via induction of an inflammatory response, oxidative stress, and 

endothelial damage.(11–15) Notably, these same pathophysiologic pathways (i.e., inflammation, 

endothelial damage, oxidative stress, lung injury) are drivers of the severe morbidity and early mortality 

observed in people with SCD.(3,16,17) Furthermore, in the American context, SCD is concentrated in the 
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Black community, and predominately Black neighborhoods are exposed to disproportionately high levels 

of PM2.5.(18)   

 Despite the overlapping pathophysiologic pathways and sociodemographic factors that suggest 

PM2.5 may be especially harmful to people with SCD, research directly examining the link between PM2.5 

and SCD morbidity is relatively scant.(19) Published studies have examined the impact of daily ambient 

(outdoor) air pollution on numbers of emergency department (ED) visits among groups of patients with 

SCD, with most finding positive associations between ED visits and higher daily ambient air pollution 

concentrations.(20–24) These studies represent important first steps, though they have key limitations. 

While the data used in these studies were population-wide, it did not include individual-level variables 

such as SCD genotype, medications, and sociodemographic details. From a pollution viewpoint, these 

studies did not examine the effects of long-term air pollution exposures on SCD-associated clinical or 

laboratory outcomes. Because SCD is a chronic disease, it is plausible that long-term PM2.5 exposure, as 

opposed to daily fluctuations, has more significant clinical impact. This study aimed to address these 

critical gaps by providing a comprehensive, individual-level examination of the association between long-

term air pollution exposure and health outcomes in children with SCD. We hypothesized that annual 

PM2.5 concentrations at a child’s home address would be significantly associated with higher number of 

ED visits, hospital days, and markers of inflammation.  

Methods 

Data sources 

Patient data were abstracted from the electronic medical records of patients in an ongoing, 

longitudinal cohort of children with SCD at Children’s Healthcare of Atlanta (CHOA), a network of 

hospitals, urgent care, and outpatient clinics representing the largest pediatric hospital system and 

subspecialty care provider in Georgia. Briefly, this cohort includes all children with SCD (as verified by 

hemoglobin analysis), who have at least 1 clinical encounter at CHOA. Importantly, CHOA accounts for 
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~95% of pediatric SCD hospitalizations in the Atlanta metropolitan area; as such, the data included 

represents a nearly complete population-based sample of children with SCD in Atlanta.(25) Patient 

information abstracted included clinical, laboratory, and sociodemographic (including home address at 

each encounter) data. Our analysis included pediatric patients (age <18 years at time of encounter), from 

January 1, 2010 through December 31, 2019, with the first and last time points being the first and last 

clinical encounters that occur within this period, up to the child’s 18th birthday. We included only patients 

with HbSS/HbSβ0, the most common and severe forms of SCD. We censored children once their home 

address was listed as either unknown or >30 miles from the nearest CHOA facility. Lastly, children were 

excluded if they had insufficient clinical data in our system, including <3 clinical visits (inpatient + ED + 

outpatient) in total, to limit the study population to children who would likely use CHOA as their primary 

source of inpatient and outpatient care (Supplemental Figure 1).  

For socioeconomic status, we integrated the Centers for Disease Control and Prevention's Social 

Vulnerability Index (SVI), matching each child with the census-tract level SVI.(26) The SVI is an index 

that incorporates various census-tract level indicators, including socioeconomic status, household 

composition, minority status, and housing type, allowing for a nuanced assessment of social vulnerability. 

 Air pollution data were acquired from the NASA Socioeconomic Data and Applications Center 

(SEDAC), which provides publicly available data on key pollutants. We specifically utilized the annual 

mean PM2.5 and PM2.5 components datasets, which combine remote sensing (satellite) and ground-level 

monitoring data into a machine learning algorithm to provide annual, high resolution (1km*1km for 

PM2.5, 50m*50m for PM2.5 components) pollutant concentrations - see reference (27) for further details. 

Annual PM2.5 values (and PM2.5 components) were matched to each child using the child’s geocoded 

home address for the given year. Annual weather data came from National Climatic Data Center.(28)     

Measures  
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 The primary exposures of interest were annual PM2.5 concentrations, assigned for each child 

based on values for the 1km*1km grid cell in which their home address was located each year. If a child 

changed addresses during the year, we calculated the annual PM2.5 concentration as the average across the 

grid cells in which they resided, weighted by days at each address. As a secondary analysis, we estimated 

the effect of long-term, lagged PM2.5 exposures on the outcomes of interest, by averaging PM2.5 values at 

the home address across 3 years prior, 2 years prior, and 1 year prior.  For example, the 3-year average 

value for a 5-year-old child was calculated as the average of annual PM2.5 values at the child’s home 

address for age-years 2, 3, and 4, with the outcomes of interest (e.g., annual hospital days, average white 

blood cell (WBC) value) occurring at 5 years of age.  

As secondary exposure analyses, we estimated the impact of PM2.5 components on the outcomes 

of interest. We focused on five major components: elemental carbon (EC), often referred to as black 

carbon and a marker for diesel exhaust; organic carbon (OC), which includes a vast array of organic 

compounds arising from combustion processes; ammonium (NH4+), which typically originates from 

agricultural sources and traffic; sulfate (SO4), which is mainly derived from the burning of fossil fuels; 

and nitrate (NO3), also a common byproduct of fossil fuel combustion and agricultural activities.(10) 

Exposure assignment methodology was consistent for PM2.5 and its components, utilizing annual 

concentrations based on the child's home address.  

 The primary outcomes of interests were measures of SCD clinical severity, including number of 

inpatient hospital days and ED visits per year of age (e.g., from 2.00-2.99 years of age). To mitigate the 

influence of extreme outliers due to prolonged hospitalizations in few children, statistical outliers for 

hospital days were Winsorized, meaning that values above the 95th percentile were replaced with the value 

at the 95th percentile. Given the known impact of PM2.5 on the endothelium and inflammation, secondary 

outcome variables of interest included abnormal stroke screening by transcranial doppler (abnormal 

versus conditional or normal per year), and markers of inflammation including WBC and absolute 
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neutrophil count (ANC). Laboratory values were annual, averaged across values in a given year taken at 

baseline (i.e., during an outpatient well visit).  

Statistical analyses 

  Univariate and bivariate analyses were conducted to assess the distributions and associations of 

our primary exposures and outcomes. Next, a fixed effects model was implemented to investigate the 

relationship between air pollution exposure and SCD clinical severity within our panel dataset. The 

estimating equation is shown below,  

 

𝑌&( = 𝛼& + 	𝛽!𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛&( +

𝛽+ℎ𝑦𝑑𝑟𝑜𝑥𝑦𝑢𝑟𝑒𝑎&( + 	𝛽,𝑎𝑔𝑒 + 	𝛽-𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒&( + 	𝛽.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒&( + 	𝛽/𝑆𝑉𝐼&( + 𝛽0𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒( + 𝜖&(    

(1) 

 

where Y is the outcome of interest for individual i at age-year t (e.g., 2 years of age, 3 years of age, etc.), 

αi is the individual fixed effect, and β1 is the primary coefficient of interest.  Covariates of interest were 

chosen a priori based on potential associations with air pollution exposure and/or SCD severity, and 

included: age (continuous variable, chosen as continuous due to worsening SCD severity with age and 

because modeling age as continuous and linear would account for trends across time in the fixed effects 

model), insurance (private versus Medicaid versus uninsured), distance to nearest hospital (continuous), 

SVI (continuous, higher number represents higher vulnerability), and annual average daily minimum 

temperature. Hydroxyurea use, defined as reporting hydroxyurea use for more than half of all clinical 

visits for a given age year, was included as a covariate in the primary models (without effect 

modification).  
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In separate models, hydroxyurea use was included as an interaction term with annual pollution 

exposure, hypothesizing that the anti-inflammatory properties of hydroxyurea would mitigate the harms 

from PM2.5 exposure. Proxies of socioeconomic status, including insurance use and census-tract SVI, were 

also measured as effect modifiers, hypothesizing that families with higher socioeconomic status may be 

able to better mitigate the harmful effects of air pollution (e.g., through better home air filtration systems).        

The fixed effects models assign a unique fixed effect to each person, effectively controlling for 

unobservable and time-invariant individual characteristics that could confound the relationship between 

air pollution exposure and clinical and laboratory outcomes in SCD.(29) Via this model, we were able to 

focus on the variations in air pollution exposure levels and their impact on SCD clinical severity across 

different time points for the same individuals. This approach minimizes the bias in our estimates that 

could arise from omitted variables specific to each person, such as genetic factors or long-term health 

conditions, by comparing the same individual under different conditions of exposure. Consequently, this 

model enhances the reliability of our findings by using the within-individual changes over time to infer 

the causal relationship between air pollution and SCD severity, while holding constant all unobserved, 

individual-specific factors that do not vary over time. Given the precise nature of our exposure data – 

time-varying, annual pollutant concentrations matched to each individual's home address and adjusted for 

any address changes during the study period – this model is particularly appropriate for examining the 

specific impact of air pollution on health outcomes among this cohort of children with SCD.  

Count outcome variables were analyzed using a quasi-Poisson regression, continuous variables 

were assessed through linear regression, and dichotomous outcome variables were examined with logistic 

regression models.(30) Given repeat measurements, standard errors were clustered at the individual level 

to account for within-individual correlation. Children with missing outcome or primary exposure data 

were excluded from the relevant analysis. As a check on the validity of the fixed effects model, we 

reviewed the estimated effect of hydroxyurea use on WBC, ANC, and hemoglobin, whose effects are 

well-documented in the literature.(31,32) All analyses were performed in R v4.3.3.  
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Results 

 There were 1,089 children with severe SCD who were seen for a clinical encounter at CHOA 

from January 1, 2010 through December 31, 2019 who fit inclusion/exclusion criteria (see Supplemental 

Figure 1). The cohort had average length of follow-up of 5.1 years (range 1-12 years), for a total of 5,531 

individual-years. Table 1 shows the descriptive statistics for the sample of interest.  

 The primary exposure of interest was annual PM2.5 values at the child’s home address. The 

variability of this exposure across time and location, which is exploited in our statistical model, is 

demonstrated in Figure 1, and shows that children experienced a range of exposure contrasts (0 to >4 

µg/m3) over their course of follow up. The main driver of this PM2.5 variability was the overall decrease in 

PM2.5 levels over the study timeframe (Supplemental Figure 2), following national trends of air quality 

improving during the 2010-2019 period. In addition, 216 individuals (19.8% of the cohort of interest) 

changed addresses during the follow up period, which was an additional driver of observed PM2.5 

variability. Regarding the primary outcomes of interest, annual hospital days and number of ED visits 

(Supplemental Figure 3) were significantly right skewed.  

 Associations of annual PM2.5 and the clinical, inflammation-related, and binary outcome variables 

are presented in Figure 2. After accounting for individual fixed-effects and the covariates/confounders of 

interest, the following were significantly associated with higher annual PM2.5 levels at the individual’s 

home address: number of hospital days per year (incident rate ratio (IRR)=1.16, p=0.047), likelihood of 

having a hospitalization in a given year (odds ratio (OR)=1.02, p=0.024), likelihood of an abnormal 

stroke risk screen (transcranial doppler) (OR=1.05, p<0.001), higher WBC (β=0.19, p=0.017), and higher 

ANC (β=0.14, p=0.01). Number of ED visits per year were not significantly associated with annual PM2.5 

values (incident rate ratio (IRR)=1.02, p=0.592).  

Importantly, as a check of our model, we found that hydroxyurea use decreased WBC and ANC, 

and increased hemoglobin, similar to previously published outcomes (Supplemental Figure 4).(31) 
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Additionally, we performed several sensitivity analyses, including substituting maximum or average for 

minimum temperature, and substituting capita income for the SVI, and including age as a categorical 

rather than continuous variable; our results were robust to these sensitivity analyses (Supplemental Table 

1).    

 In separate models, we included interaction terms to determine if hydroxyurea use (due to its anti-

inflammatory properties), or SVI or insurance status (as proxies for socioeconomic status) mitigated the 

effect of PM2.5 on clinical and laboratory outcomes. As demonstrated in Figure 3, hydroxyurea use 

significantly mitigated the effect of PM2.5 on inflammatory markers (WBC, ANC), consistent with our 

hypothesis. However, hydroxyurea use did not significantly affect the impact of PM2.5 on clinical 

outcomes. The interaction term estimates for SVI and insurance with PM2.5 were statistically insignificant, 

suggesting no considerable modification of PM2.5 effects by these factors.    

 As opposed to current year annual PM2.5 concentrations, prior PM2.5 exposures did not have 

significant impact on hospital days, WBC, or ANC. However, prior PM2.5 exposures were significantly 

associated with likelihood of abnormal stroke risk screening, with longer exposure time frames 

demonstrating slightly increasing association (Supplemental Figures 5 and 6). 

Figure 4 illustrates that, although the effects vary among the components, SO4 and NH4 were the 

most strongly associated with inflammatory markers (WBC, ANC). In contrast, OC demonstrates no 

statistically significant impact across all examined health outcomes. The concentrations of PM2.5, SO4, 

NH4, and NO3 were spatially correlated; EC and OC showed less correlation (Supplemental Figure 7).    

Discussion 

 In this retrospective, longitudinal analysis of 1,089 children with severe SCD encompassing 

5,531 individual-years, high overall levels of ambient PM2.5 exposure were observed, with the mean 

annual PM2.5 exposure (9.8 µg/m3) at the child’s home address above the current national ambient air 

quality standard of 9.0 µg/m3.(33) In the fixed effects analyses, annual PM2.5 concentrations were 
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significantly associated with worse clinical outcomes (e.g., hospital days per year, likelihood of abnormal 

stroke risk screening) and higher annual values for inflammatory markers (e.g., WBC, ANC). Observed 

associations were largely similar for major PM2.5 components, including secondary PM2.5, SO4 and NH4, 

suggesting these to be important drivers of the overall PM2.5 effect and potential areas for targeted 

environmental health policy. Hydroxyurea use acted as an effect modifier for inflammatory markers, 

though this effect modification was not observed for clinical outcomes.  

 Consistent with our primary hypotheses, higher annual PM2.5 concentrations were associated with 

worse outcomes. In other words, our results demonstrate that for an individual, residing in an area with 

higher annual PM2.5 values are associated with worse outcomes for that individual. These findings are 

both statistically and clinically significant, with a one unit increase of PM2.5 associated with an incidence 

rate ratio of 1.163, or 16.3% increase in expected hospital days, holding other factors constant. To put this 

in perspective, in February 2024, the EPA reduced the annual PM2.5 National Ambient Air Quality 

Standard from 12 to 9 µg/m3;(33) in the context of our fixed effects Poisson regression model, a reduction 

of PM2.5 of this magnitude would be associated with an expected decrease in the incidence rate of hospital 

days by 36.5% for a child whose baseline PM2.5 exposure is 12 µg/m3. Notably, the World Health 

Organization has more stringent standards, recommending annual PM2.5 exposure of 5 µg/m3; given our 

results, we would expect to see even further improvements in health outcomes in children with SCD if the 

United States adopted these recommendations.   

Beyond solely confirming previous work that documents harms of PM2.5 on clinical outcomes, 

our findings extend the literature in several key areas. Prior literature, especially with regards to SCD, has 

focused on the impact of short-term (e.g., daily) fluctuations in air pollutant levels.(21–23) In contrast, the 

exposures of interest in this study were annual PM2.5 levels. Annual PM2.5 levels are a critical exposure 

metric because they reflect the sustained environmental conditions individuals face, which is particularly 

relevant for chronic diseases like SCD where long-term environmental factors may significantly influence 

disease progression and management. This long-term perspective can reveal cumulative health effects that 
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short-term exposure assessments might miss, providing a more comprehensive understanding of how 

persistent air pollution exposure impacts health outcomes over time. Furthermore, it is annual PM2.5 levels 

that have been the subject of recent policy changes in the United States.(33) Understanding the distinct 

health impacts of PM2.5 components can lead to more precise public health interventions and policies, 

enhancing protection for sensitive groups like children with SCD. As the Environmental Protection 

Agency is mandated to provide standards that protect the health of all populations, including vulnerable 

populations (e.g., children with SCD), it is imperative that rigorous data on the impacts of long-term 

pollutant exposure are well-documented. 

Notably, ED visits were not correlated with annual PM2.5 concentrations. One potential 

explanation for the differential outcomes observed between ED visits and hospital days lies in the nature 

of these metrics. ED visits typically signify acute exacerbations, while hospital days may be indicative of 

more severe underlying disease. Previous research has demonstrated a correlation between ED visits and 

acute increases in daily air pollution levels for children with SCD,(22,23) suggesting that acute rises in 

pollution levels are likely to trigger immediate health issues, leading to an increase in ED visits. 

Conversely, chronic exposure to elevated PM2.5 levels appears to exacerbate the severity of the underlying 

disease, resulting in more frequent and/or longer hospital stays. This hypothesis aligns with our data and 

highlights the distinct impact of acute versus chronic exposure to air pollution on health outcomes in 

children with SCD. 

 Another unique strength of this study lies in its longitudinal analysis of a cohort of children with 

SCD. These data and modeling strategy allowed for individual tracking over time. The fixed effects 

multivariable model takes advantage of this panel data and controls for time-invariant confounders, such 

as baseline SCD severity and underlying genetics. This methodology strengthens our ability to make 

causal inferences on the impact of long-term PM2.5 exposure on health outcomes in children with SCD. 

Additionally, by including hydroxyurea use as an interaction term, our study investigated whether this 

medication as an effect modifier. We found that hydroxyurea significantly reduced PM2.5's impact on two 
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markers of inflammation, WBC and ANC, although it did not alter PM2.5's effects on clinical outcomes. 

This finding introduces a potential new avenue for mitigating air pollution-related harms, beyond 

traditional avoidance strategies.   

 There exist several limitations that warrant mention. First, our focus on CHOA's patient data, 

though comprehensive, may not fully capture the experiences of children with SCD outside the Atlanta 

metropolitan area. Regarding our outcomes, hospital days and ED visits do not fully capture the 

experience or severity of SCD, and WBC and ANC are imperfect markers of inflammation. Future studies 

that more precisely document the impact of air pollution on SCD severity and inflammation are needed. 

Regarding confounding, while our fixed effects model controlled for unobserved individual time-invariant 

factors, it did not account for any unobserved time-varying factors, such as indoor pollution or unrecorded 

fluctuations in individual health behaviors; thus, there is a possibility for residual confounding if such 

factors are correlated with ambient PM2.5 levels. Air pollution exposures were assessed based on home 

address only; we were not able to characterize children’s overall exposures to ambient PM2.5 that account 

for time-activity patterns such as time spent at school and other locations.  

 In conclusion, in this longitudinal study of 1,089 children with SCD, we identified significant 

associations between annual PM2.5 exposure and adverse clinical and laboratory outcomes, underscoring 

the importance of addressing air quality in vulnerable populations. The study's innovative approach, 

particularly the fixed effects methodology and examination of hydroxyurea as an effect modifier, opens 

new avenues for research and intervention beyond traditional pollution avoidance strategies. Future 

studies that examine the impact of long-term air pollution exposure and hydroxyurea use on more precise 

inflammatory markers and respiratory specific outcomes are needed.  
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Table 1: Dependent and Independent Variable Values for 1,089 Children with HbSS/HbSβ0 treated at CHOA from Jan 1, 
2010 - Dec 31, 2019. 

Dependent Variables n  Min Mean Max Standard 
Deviation 

Clinical       
Annual inpatient hospital days 5531 0 3.1 82 6.1 
Annual ED visits 5531 0 1 18 1.6 
Average annual Hgb 4569 5.6 9.1 15.1 1.2 
Inflammatory       
Average annual WBC 4569 2.4 9.8 25.4 3.2 
Average annual ANC 4508 0.5 4.7 21.4 2.1 
Binary       
Hospitalization this year (% yes with hospitalization for given 
patient-year) 5531 39.40%     

Abnormal stroke risk screening (% yes for annual stroke-risk 
screen, among those who obtained TCD) 2284 10.40%     

        

Independent Variables n  Min Mean Max Standard 
Deviation 

Individual Level       
Annual PM2.5 exposure (µg/m3) 5531 7.9 9.8 12.7 1.0 
Age (years) 5531 0 8.5 17 5.1 
Sex (% female) 1089 51%     
Distance to hospital (km) 5531 1 23.2 48.2 11.3 
Insurance 5531      
   Private (% of encounters)  29.40%     
   Medicaid (% of encounters)  62.10%     
   Other (% of encounters)  8.50%     
        
Census Tract Level       
Social Vulnerability Index (SVI) 5531 0 0.5 1 0.3 
SVI Socioeconomic Status Category 5531 0 0.5 1 0.3 
Area Deprivation Index (ADI)  4840 4 60.8 100 20.2 
ACS per capita income ($/year) 5531 8426 25094.4 94459 9240.6 

ACS: American Community Survey; ANC: Absolute Neutrophil Count; ED: Emergency Department; Hgb: Hemoglobin. 

Table 1 compiles the yearly averaged variables for 1,089 children with HbSS/HbSβ0 treated at CHOA from January 1, 2010 through 
Dec 31, 2019.  

Note that the unit of analysis is 'patient-year,' meaning that individual patients contribute multiple entries. 
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Figure 1: Individual PM2.5 variation in cohort. This figure shows the PM2.5 range for each individual in the 
cohort over their course of follow up in the study, where range is defined as the maximum minus the minimum 
annual PM2.5 concentration (µg/m3) at the individual’s home address.  
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Figure 2: Results of primary models. This figure shows the main results 
from the primary models. Each estimate and 95% confidence interval (CI) 
shown comes from a separate model, whose dependent (outcome) variable 
is labeled on the y-axis. All models include individual fixed effects and 
adjust for hydroxyurea use, insurance, census tract social vulnerability 
index (SVI), distance from hospital, age, and yearly average minimum 
daily temperature.  
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Figure 3: Results of interaction term models. This figure shows the main results 
of the models with interaction terms. Each estimate and 95% confidence interval 
(CI) shown comes from a separate model, whose dependent (outcome) variable is 
labeled on the y-axis. All models include individual fixed effects and adjust for 
hydroxyurea use, insurance, census tract social vulnerability index (SVI), distance 
from hospital, age, yearly minimum temperature, and contain the interaction terms 
as shown above. For interaction terms, SVI was dichotomized to above versus 
below 50th percentile, and insurance was dichotomized to private/commercial 
versus other.  
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Figure 4: Effect of PM2.5 components on different outcomes. Each beta coefficient estimate and 
95% confidence interval (CI) shown on the x-axis represents a unique fixed effects model, where the 
outcome of interest is shown on the y-axis, and the exposure of interest is a different PM2.5 
component, including elemental (black) carbon (EC), organic carbon (OC), ammonium (NH4+), 
sulfate (SO4), and nitrate (NO3). For comparison, PM2.5 components have been standardized (mean 
centered and divided by their standard deviation).  
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Supplemental material 

 

 

Supplemental Figure 1: Patient 
Inclusion/Exclusion Flow Chart. CHOA: 
Children’s Healthcare of Atlanta. Insufficient 
clinical encounters: <2 years of follow up, of <3 
clinical visits in total (excluding encounters for 
bone marrow transplant).  
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Supplemental Figure 2, Change in PM2.5 across Atlanta, GA, from 2010 to 2019. This figure shows the change in 
annual PM2.5 concentration across Atlanta, GA. The color scale is the same for each panel. The black lines show the county 
outlines within Atlanta. The outer black circle represents 30 miles from the midpoint of the 3 Children’s Healthcare of 
Atlanta (CHOA) hospitals. Annual PM2.5 data was abstracted from the NASA Socioeconomic Data and Applications Center 
(SEDAC) Annual PM2.5 Concentrations Database.  
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Supplemental Figure 3.  
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Supplemental Figure 4, Effect of hydroxyurea on laboratory outcomes. These results 
serve as a test on the fixed effects model, as it is well-described that hydroxyurea use 
reduces white blood cell count (WBC) and absolute neutrophil count (ANC), and increases 
hemoglobin (Hgb). The magnitude and direction of the values observed in this figure are 
consistent with published results.  
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Supplemental Figure 5, Effect of prior PM2.5 burden on different outcomes. This figure shows the impact of PM2.5 
burden, which is defined as the average PM2.5 values at the home address across 3 years prior, 2 years prior, and 1 year prior 
to the year of interest.  For example, the 3-year burden value for a 5-year-old patient would be the average of annual PM2.5 
values at the patient’s home address for 2, 3, and 4 years of age, with the outcomes of interest (e.g., annual hospital days, 
average WBC value) occurring at 5 years of age. 
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Supplemental Figure 6, Effect of prior PM2.5 burden on likelihood of abnormal transcranial doppler.  This figure 
shows the impact of PM2.5 burden, which is defined as the average PM2.5 values at the home address across 3 years prior, 2 
years prior, and 1 year prior to the year of interest, on the likelihood of an abnormal transcranial doppler ultrasound. Note 
that transcranial doppler ultrasound is the standard means of screening for stroke risk in children with SCD, and is 
recommended for every child between 2 and 16 years of age with HbSS/HbSβ0. Abnormal screening, defined as a velocity 
of 200 cm/s or higher, is associated with significantly increased risk of stroke and has important treatment implications.  
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Supplemental Figure 7: Correlation matrix of PM2.5 and components. As expected, all pollutants are 
positively correlated.   
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Chapter 3 

 

Evaluating the Long-Term, Time-Dependent Efficacy of Hydroxyurea in Pediatric Sickle Cell Disease: A 

Difference-in-Differences and Event Study Analysis 
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Abstract 

Background: Hydroxyurea is the primary disease-modifying medication for sickle cell disease (SCD), but 

its long-term, time-varying effects are not well understood. This study aimed to quantify the time-varying 

effects of hydroxyurea on clinical and laboratory outcomes in children with SCD over a prolonged period 

of use. 

 

Methods: We conducted a quasi-experimental study using difference-in-differences and dynamic event 

study analyses on a longitudinal cohort of 2,265 children with severe SCD (HbSS/HbSβ0) followed at 

Children's Healthcare of Atlanta from 2010-2021. Primary outcomes included emergency department 

(ED) visits per year, hospital days per year, and annual hemoglobin concentration. 

 

Results: Hydroxyurea use was associated with fewer ED visits per year (average treatment effect on the 

treated [ATT] -0.33, 95% CI -0.53, -0.12) and fewer hospital days per year (ATT -0.67, 95% CI -1.47, 

0.14), with sustained effects over time. Hemoglobin concentration initially increased with hydroxyurea 

use (ATT 0.28, 95% CI 0.13, 0.43) but this effect diminished over time. Results remained consistent in 

sensitivity analyses. 

 

Conclusions: This study demonstrates that hydroxyurea has sustained clinical benefits in reducing ED 

visits and hospitalizations over years of use in children with SCD. However, the initial improvement in 

hemoglobin concentration was not sustained long-term. These findings provide valuable insights for 

clinicians and families regarding the long-term efficacy of hydroxyurea in pediatric SCD management. 
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Background 

Hydroxyurea is the first-line and most prescribed disease-modifying medication in sickle cell 

disease (SCD).(1) Hydroxyurea induces the production of fetal hemoglobin and has anti-inflammatory 

properties, both of which lessen SCD severity, though the exact mechanism of action is not fully 

understood.(2) Hydroxyurea therapy confers significant clinical benefits as compared with no 

hydroxyurea therapy and has become the primary disease-modifying treatment modality in SCD.(2–5) 

The National Heart, Lung, and Blood Institute expert panel report for the management of SCD 

recommend hydroxyurea be offered for all children aged 9-12 months and older with HbSS/HbSβ0 (the 

most common and severe forms of SCD), regardless of clinical severity.(6) Currently, hydroxyurea is 

recommended as a lifelong medication for patients who meet treatment criteria, and there is not a 

similarly efficacious second-line medication.(2)   

Observational studies document the long-term efficacy of hydroxyurea, relative to never using 

hydroxyurea. Among a cohort of patients followed for 17.5 years, long-term use of hydroxyurea was 

associated with reductions in pulmonary complications and overall mortality.(7) A separate study 

documented that, as compared to historical controls who never took hydroxyurea, infants and young 

children with SCD had fewer episodes of acute chest syndrome and better growth after 4 years on 

hydroxyurea.(8) Other observational studies have confirmed long-term safety.(8–10)  

Notably, there are no available data on the time-varying effect of hydroxyurea. While it has been 

shown that long-term use of hydroxyurea is beneficial relative to no hydroxyurea use, the available 

studies do not examine whether the effect of hydroxyurea changes over time. It is possible that the body 

might adapt to hydroxyurea, causing decreased efficacy over time, similar to tolerance observed in long-

term use of other anti-inflammatory medications and opioids.(9) From a SCD-pathophysiological 

standpoint, the effects of a vaso-occlusive event or acute chest syndrome episode are not limited to the 

acute event; instead, the damage caused from the event can have ongoing consequences in the form of 

chronic pain and persistent lung damage, respectively. As such, it is possible that the benefits of long-term 

hydroxyurea use would compound, resulting in increasing effect over time.  
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Thus, the primary objective of this study was to quantify the time-varying effects of hydroxyurea 

on outcomes in children with SCD. Specifically, using real-world (i.e., outside clinical trial) data on a 

longitudinal cohort of children with SCD, we implemented a quasi-experimental study design (difference-

in-differences (DiD) and dynamic event study) that analyzed how the effects of hydroxyurea change over 

time. We hypothesized that hydroxyurea would demonstrate increasing efficacy across time. 

 

Methods 

The patient data came from a longitudinal cohort of children with SCD, followed at Children’s 

Healthcare in Atlanta (CHOA), and has been described in detail elsewhere.(11,12) Briefly, children with 

laboratory-confirmed SCD who received care at CHOA from January 1, 2010 – December 31, 2021 were 

automatically enrolled in the cohort. Clinical, laboratory, and sociodemographic details were abstracted 

from the CHOA electronic record, with results verified by research epidemiologists. CHOA comprises the 

only pediatric SCD clinic and pediatric hospitals in the Atlanta metropolitan area; therefore, ~95% of all 

hospitalizations and all pediatric SCD-specialty outpatient appointments were captured in the database, 

representing a nearly complete population sample of children with SCD in Atlanta.(4) Inclusion criteria 

for the study were: children with HbSS/HbSβ0 (as this is the only group of patients with SCD in whom 

HU is regularly utilized), under age 18.0 years. Children were excluded from analysis if they had <3 total 

clinical visits and were censored if they went >2 years without a clinical visit, underwent bone marrow 

transplant, or started chronic transfusion therapy.  

For the analysis, patient data were grouped by age-years (e.g., from 0 to 1 year of age, 1 to 2 

years, etc.). The primary outcomes of interest were clinical (ED visits per year and hospital days per year) 

and laboratory (average annual hemoglobin value, mean corpuscular volume (MCV, which corresponds to 

the size of a red blood cell), and absolute neutrophil count (ANC)). ED visits and hospital days were 

summed over a given age-year. Laboratory variables were averaged within each age-year, excluding lab 

results from ED visits and hospitalizations. Baseline (i.e., pre- hydroxyurea) values were established by 

retrieving data from the initiation date of hydroxyurea treatment. If lab results from this date were not 
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available, the most recent lab values from a non-sick clinic visit within one year prior to starting 

hydroxyurea were used.  

The exposure of interest was hydroxyurea use during a specific age-year. Research 

epidemiologists reviewed the clinical note and prescription details from each office visit and marked a 

patient as taking or not taking hydroxyurea accordingly. Patients were classified as hydroxyurea users for 

a given age-year if they were recorded as taking hydroxyurea at more than 50% of their clinical visits 

within that year. Sensitivity analyses were conducted with the threshold increased to 80%, which did not 

significantly change the results.  

To test the time-varying impact of hydroxyurea on clinical and laboratory outcomes, we 

performed a dynamic DiD analysis (also known as a dynamic two-way fixed effects study, or event study 

with control group). In our analysis, the unit of observation was the individual patient per given age-year. 

Importantly, this methodology estimates an independent effect of hydroxyurea treatment for each year 

before and after treatment initiation. Mathematically, this can be written:  

 

𝑌&,( =	𝛼( +	𝛼2 + Σ)3454! 𝛽)
#'(&6&7 ∗ 𝐷&,() +	Σ)389 𝛽) ∗ 𝐷&,() + 𝜖&,(																			(1) 

 

where Y is the outcome variable for individual i at age-year t (e.g., hospital days per year), α are time 

(age-year) and group (age at hydroxyurea initiation) fixed effects, D is an indicator variable that equals 1 

if individual i is treated with hydroxyurea in year e, and k and l are positive constants indicating number 

of years e before and after treatment.1  

By providing unique β across different time periods e, this framework allows for time-varying 

treatment estimation. More specifically, the β coefficients show the effect of hydroxyurea on the clinical 

outcomes for each specific year before and after treatment initiation. The coefficients with positive 

 
1 Note regarding Equa/on (1): (a) subscript t represents the age-year of the observa/on (e.g., pa/ent i at age-year 2 
years old, or 3 years old), not to be confused with subscript e, which represents the number of years before or aDer 
treatment ini/a/on.  
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subscripts (e.g., β2) indicate the impact of hydroxyurea in the years after starting treatment. For instance, a 

significantly positive β2 suggests that hydroxyurea had a beneficial impact in the second year after starting 

the medication. Conversely, the coefficients with negative subscripts (e.g., β-3) represent the years before 

treatment initiation. We would expect these β values to be insignificant because hydroxyurea should not 

impact outcomes before its initiation. If these pre-treatment β values are indeed insignificant, it supports 

the parallel trends assumption, which is crucial for the validity of the DiD analysis. By examining the β 

coefficients year-by-year, this methodology allows us to capture the dynamic, time-varying impact of 

hydroxyurea, rather than just an average or overall effect, providing a detailed picture of how the 

treatment's impacts evolve over time.  

To address recent econometrics literature demonstrating that classical DiD estimators give biased 

results when the treatment of interest has staggered initiation timing and/or a time-varying response, we 

adapted the framework as described by Callaway and Sant’Anna.(13) This framework uses both never-

treated and not-yet-treated patients as the control. For example, the controls for two-year-old group 

include two-year-olds not yet taking hydroxyurea (e.g., those who start hydroxyurea at age three), and 

children who are two years old who never started hydroxyurea. The purpose of the control group is to 

account for time-varying effects that might impact both the treated and untreated groups similarly, thereby 

controlling for time-varying confounding effects to obtain a more accurate estimate of the true treatment 

effect. Note that this framework has not been validated for non-continuous (i.e., on-off-on) treatment; 

thus, patients were censored at first stoppage of hydroxyurea. For robustness checks, we have included 

results from alternative estimators.(14–16)   

We performed several sensitivity analyses. First, to address the potential bias that patients may 

start hydroxyurea in response to complications of SCD (such as ED visits or hospital days), we conducted 

analyses where the treatment group was limited to those who began hydroxyurea treatment at 1 year of 

age. This approach accounts for the fact that SCD manifestations are relatively rare in infants due to the 

protective effects of fetal hemoglobin. By focusing on a uniform starting age of hydroxyurea – and, 

specifically, an age prior to which the severe manifestations of SCD commonly occur – we aimed to 
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eliminate the confounding effects of those who start hydroxyurea in response to severe manifestations of 

the disease. Another sensitivity analysis focused on medication adherence. Since hydroxyurea reliably 

increases MCV, we restricted the treatment group to those with laboratory evidence of good adherence, 

defined as an MCV while on hydroxyurea that is at least 5% above the baseline MCV. 

We performed several tests to analyze the validity of the parallel trends assumption, which for 

this analysis can be stated as “absent treatment with hydroxyurea, the control group (i.e., those not treated 

or not-yet-treated with hydroxyurea) and treatment group would have similar outcomes across time.” (17) 

First, pre-treatment trends were assessed visually, using the event study graphs. Next, differences in pre-

treatment trends in the outcomes of interest pre-treatment were quantified statistically, by interacting 

treatment year with ever treated status, including only the pre-treatment years. For all analyses, given the 

large number of individual patients, we focused on clinically significant, rather than solely statistically 

significant, differences in outcomes.   

 

Results 

Of the 2,444 patients with severe SCD (HbSS/HbSβ0) seen for a clinical encounter at CHOA 

from 2010-2021, 2,265 (93%) met inclusion criteria (See Supplemental Figure 1).  The average follow-

up time was 6.3 years, providing a total of 14,312 patient-years of data. 1,381 (61%) patients had ever 

used hydroxyurea; of those, the average time on hydroxyurea was 5.3 years, with 340 children with ≥9 

years of continuous hydroxyurea therapy. On average, there were 1.1 ED visits per year and 3.6 hospital 

days per year for the cohort. See Table 1 and Table 2 for more details.  

 To check the validity of the DiD and event study models, we first quantified the impact of 

hydroxyurea use on changes in mean corpuscular volume (MVC, the size of the red blood cell) and 

changes in absolute neutrophil count (ANC, a type of white blood cell) using our model. It is well-

established that hydroxyurea use reliably increases MCV and decreases ANC. (1,2,18) Both the 

magnitude and direction of the results obtained via our models correspond well with clinical experience 
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and published literature on the effects of hydroxyurea in these hematologic parameters, supporting the 

validity of the models (Supplemental Figure 2).  

Regarding the primary outcome of interest, hydroxyurea use was significantly associated with 

fewer ED visits per year (average treatment effect on the treated (ATT) -0.33, 95% confidence interval 

(CI) -0.53, -0.12). The results of the event study analysis can be found in Figure 1. We obtain similar 

results for the ATT and the time-varying effect of hydroxyurea when limiting the treatment group to 

patients who start treatment at 1 year of age, accounting for potential regression to the mean among those 

who begin treatment after a year with many ED visits. Additionally, the ATT and time-varying effect 

remain consistent when we restrict the treatment group to those with laboratory markers indicating good 

adherence, thus mitigating potential biases due to poor medication adherence (Supplemental Figure 3). 

Our results are not substantially different when using other contemporary event study estimators, further 

reinforcing the robustness of our findings (Supplemental Figure 4).   

Hydroxyurea use was also associated with a reduction in hospital days per year, with an ATT of -

0.67 (95%CI -1.47, 0.14), though not statistically significant. The event study analysis, depicted in Figure 

2 (top panel), indicates steady effect over time. Interestingly, the effect at year -1 (i.e., the year before 

treatment initiation), is positive. This statistically significant finding suggests that higher number of 

hospital days is associated with subsequent initiation of hydroxyurea, which violates the parallel trends 

assumption. To mitigate this potential bias, we performed an additional analysis which limits the 

treatment group to those beginning hydroxyurea at 1 year of age. When limiting the sample of 

hydroxyurea users to those who start treatment at 1 year of age, as expected we do not see this statistically 

significant difference in outcomes prior to hydroxyurea initiation. Furthermore, the results of this 

analysis, both the ATT (-0.75, 95%CI -2.0, 0.52) and event study analysis are similar to the original 

analysis (Figure 2, bottom panel).  

Our laboratory outcome of interest was annual hemoglobin concentration. The DiD estimator 

resulted in an ATT of 0.28 (95%CI 0.13, 0.43). The event study analysis is depicted in Figure 3; in 

contrast to the clinical outcomes, we find the effect of hydroxyurea use on hemoglobin concentration 
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decrease with time. This trend in decreasing effect on hemoglobin concentration is also seen among the 

subgroup of treated patients with laboratory markers of good adherence. Supplemental Figure 5 shows 

the unadjusted data of average hemoglobin values by hydroxyurea across time. Hemoglobin values are 

higher on average for males than females, and show an overall slight increase that begins in adolescence, 

consistent with previously reported values and trends.(20,21)  

Parallel trends were analyzed both visually and statistically. As discussed above, with the 

exception of hospital days per year, visual inspection of all event study analyses supported the parallel 

trends assumption. Supplemental Table 1 shows the results of the interaction term of the pre-treatment 

analyses, providing statistical quantification of differences in pre-treatment outcome trends.  

 

Discussion 

 In this quasi-experimental analysis of hydroxyurea in 2,265 children and adolescents with severe 

SCD, we find that hydroxyurea use has sustained impact on ED visits and hospital days across prolonged 

use. These results remain evident when we account for potential sources of bias, both by limiting the 

treated sample to those who start hydroxyurea at a young age and to those with laboratory evidence of 

good medication adherence. Interestingly, the initial improvements seen in hemoglobin concentration 

with hydroxyurea use were not sustained over time in this cohort, even among those with laboratory 

evidence of good medication adherence. These data and results arise from outside the confines of clinical 

trials, expanding the generalizability to real-world settings and a broader population of children and 

adolescents with SCD.   

 Our study addresses a significant gap in the existing literature on the long-term, time-varying 

effects of hydroxyurea in children with SCD. Randomized controlled trials provide strong and consistent 

evidence of the short-term benefits of hydroxyurea. The landmark study by Charache et al. (1995) 

demonstrated a reduction in vaso-occlusive events and acute chest syndrome, though with a mean follow-

up time of only 21 months, as the trial was stopped early due to the effectiveness of hydroxyurea.(3) 

Similarly, randomized trials on hydroxyurea use in children and adolescents have found fewer 
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hospitalizations and pain episodes, with a follow-up periods of 1-2 years.(22–24) Additionally, a quasi-

experimental by Quarmyne et al. (2017), which compared patient outcomes two years before and after 

hydroxyurea initiation, found significant reductions in hospitalizations and emergency department visits, 

along with an increase in hemoglobin levels.(4) These studies provide strong evidence on the short-term 

impact of hydroxyurea, but given their follow-up time constraints, they do not provide a comprehensive 

understanding of the time-varying effects of hydroxyurea over more extended periods. 

 Observational studies have documented the prolonged impact of hydroxyurea over longer 

periods. When comparing those on hydroxyurea to those not taking hydroxyurea, reductions in mortality 

are consistently documented, even over follow up periods ranging 5-20 years.(7,10,25) Similarly, studies 

have reported sustained hematologic efficacy for years following hydroxyurea initiation.(8,18,26) 

However, observational studies are susceptible to potential biases that can obscure the true effect of 

hydroxyurea. For instance, children prescribed hydroxyurea may be those with more severe disease at 

baseline or might come from families with more proactive healthcare management, leading to different 

outcomes regardless of hydroxyurea use. Additionally, long-term follow-up must account for evolving 

SCD management practices that can influence outcomes; traditional observational studies often do not 

adequately control for such changes.  

 Difference-in-differences (DiD) is a method that allows for comparison between treatment and 

control groups, even if they are not identical at the beginning of the study. This technique helps to isolate 

the effect of hydroxyurea by comparing the changes in outcomes over time between those who receive 

hydroxyurea and those who do not. In this study’s context, DiD controls for time-invariant unobserved 

confounders such as baseline health status, socioeconomic status, family health beliefs, and adherence to 

other medications, that might be different between the treatment and control groups. By focusing on 

changes within each group, DiD effectively accounts for these consistent, unobserved differences that 

might otherwise bias the results. Moreover, DiD controls for time-varying unobserved confounders that 

impact the entire cohort, such as changes in healthcare practices, SCD management protocols unrelated to 

hydroxyurea, environmental factors, and policy changes that could influence outcomes over the study 
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period. For instance, if there were improvements in general SCD care or new public health policies 

introduced during the study period, DiD helps to account for these factors by comparing the treatment and 

control groups over the same periods, ensuring that such external influences are considered in the 

analysis. By leveraging the DiD approach, our study provides a robust analysis of hydroxyurea’s long-

term effects, mitigating biases and offering a clearer picture of its impact on children with SCD in real-

world settings. 

Previous studies often report averaged differences across groups without analyzing whether the 

effect of hydroxyurea changes over time. This temporal aspect of treatment efficacy is crucial information 

for patients and providers, as it can influence treatment plans and expectations for health outcomes. 

Understanding how the benefits of hydroxyurea evolve over time helps clinicians make informed 

decisions about long-term management strategies for children with SCD. Additionally, this information is 

vital for families who are considering or currently using hydroxyurea. Knowing that the efficacy of 

hydroxyurea may vary over the years can help families set realistic expectations and make better-

informed choices regarding their child's treatment. One commonly reported barrier to hydroxyurea use is 

concerns about its long-term efficacy and safety.(2,27,28) Families may worry whether the initial benefits 

observed with hydroxyurea will persist, diminish, or potentially lead to adverse effects over extended use. 

By providing a detailed analysis of how hydroxyurea impacts clinical and laboratory outcomes over time, 

this study addresses these concerns directly. It reassures families and healthcare providers that 

hydroxyurea not only has immediate benefits but also continues to offer significant clinical advantages 

throughout prolonged use. This evidence can help alleviate fears and encourage adherence to hydroxyurea 

therapy, ultimately leading to better health outcomes for children with SCD. 

Interestingly, while previous observational studies have reported sustained elevations in 

hemoglobin associated with hydroxyurea use, our study did not find this same long-term effect. Instead, 

our results demonstrate decreasing efficacy across time, such that the relative increases in hemoglobin 

observed in those taking hydroxyurea are not observed once time on treatment reaches about 9-10 years. 

This discrepancy may be due to the advantages of our methodological approach. Specifically, our study 
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accounts for the rise in hemoglobin levels around the age of 13, observed in both hydroxyurea users and 

non-hydroxyurea users, and also reported in previous literature in changes in hemoglobin across 

adolescence.(20,21) If this increase is not considered, it might incorrectly appear as though hydroxyurea 

users experience unique benefits from the medication. Our study design, by accounting for this age-

related rise, provides a more accurate assessment of hydroxyurea's impact on hemoglobin levels. It is 

important to note that we defined hemoglobin concentration based on annual averages during stable 

periods, excluding values from ED visits and hospitalizations. This distinction is crucial because, as we 

and others have demonstrated, hydroxyurea use reduces hospitalizations and ED visits. If hemoglobin 

values from all visits, including acute SCD events, were averaged together, hydroxyurea users might have 

higher hemoglobin levels due to fewer acute complications, as hemoglobin tends to be lower during such 

events. Additionally, we did not account for transfusions in this analysis (apart from chronic transfusion 

therapy), which could also influence hemoglobin levels and potentially bias the results. By focusing on 

stable, annual averages, our study design mitigates these confounding factors, offering a clearer picture of 

hydroxyurea 's true effect on baseline hemoglobin concentration over time. 

 

Limitations  

Similar to other DiD/event studies, a key limitation is that the parallel trends assumption cannot 

be verified. In this study, there may be reasons to suspect that hydroxyurea users and non-hydroxyurea 

users would follow different trajectories in outcomes, absent treatment. Similarly, if patients initiated 

hydroxyurea in response to poor outcomes in a given year, this would violate the parallel trends 

assumption and bias the results.(29) However, in observing the trajectories prior to starting hydroxyurea, 

we do not see different outcomes, indicating that the parallel trends assumption holds. In our event study 

graphs for ED visits and hemoglobin, the β coefficients are non-significant and without notable trends 

prior to hydroxyurea initiation, suggesting no significant differences between the groups. Furthermore, 

the year after hydroxyurea initiation, a clear change in outcomes is observed, indicating that hydroxyurea 

is the driving factor behind these changes rather than an unobserved factor. Interestingly, however, we do 
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observe a potential source of bias in the hospital days analysis, as patients have statistically significant 

increases in hospital days one year prior to hydroxyurea initiation. These results suggest that patients may 

initiate hydroxyurea in response to an increase in hospital days.  

Our data were collected from a single healthcare center, CHOA, which, while providing a nearly 

complete population-wide picture of pediatric SCD in Metropolitan Atlanta, may limit the generalizability 

of our findings to other settings or populations. However, CHOA being the only SCD specialty care 

provider in Atlanta greatly minimizes selection bias, as patients of all severities are included and follow-

up is comprehensive, not restricted to only the most severe cases. Another limitation is relying on ED 

visits and hospital days as outcome measures, which do not fully capture the complexity of SCD severity. 

Moreover, while it is less likely, there remains a possibility that some patients were treated in other EDs 

and hospitals, which could lead to underestimation of the true severity of their condition and bias the 

results if these values differed systematically based on hydroxyurea use status. 

 

Conclusions 

In conclusion, this quasi-experimental study demonstrates that hydroxyurea has a sustained 

clinical impact over years of use in children and adolescents with SCD, providing significant long-term 

benefits in reducing hospitalizations and ED visits. Interestingly, we observed an initial but not sustained 

improvement in hemoglobin. These findings reinforce the importance of hydroxyurea as a key treatment 

modality in SCD and provide valuable insights for clinicians and families regarding its long-term efficacy. 

Given the overall rarity of mortality in the pediatric population, our study was not powered to determine 

an impact on mortality; future studies should examine the impact of hydroxyurea on this and other key 

health related quality of life measures. Additionally, future research should continue to explore these 

effects in diverse settings and populations, notably adults with SCD, to further validate and expand upon 

our results.  
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Table 1: Summary statistics per patient by hydroxyurea use (ever) 

 

Variable n  Never used hydroxyurea 
(n=884) 

Used hydroxyurea 
(n=1381) 

p-
value* 

 

Sex  2,264   0.031  

  Female  472 (53%) 674 (49%)    

  Male  411 (47%) 707 (51%)    

Years in dataframe (sd) 2,265 4.0 (3.6) 7.2 (3.8) <0.001  

Years on hydroxyurea (sd) 2,265 0.0 (0.0) 5.3 (3.2)  
 

Insurance 2,265   0.012  

  Commercial  216 (24%) 363 (26%)    

  Medicaid  479 (54%) 791 (57%)    

  Uninsured/None Listed   189 (21%) 227 (16%)    

Unit of analysis for this table is individual person.      

Mean (standard deviation (sd)) for continuous variables; n (%) for categorical variables    

*Pearson's Chi-squared test; Wilcoxon rank sum test.       
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Table 2: Summary statistics per patient age-year by hydroxyurea use (for given age-year) 

 

Variable n  Hydroxyurea use this 
year (n=7271) 

No hydroxyurea use 
this year (n=7041) p-value*  

Age  14,312 9.9 (4.5) 7.3 (5.3) <0.001  

Sex  14,311   <0.001  

  Female  3,484 (48%) 3,768 (54%)    

  Male  3,787 (52%) 3,272 (46%)    

Calendar year 14,312 2,017 (3) 2,015 (4) <0.001  

MCV 11,779 95.4 (12.1) 83.9 (8.3) <0.001  

Hgb  11,773 9.1 (1.2) 9.1 (1.3) 0.069  

ANC 11,649 4.6 (1.9) 5.2 (2.5) <0.001  

ED visits per year 14,312 1.2 (2.0) 1.1 (1.9) 0.005  

Hospital days per year 14,312 4.2 (6.2) 3.1 (5.0) <0.001  

Adherence to hydroxyurea 5,569 4,300 (77%) NA  
 

Unit of analysis for this table is individual person-year, where year is by age.   

Mean (standard deviation (sd)) for continuous variables; N (%) for categorical variables  

*Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test.   

ANC: absolute neutrophil count; ED: Emergency department; Hgb: hemoglobin; MCV: mean corpuscular 
volume; TCD: transcranial doppler.  
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Figure 1 – Event study es1mates of hydroxyurea use on annual emergency department (ED) 
visits. Points with 95% confidence intervals (y-axis) esBmate the average treatment effect on 
those treated with hydroxyurea for the given year of therapy (x-axis), relaBve to not using 
hydroxyurea. Year 0 is the year of hydroxyurea iniBaBon. Of note, the difference-in-differences 
esBmate for this analysis was -0.33 (95% confidence interval -0.53, -0.12), meaning on 
average (across treatment year and age-group), hydroxyurea use was associated with 0.33 
fewer ED visits per year.  
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Figure 2 – Event study es1mates of hydroxyurea use on annual hospital days, with 
enBre sample (top panel) and limiBng the treatment group to those beginning 
treatment at 1 year of age (boPom panel). Points with 95% confidence intervals (y-
axis) esBmate the average treatment effect on those treated with hydroxyurea for 
the given year of therapy (x-axis), relaBve to never using hydroxyurea. Year 0 is the 
year of hydroxyurea iniBaBon.  
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Figure 3 – Event study es1mates of hydroxyurea use on annual hemoglobin values, 
with enBre sample (top panel) and limiBng the treatment group to with laboratory 
evidence (i.e., increase in mean corpuscular volume) of hydroxyurea adherence 
(boPom panel). Points with 95% confidence intervals (y-axis) esBmate the average 
treatment effect on those treated with hydroxyurea for the given year of therapy (x-
axis), relaBve to never using hydroxyurea. Year 0 is the year of hydroxyurea 
iniBaBon. PaBents are grouped by age, and addiBonally account for sex, baseline 
insurance status, and social vulnerability index at home address.  
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Supplemental Figure 1 – Pa1ent Inclusion/Exclusion Flow 
Chart.  
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Supplemental Figure 2 – Event study es1mates of hydroxyurea use on the yearly changes in mean 
corpuscular volume (MCV, leK panel) and absolute neutrophil count (ANC, right panel). Points with 
95% confidence intervals (y-axis) esBmate the average treatment effect on those treated with 
hydroxyurea for the given year of therapy (x-axis), relaBve to never using hydroxyurea. Year 0 is the year 
of hydroxyurea iniBaBon.  
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Supplemental Figure 3 – Event study es1mates of hydroxyurea use on ED visits per year, with 
treatment group limited to those beginning treatment at 1 year of age (leK panel), and limited to 
those with laboratory markers of good adherence (i.e., annual MCV ≥ 5% above baseline MCV). 
Points with 95% confidence intervals (y-axis) esBmate the average treatment effect on those treated 
with hydroxyurea for the given year of therapy (x-axis), relaBve to never using hydroxyurea. Year 0 is 
the year of hydroxyurea iniBaBon. PaBents are grouped by age, and addiBonally account for sex, 
baseline insurance status, and social vulnerability index at home address. 
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Supplemental Figure 4 – Event study es1mates of hydroxyurea use on the yearly changes in 
emergency department (ED) visits, using different es1mators. Points with 95% confidence 
intervals (y-axis) esBmate the average treatment effect on those treated with hydroxyurea for the 
given year of therapy (x-axis), relaBve to never using hydroxyurea. Year 0 is the year of hydroxyurea 
iniBaBon.  
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Supplemental Figure 5 – Unadjusted average hemoglobin values by age, separated 
by hydroxyurea use and sex.  
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Supplemental Table 1: Results of pre-treatment trend analyses between hydroxyurea users and non-
users 

Model  Difference in trends Pre-treatment mean Percentage 

ED visit per year -0.028 1.092 -2.61 

Hospital days per year -0.102 2.938 -3.46 

Hemoglobin -0.026 9.123 -0.28 

MCV 0.201 83.805 0.24 

ANC 0.066 5.154 1.29 

This table summarizes the pre-treatment differences in trends and mean values for the outcomes of interest, 
comparing individuals who ever used hydroxyurea versus those who did not. For example, for the ED visits 
per year model, prior to treatment, hydroxyurea users had a trend of 0.028 ED visits per year fewer than 
those who never used hydroxyurea.  

 

 

 

 

Difference in trends was obtained using linear regression models that included an interaction term between 
age and HU usage, with robust standard errors clustered by individual. 

 

 

 
Percentage = Difference in trends / pre-treatment mean * 100.  

ANC: Absolute neutrophil count; ED: Emergency department; MCV: Mean corpuscular volume (measure 
of red blood cell size). 
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Chapter 4 

Diffusion of a cost-saving innovation in health care: 

The case of outpatient treatment for appendicitis 
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Abstract 

 

Cost-saving innovations are common in many industries but rare in healthcare. We study the 

diffusion of a specific cost-saving innovation – outpatient treatment for appendicitis – to better 

understand why it was widely-adopted even though hospitals receive lower payments for 

outpatient care. Using private claims and state-wide emergency department records from five 

large states, we show that outpatient treatment reduces insurers’ payments (-$4,500) and length-

of-stay (-1.6 days) without increasing revisit rates. We evaluate the role of patient and physician 

preferences and private insurers in the uptake of outpatient treatment. Our results suggest that 

pressure from private insurers – as proxied by hospitals’ baseline share of privately-insured 

patients – drove diffusion. Policies that limit insurers’ ability to manage care via prior 

authorization or other means may retard the adoption of cost-saving innovations. 

 

Introduction 

Innovations have reduced the cost of producing nails (Sichel 2022), lighting (Nordhaus 

1997), semiconductors (Byrne et al. 2018), and many other products. But there appears to be 

little cost-saving innovation in healthcare. An analysis of over 6,000 studies of the cost-

effectiveness of new medical innovations found that 78% were cost-increasing. In their recent 

book on the topic, James and Robert S. Rebitzer (2023) offer the following explanations for the 

absence of cost-saving innovations in healthcare. First, insurers pay physicians and hospitals on a 

fee-for-service basis, so that providers who adopt cost-saving technologies may see their 

revenues and profits decline: “…the health sector generates the wrong kinds of innovation. It is 
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too easy to profit from low-value innovations and too difficult to profit from innovations that 

reduce care costs.” Neither physicians nor patients, most of whom are well-insured at the margin, 

are able to recoup cost-savings. Second, barriers to entry protect incumbent providers, making it 

difficult for entrepreneurs to offer new, low-cost options for health care. Third, regulations and 

ethical norms limit the development and adoption of innovations that save money but are 

associated with even slightly worse patient outcomes. 

Analyzing the adoption of the relatively few cost-saving innovations in health care can 

help identify the forces that impede or encourage their use. In this paper, we study the uptake of 

a specific cost-saving innovation: outpatient treatment for appendicitis. Historically, the vast 

majority of appendicitis patients were admitted to the hospital for surgery. Beginning around 

2010, treatment shifted to the outpatient setting. Insurers pay less for outpatient treatment, which 

begs the question: Why did hospital adopt outpatient treatment? Although it is possible that 

outpatient treatment is more profitable, the hospital trade press has reported that the general shift 

to outpatient care has been a source of financial distress for the hospital industry (Assar 2022; 

Herman 2024; Pearl 2017). Also, hospitals have successfully lobbied against relaxing regulations 

that limit the types of procedures that can be performed in an outpatient setting. 

Using emergency department and inpatient data from five large states, we describe the 

shift from inpatient to outpatient care among patients with appendicitis. We show that the use of 

outpatient treatment was a true innovation. It reduced insurers’ spending and patients’ length-of-

stay without increasing patient revisit rates, a proxy for patient outcomes. Next, we evaluate 

explanations for why hospitals adopted outpatient treatment. Despite the reduction in revenues, 

outpatient treatment could still be more profitable if hospitals’ costs are sufficiently lower. We 

find that patients treated in for-profit hospitals are less likely to be treated on an outpatient basis, 
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suggesting that this is not the case. We reject the hypothesis that patients are more likely to 

choose hospitals that offer outpatient treatment, and we find that several proxies of physician 

power are unrelated to the use of outpatient treatment, and so it is unlikely that adoption was 

driven by physician preferences.  

We find that adoption is strongly related to the share of privately-insured patients at each 

hospital. Private insurers use prior authorization to discourage treatment in the more costly 

inpatient setting, and this result suggests that prior authorization policies are effective. The 

choice of treatment setting for appendicitis is amenable to external oversight from insurers. 

Appendicitis is an acute, high-volume condition that affects a relatively healthy patient 

population. Treatment is relatively standardized, and the main factor that necessities inpatient 

care, the presence of complicated appendicitis, is well-defined and does not depend on 

physicians’ subjective judgements. 

Our results have a number of policy implications. First, policies to restrict prior 

authorization, which are currently under consideration at the federal and state level, may retard 

the adoption of cost-saving innovation. Second, the government should continue to investigate 

hospitals for admitting patients unnecessarily. Previously, a number of hospitals have faced 

sanctions under the False Claims Act for billing for inpatient care when patients were or should 

have been treated in the outpatient setting. We find evidence that for-profit hospitals may be 

overadmitting appendicitis patients. Third, the federal government should relax the “inpatient 

only” regulation that requires hospitals to perform certain procedures in the inpatient setting 

only. The Trump administrated proposed to phase-out the inpatient only regulation, but scrapped 

the proposal under pressure from the hospital industry. We find that the shift to outpatient 



95 
 

treatment of appendicitis reduced costs while improving welfare, suggesting there may be more 

opportunities to perform low-risk procedures in the outpatient setting. 

 Below we provide the necessary institutional background, describe trends and hospital-

level variation in the use of outpatient surgery, assess the impact of outpatient treatment on costs, 

length-of-stay, and readmissions, and evaluate the reasons for adoption. 

 

Background 

 Appendicitis patients arrive in the emergency department with abdominal pain. Diagnosis 

is usually based on symptoms and imaging via computerized tomography. Recent trials have 

shown that non-operative management with antibiotics resolves around 70% of cases (Thomson 

et al. 2015; Yant et al. 2019), but this approach has not caught on. Over 80% of the patients in 

our sample undergo appendectomy, a surgical procedure to remove the appendix. The main 

technological development facilitating outpatient treatment was the use of laparoscopic versus 

open appendectomy. Laparoscopic appendectomy is minimally invasive, leading to shorter 

recovery times and fewer complications. The adoption of oral rather than intravenous antibiotics 

that patients self-administer at home and new devices and methods for closing the appendix 

stump have also contributed to shorter length of stays. The shift to outpatient treatment for 

appendicitis mirrors a general trend towards outpatient surgery. A number of procedures that 

used to be performed only on an inpatient basis are not routinely performed in the outpatient 

setting. In some cases, hospitals have shifted care to the outpatient setting in response to 

competitive pressures from ambulatory surgery centers, non-hospital facilities that are often 

physician-owned. Other procedures, like appendectomy, are only performed at hospitals, and the 

motivation for the shift to outpatient care is less clear.  
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 The term “outpatient care” is somewhat misleading. Appendicitis patients treated on an 

outpatient basis are still assigned to a hospital bed and may have stays that last longer than 24 

hours. They are typically managed in “observation” units that are a close substitute for and may 

be physically indistinguishable from inpatient wards. Patients do not necessarily know whether 

they are being treated on an outpatient basis, and their physicians may not realize it either. We 

reached out to several surgeons to gather background information for this study, and several were 

unfamiliar with the distinction and did not know whether the patients they treated were classified 

as inpatients or outpatients.  

The distinction Is important for billing purposes. Inpatient and outpatient care are 

reimbursed by insurers under different fee schedules, and the payments for outpatient care are 

lower. The decision whether to bill for inpatient or outpatient care is made by hospital billing 

staff following the encounter, subject to the restrictions imposed by insurers. Private insurers 

may require hospitals to seek prior authorization before admitting a patient or, in emergency 

situations, they may retroactively refuse to pay for care at the higher inpatient rate (Kumar and 

Parthasarathy 2020; Herman 2024). Insurers rely on proprietary guidelines for determining when 

inpatient care is appropriate, though these are somewhat vague owing to the wide range of 

conditions treated in the emergency department. Government insurers do not prior authorize 

care, but government contractors may retroactively review inpatient admissions to ensure they 

were appropriate. Hospitals that inappropriately assign Medicare or Medicaid patients to 

inpatient status are also liable for substantial penalties under the False Claims Act. The 

Department of Justice has pursued successful cases against many hospital systems for 

overadmitting patients for procedures, notably the spinal procedure kyphloplasy, that should 

have been performed on an outpatient basis and for overadmitting patients generally.  
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Methods & Results 

 

A simple model of hospitals’ choice between inpatient and outpatient treatment in the 

presence of financial incentives is useful for framing the analsyis. Suppose patients’ severity of 

illness is is described by 𝑠𝜖[0,1], where 𝑠~𝑓(𝑠) and 𝐹(∙) is the continuous density function. Let  

𝑏!(𝑠) with 𝑘 ∈ (𝐼, 𝑂) be the benefits that patients derive from inpatient and outpatient treatment. 

Assume that the benefits of treatment are increasing in pateint severity, 𝑏" > 0, and that all 

patients benefit from treatment, 𝑏!(0) > 0. The only decision facing physicians and hospitals is 

whether to treat patients on an inpatient or outpatient basis. Further assume that there is some s 

such that  𝑏#(𝑠) > 𝑏$(𝑠) and that these benefit functions cross only once, so the optimal 

treatment rule assigns all patients with severity above some threshold to inpatient treatment and 

all patients with severity below that threshold to outpatient treatment. 

Hospitals’ revenues and costs for inpatient treatment are 𝑟# and 𝑐# and revenues and costs 

for outpatient treatment are defined analogously. From a societal standpoint, social welfare is 

maximized when patients with 𝑠 > 𝑠% receive inpatient treatment, where 

 

𝑏#(𝑠%) − 𝑏$(𝑠%) = 𝑐# − 𝑐$ . 

 

Let 𝛼 and 1 − 𝛼 be the weights that hospitals assign to profits and patient welfare. Hospitals’ 

utility is 𝛼(𝑟# − 𝑐#) + (1 − 𝛼)𝑏(𝑠) for a patient of type s treated on an inpatient basis and  

Hospitals choose 𝑠∗, the cutoff such that patients with 𝑠 > 𝑠∗ are admitted and the 

remainder are treated on an outpatient basis so that 
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𝛼(𝑟# − 𝑐#) + (1 − 𝛼)𝑏#(𝑠∗) = 𝛼(𝑟$ − 𝑐$) + (1 − 𝛼)𝑏$(𝑠∗). 

 

The benefits of inpatient and outpatient treatment are equal at the margin. Rearranging terms 

yields 

 

𝑏#(𝑠∗) − 𝑏$(𝑠∗) =
𝛼

1 − 𝛼
(𝑐# − 𝑐$) −

𝛼
1 − 𝛼

(𝑟# − 𝑟$). 

 

If profits from inpatient care exceed profits from outpatient treatment, then the right-hand side is 

negative, and hospitals will admit patients whose benefit from inpatient care is negative, i.e,  

𝑏#(𝑠) < 𝑏$(𝑠), when 𝛼 > 0. The share of patients who are overadmitted is 𝐹(𝑠') − 𝐹(𝑠∗).  

The model predicts that improvements in technology that allow patients to be treated on 

an outpatient basis will lead to increases in the use of outpatient treatment. However, as we show 

below, the main technology that facilitated the shift to outpatient treatment, laproscopic surgery, 

had largely diffused by the beginning of our study period. 

The Department of Justice sanctions hospitals and other health care providers for fraud 

and abuse. The conduct described by the model is best characterized as abuse, i.e., treating 

patients as inpatients who should be treated on an outpatient basis. A hospital that billed for 

inpatient care when it provided outpatient care (or treated a patient as if he were an outpatient) 

would be guilty of fraud. In that case, a hospital would incur costs 𝑐$ but receive payment 𝑟#. 

We report suggestive evidence below that some hospitals are engaging in fraud. 

 The model takes insurers’ payment rates as a given, but an insurer, cognizent of hospitals’ 

ability to distort treatment setting, may wish to set payment rates to better align hospitals’ 
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incentives with social welfare. For example, an insurer could set payment rates so that hospitals’ 

profits for inpatient and outpatient treatment are equal. However, there are a number of reasons 

why there may be a misalignment between insurers’ payment rates and social welfare. First,  

hospitals deal with many different insurers, and the payment rates established during multiple, 

independent negotiations may differ from those that would be set by an insurer with a monopoly. 

Second, it is unclear if insurers negotiate specifically over the payment rates for appendectomy 

or payment rates are determined using a broad formula (e.g., a multiple of the corresponding 

Medicare payment) that reduces bargaining costs. Third, insurers may set payment rates to 

minimize insurers’ costs and rely on other tools, such as prior authorization, to influence 

treatment setting.  

 

Results 

 

In this section, we present descriptive statistics on the shift to outpatient surgery and 

variation in hospital-level use of outpatient surgery over time. Our data consist of statewide 

emergency department and inpatient records from Arizona, Florida, Kentucky, Maryland, and 

New Jersey. Hospitals are required to report these data to states, which make them available to 

researchers through the Agency for Healthcare Research and Quality’s Healthcare Cost and 

Utilization Project. They include the types of information typically found in insurance claims: 

basic patient demographics, diagnosis and procedure codes, length-of-stay, and hospital 

identifiers. They report the quarter of the year but not exact dates. We merged these data to the 

RAND Hospital Data to obtain hospital characteristics. 
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We identify patients with appendicitis using International Classification of Diseases 

codes (see the Appendix for a code list). We restrict the sample to patients with a primary 

diagnosis of appendicitis. Our sample includes 637,227 patients with an average age of 33.7 

years. Table 1 shows characteristics of the sample. We also display characteristics in 2008-2010 

and 2017-2019 to give an idea how the composition of the sample has changed over time.  

 

 

Figure 1 shows that there was a large shift in the treatment setting of patients presenting 

to the emergency department for treatment of appendicitis. We stratify trends by age (<18, ≥18), 

but throughout the rest of the paper we pool age groups. The proportion of pediatric patients 

treated on an outpatient basis increased from 26.2% in 2008 to 71.1% in 2019, and the 

Table 1: Sample characteristics

Period
All 2001-2010 2017-2019

Age 33.73 32.91 34.82
Female 0.43 0.34 0.47
Medicare 0.09 0.08 0.10
Medicaid 0.22 0.17 0.24
Private 0.52 0.55 0.50
Self 0.13 0.15 0.11
Other insurance 0.05 0.04 0.05
White 0.37 0.37 0.41
Black 0.05 0.04 0.06
Hispanic 0.23 0.15 0.26
Other race 0.35 0.44 0.27
Weekend 0.15 0.15 0.18
0 comorbidities 0.65 0.69 0.59
1 comorbidity 0.21 0.20 0.24
2 comorbidities 0.08 0.07 0.10
3+ comorbidities 0.05 0.04 0.07

N 632,011 152,679 161,067
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proportion of adult patients treated on outpatient basis increased from 13.3% to 60.3%. Most 

appendectomies were performed laparoscopically in 2010, and so the adoption of outpatient 

treatment lagged the adoption of laparoscopic surgery. 

 

 

 

To quantify hospital-level variation in the use of outpatient treatment, net of differences 

in observable patient characteristics, we estimated linear probability models of treatment setting 

that adjust for patient characteristics and include hospital fixed effects: 

 

𝑦() = 𝛽𝑥( + 𝜇) + 𝜖(), 
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where  𝑦() = 1 if patient i in hospital h was treated on an outpatient basis, 𝑥( is a vector of 

patient characteristics plus a constant term, 𝜇) is a hospital fixed effect, and 𝜖() is an error term. 

Patient characteristics include age, sex, primary payer (Medicare, Medicaid, private, self), 

race/ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other), whether the visit 

occurred on a weekend, and comorbidity count indicators (0, 1, 2, ≥3) based on the Elixhauser 

comorbidity index (Elixhauser et al. 1998). We do not include treatment (operative or non-

operative) as a covariate because hospitals’ choice of treatment and treatment setting may be 

driven by the same factors. We constructed an estimate of what outpatient treatment visit rates 

would be in a hospital if it treated all of the patients in the sample. The predicted outpatient 

treatment rate for hospital h is then: 

 

!
"
∑ 𝛽A𝑥( + �̂�)( , 

 

where N is the total sample size. We estimated separate models and predictions for each year.  

Figure 2 displays box-and-whisker diagrams of the predicted, hospital-specific outpatient 

rates for hospitals that treated at least 1,000 appendicitis patients over the study period.2 The 

interquartile range increased from 19.6 percentage points in 2008 to a maximum of 36.8 

percentage points in 2014 before falling back to 19.2 percentage points in 2019. The experience 

of outpatient surgery for appendicitis illustrates how hospital-level variation in treatment 

patterns, a widely-documented phenomenon, increases during periods when there is a lack of 

consensus about how best to treat patients. Hospital-level variation decreases as outpatient 

 
2 This minimum volume criteria excludes about one-third of hospitals and 6% of patients.  
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surgery becomes more established, but there is still substantial variation in the use of outpatient 

surgery even in the later years of the sample.  

 

Laparoscopic surgery was the major innovation that facilitated the shift from inpatient to 

outpatient care. Figure 3 presents displays box-and-whisker diagrams of the predicted, hospital-

specific share of patients undergoing laproscopic versus open (i.e., non-laproscopic) 

appendectomy for hospitals that treated at least 1,000 appendicitis patients over the study period. 

The sample excludes patients undergoing non-operative management. (The share of patients 

managed non-operatively did not change much over the study period, increasing from 12.0% in 

2008 to 18.0% in 2019.)  

The shift to outpatient surgery over the study period is a combination of two trends: 1) A 

shift from open to laproscopic surgery and 2) a shift from inpatient to outpatient treatment among 

patients receiving laproscopic surgery. The results presented in Figure 3 suggests that the shift 

was mostly driven by the latter. Already by 2008, a substantial share of patients undergoing 
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surgery, about three-quarters, had laproscopic procedures, and diffusion slowed considerably 

after 2010. By contrast, the share of patients undergoing laproscopic procedures treated on an 

outpatient basis increased from 10.7% in 2008 to 32.9% in 2013 to 62.4% in 2019. 

 

Next, we address the question: Does the shift to outpatient treatment represent a true 

innovation? It is possible that the shift from inpatient to outpatient treatment was simply a 

relabeling, in the sense that hospitals now file outpatient claims for the same care that used to be 

provided on an inpatient basis. We evaluate the impact of outpatient care on insurers’ costs, 

patients’ length-of-stay, and revisit rates. 

We estimate models of the following form 

 

𝑦( = 𝛼( + 𝛽𝑥( + 𝜖(, 

 

where 𝑦( is a patient-level outcome, 𝛼( is an indicator for whether the patient was treated on an 

outpatient basis, and 𝑥( is a vector of patient characteristics, including an intercept term. We also 

estimate a two-stage least squares model where we instrument for receipt of outpatient treatment 

with the year of treatment. The instrument is valid under the exclusion restriction that year 

affects the outcome only via its impact on treatment setting. The restriction would be violated if 

patients have become healthier or sicker over time, in a way that affects length of stay 

independent of treatment setting or if hospitals have changed other care processes that affect 

outcomes in either setting. Coefficients from the first stage are presented in the Appendix. The 

first stage F-statistic is over 1,000. Change in observables over time. Below we present estimates 

of the impact of outpatient treatment on each of the three outcomes.  
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We compared costs, representing insurers’ payments to hospitals, between patients treated 

in an inpatient versus outpatient basis using a large database of private insurers’ claims.3 The 

advantage of these data is that they report the transaction prices paid by insurers to hospitals. 

(Our primary data set reports only hospital charges, not insurers’ payments.) Using the data from 

2009 to 2019, we used diagnosis codes to identify emergency department and inpatient claims 

for patients with a primary diagnosis of appendicitis. In order to calculate total costs associated 

with an observation stay for acute appendicitis, we created a grouping variable. Specifically, this 

variable grouped claims into the same encounter if the claim was from the same enrollee ID on 

the same or consecutive days and included a diagnosis code of acute appendicitis. For our 

analysis, we included only the first unique encounter for appendicitis.4 We excluded encounters 

for individuals with negative payment amounts and claims without a procedure code for 

appendectomy. We identified 235,902 inpatient and 282,259 outpatient episodes.  

Figure 2 plots average costs, for all encounters and by site of service. Payments for 

inpatient care increased from $12,012 in 2009 to $20,672 in 2019, and payments for outpatient 

care increased from $8,059 to $13,994. Average costs in the sample increased from $10,456 to 

$15,764. The unadjusted difference between average inpatient and outpatient costs increased 

from $1,556 in 2009 to $4,908 in 2019.  

 

 
3 The MerativeTM Marketscan ® Research Database includes claims from over 270 million unique individuals. Most 
of the data are contributed by large firms. 
4 For example, all claims from January 4, 2014, January 5, 2014, and January 6, 2014 including a diagnosis code of 
acute appendicitis from Enrollee ID 1234 would be grouped together into the same encounter; if there was a claim 
from January 10, 2014, that would be classified as a separate encounter and not included in the cost analysis.  
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For the regression model, we de-trended costs, using the same rate for inpatient and 

outpatient treatment. Regression models adjusted for patient age, sex, Elixhauser comorbidity 

count (0, 1, 2, 3+). The first two columns of Table 2 display results. Estimates from the least 

squares and two-stage least squares models are very similar and precisely estimated. They 

indicate that outpatient treatment reduces insurers’ spending $3,400 to $3,700 from a base of 

$12,600.  
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To put these estimates in perspective, we also compared Medicare reimbursements for 

inpatient and outpatient appendectomy. Medicare reimbursements are established by publicly-

available fee schedules. Patients undergoing laproscopic appendectomy may be assigned to one 

of three Diagnosis Related Groups depending on their comorbidities, and so we calculated a 

weighted average based on the number of Medicare discharges. In 2018, the national, weighted-

average Medicare payment for inpatient care was $9,211, and the payment for outpatient care 

was $4,488, a difference of $4,722. Medicare payments are substantially lower than private 

insurers’ payments, which is expected, but the difference is larger. These findings show that use 

of outpatient care leads to substantial savings and suggest that the estimates based on private 

insurers’ claims are not biased by differences in unobserved patient health.  

 

[1] [2] [3] [4] [5] [6]

Outpatient -3,731 -3,398 -2.11* -1.61* -0.015* -0.002
(18) (72) (0.01) (0.01) (0.004) (0.02)

Mean 12,674 12,674 1.99 1.99 0.12 0.12
N 518,161 518,161 632,011 632,011 41,090 41,090
Specification LSd 2SLSe,f Poisson IV Poissone LSd 2SLSe,f

aModels estimated using the Marketscan database.
bModels estimated using data from all states, 2008 to 2019.

dLS: Least squares (i.e., linear probability model)
e2SLS: Two-stage least squares. The instrument is the year of treatment.

*p<0.05.

Table 2: Impact of outpatient treatment on length of stay and revisit rates

fThe instrument is the year of treatment.

Insurer spendinga LOS in daysb Revisitsc

cThe model is estimated using data from Maryland, the only state that includes variable that permits us 
to link visits across patients.
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The chief advantage of outpatient care across a range of procedures and conditions is that 

patients spend less time in the hospital. In addition to freeing up patients’ time, outpatient 

treatment can decrease their exposure to hospital-acquired infections and improve recovery by 

reducing the time they spend immobilized in bed. In this section, we examine the impact of 

outpatient treatment of patients’ length-of-say. 

All states report length-of-stay measured in day increments. Additionally, Arizona reports 

admission and discharge hour, enabling us to measure length-of-stay in hourly increments. We 

measured length-of-stay in day increments in all states and in hours in Arizona. In both cases, we 

Winsorized length-of-stay at the 99th percentile. In all states, the average length-of-stay for 

patients treated on an inpatient basis is 2.84 days versus 0.86 days for patients treated on an 

outpatient basis, a difference of about 2 days. The equivalent figures from Arizona are 2.72 days 

for inpatient treatment and 0.80 days for outpatient treatment. 

Figure 3 displays trends in patients’ length-of-stay, overall and by treatment setting, in all 

states. Average length of stay declined from 2.3 to 1.6 days. Average length of stay increased in 

both the inpatient and outpatient settings, reflecting the progressive shift of less seriously ill 

patients from the inpatient to the outpatient setting. The difference in average length-of-stay 

between patients treated on an inpatient versus an outpatient basis is large, around 2 days, but 

this may reflect differences in patient health status.   
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The third and fourth columns of Table 2 displays regression estimates for all states and 

where length-of-stay is measured in day increments. (Estimates for the Arizona sample with 

length-of-stay estimated in hourly increments are presented in the Appendix). Coefficients from 

the least squares and two-stage least squares models are precisely estimated. The coefficient 

from the two-stage least squares model indicates that outpatient treatment reduces length-of-stay 

by 1.61 days. The analysis of the Arizona data indicates that outpatient treatment reduces length-

of-stay by 1.4 days.  

 

Conclusion 

The shift towards outpatient treatment of appendicitis benefited patients, but hospitals 

lost revenue. Our results indicate that the shift to outpatient treatment was not driven by 

hospitals’ lower unit costs for outpatient treatment or physician and patient preferences. Instead, 

the positive relationship between hospitals’ share of privately-insured patients and use of 
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outpatient treatment suggests that private insurers promoted adoption. Private insurers commonly 

require hospitals to seek approval for treating appendicitis patients on an inpatient basis. Private 

insurers’ use of prior authorization has prompted a backlash, and a number of states and the 

federal government are considering laws and regulations that would limit prior authorization. 

The implication of our study is that these restrictions may impede the adoption of cost-saving 

innovations. 
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