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Abstract 

 

Iron Biomarker Profiles and Prediction of Iron Deficiency Anemia among Women of Reproductive Age in 

the US 

By Mengke Du 

 

Iron deficiency (ID) and iron deficiency anemia (IDA) are significant public health concerns among 

women of reproductive age in the United States (Looker 1997a). Serum ferritin (SF) is considered the 

gold standard for assessing ID (Daru et al. 2017) and, when combined with hemoglobin (Hb), is used to 

diagnose IDA. However, SF is not routinely measured in clinical practice. This study aimed to evaluate 

the prevalence of ID using nine iron biomarkers, including SF, and to assess the performance of 

alternative biomarkers for predicting IDA in non-pregnant women aged 12-49 years using data from the 

National Health and Nutrition Examination Survey (NHANES) (n = 12781). Serum iron had the highest 

estimated prevalence of ID (31.58%), while soluble transferrin receptor (sTfR) had the lowest (2.21%), 

and SF showed a prevalence of 26.42%. Stratified by age, race, parity, and family poverty income ratio, 

the estimates revealed a higher prevalence of ID among non-Hispanic Black populations, those with 

lower family parity income ratios, and younger age groups (12-19 years old). Cluster analysis identified 

three subgroups of non-pregnant women with different patterns of iron biomarkers and prevalence of 

IDA, with Cluster 3 having the highest prevalence (61.95%). We developed a model to predict IDA using 

RBC and MCV, achieving an area under the receiver operating characteristic (ROC) Curve (AUC) of 

98.61% in the training set and a sensitivity of 97.4%, and a specificity of 93.7% in the test set. These 

findings highlight the heterogeneity of ID and the importance of tailored approaches to diagnose IDA. 

Further research is needed to validate the prediction model and develop effective interventions to prevent 

and diagnose IDA in non-pregnant women. 
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1 Introduction 

ID is a significant public health concern that affects individuals of all ages and genders worldwide. 

According to the World Health Organization (WHO), over 2 billion people globally suffer from anemia, 

and ID is the most common cause of anemia (World Health Organization 2020). In the United States, 

approximately 10% of women of reproductive age have ID, and up to 5% have IDA (Looker 1997a). The 

diagnosis of ID and IDA is essential to prevent adverse health outcomes, including impaired cognitive 

function, decreased work productivity, and poor pregnancy outcomes (World Health Organization 2020). 

Serum ferritin (SF) is the most commonly used biomarker for assessing ID and low SF concentrations 

reflect a state of iron depletion (Daru et al. 2017). However, SF levels can be affected by inflammation 

and liver disease, leading to false-positive results (World Health Organization 2011). Soluble transferrin 

receptor (sTfR) is another biomarker for ID that reflects the concentration of the transferrin receptor in the 

bloodstream. sTfR levels are elevated in ID, making it a useful marker for detecting early ID. The 

sTfR/log ferritin ratio, known as total body iron (TBI), is also a reliable biomarker for diagnosing ID, 

particularly in the early stages (Skikne et al. 2011). 

Serum iron, total iron-binding capacity (TIBC), and transferrin saturation (TS) are valuable in 

distinguishing between nutritional ID and anemia caused by chronic infections, inflammation, or 

neoplastic diseases (Gibson 2005). TIBC measures the total amount of iron that transferrin can bind, and 

serum iron measures the concentration of iron in the bloodstream. However, TIBC and serum iron have 

limited sensitivity and specificity for detecting ID (World Health Organization 2011). Furthermore, TS 

can be calculated from serum iron and TIBC levels and reflects the percentage of iron-binding sites on 

transferrin that is saturated with iron. TS is a useful biomarker for assessing iron status, but it has 

limitations and should be interpreted along with other iron biomarkers such as SF and sTfR (Beard and 

Tobin 2000). 
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Various red blood cell parameters, such as mean corpuscular volume (MCV), red blood cell distribution 

width (RDW), and red blood cell count (RBC), are also used as iron biomarkers. MCV and RDW are 

indirect measures of erythropoiesis and are used to assess the quality of red blood cells. RBC measures 

the number of red blood cells in circulation, which can be decreased in ID. These biomarkers have unique 

mechanisms for reflecting iron status and can help identify different stages of ID. 

As a common type of anemia, IDA occurs when ID is sufficiently severe to reduce erythropoiesis. The 

diagnosis of IDA is based on a low hemoglobin (Hb) level in the presence of ID, and currently, SF and 

hemoglobin are commonly used for IDA screening. Combining SF with other biomarkers, such as sTfR, 

MCV, RDW, and RBC, has been shown to improve the accuracy of diagnosing IDA (Goddard et al. 

2011). However, the lack of routine availability of SF testing and the inconsistent use of iron biomarkers 

in research highlight the need for comparison of these iron biomarkers in detecting ID, as well as 

alternative ways to diagnose IDA,  

This study aims to provide valuable insights into ID prevalence based on different iron biomarkers and 

efficient IDA diagnosis. Firstly, we compared different iron biomarkers, including SF, sTfR, TS, TIBC, 

serum iron, TBI, MCV, RDW, and RBC, in estimating the prevalence of ID and IDA among women of 

reproductive age in the United States. Secondly, the study explored the development of alternative 

methods to diagnose IDA when SF testing is not readily available, which could lead to more effective 

screening and management of these conditions. The findings from this research have the potential to 

significantly impact the clinical approach to diagnosing and managing ID and IDA globally. 

2 Subjects and methods 

2.1 Study population and sample selection 

National Health and Nutrition Examination Survey (NHANES) is a multi-purpose survey aimed at 

evaluating the health and nutritional status of both adults and children in the United States (National 

Center for Health Statistics, CDC 2023a). Currently, it has been conducted continuously since 1999 and 
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involves a household interview followed by a standardized physical examination at a Mobile Examination 

Center. The survey uses a stratified probability sampling method to select participants from different 

counties, blocks, households, and individuals within those households. It is carried out by the National 

Center for Health Statistics (NCHS) and the Centers for Disease Control and Prevention (CDC). Approval 

from the NCHS Research Ethics Review Board was obtained and written informed consent was gathered 

from participants over the age of 12 and parental consent was obtained for those under 18. The methods 

for data collection and laboratory methods have been documented on NHANES website (National Center 

for Health Statistics, CDC 2023b). 

We combined NHANES 1999 - 2010 and 2015 - 2018 data for women aged 15 - 49 years. We excluded 

NHANES 2011-2014 since C-reactive protein (CRP) is not available. The reproductive status of subjects 

was based on urine pregnancy test, self-reported pregnancy, and dual-energy x-ray absorptiometry (DXA) 

examination. We restricted our study sample to non-pregnant women only (n = 12781). For the purpose of 

the present first part of analysis, sample weights for NHANES 1999-2000 were based on population 

estimates developed by the Census Bureau before the Year 2000 Decennial Census counts became 

available. The two-year sample weights for NHANES 2001-2002, and all other subsequent two-year 

cycles, are based on population estimates that incorporate the year 2000 Census counts (National Center 

for Health Statistics, CDC 2023c). For variables used in the analysis, we use the 4-year weights provided 

by NCHS for 1999-2002, then include the 2-year weights for each additional 2-year cycle that is 

combined. In the second part of analysis, we did not take into account the original sample weights 

assigned to the data because we did not intend to perform population-based analyses. we also excluded 

those who had missing SF, sTfR, Hb, RBC, MCV, Serum iron, TS, or TIBC (n = 8213).  

2.2 Laboratory method and variable definition 

CRP was quantified by latex-enhanced nephelometry method and assays were performed on a Behring 

Nephelometer for quantitative CRP determination in 1999-2010. In 2015-2016, CRP was measured on the 

Beckman Coulter UniCel DxC 600 Synchron and the Beckman Coulter UniCel DxC 660i Synchron 
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Access chemistry analyzers Previous analyses indicated that no statistical adjustment is needed for results 

obtained between the two Beckman UniCel® analyzers. During the 2017-2018 cycle the Roche Cobas 

6000 chemistry analyzer (Cobas 6000) was used for the entire 2017-2018 cycle. For highly sensitive CRP 

levels above 20 mg/L based on Cobas 6000 (or 23 mg/L based on DxC 660i), the relationship between the 

two instruments appeared opposite that of the lower values, with 2017-2018 measurements higher than 

2015-2016 measurements (citation).  A weighted Deming regression was used to adjust the CRP (mg/L) 

result： 

• 𝐶𝑜𝑏𝑎𝑠 6000 =  0.8695 ×   𝐷𝑥𝐶 660𝑖 +  0.2954  

SF was measured using several methods over years. In 1999-2002, Ferritin is measured by using the Bio-

Rad Laboratories' "QuantImune Ferritin IRMA" kit (Bio-Rad Laboratories, 1986), which is a single-

incubation two-site immunoradiometric assay (IRMA) based on the general principles of assays. 

(Addison et al., 1972). A same method was used in 2003 but this assay was discontinued by the 

manufacturer in early 2004, so ferritin was measured by the Roche Tina-quant® Ferritin 

immunoturbidimetric assay on the Hitachi 912 clinical analyzer (Roche Diagnostics, Indianapolis, IN, 

USA) in 2004-2008. The Hitachi method gave higher ferritin results than the Bio-Rad method. Due to the 

difference, three piecewise linear regression equations were used to adjust the 2003 SF (ng/mL) data to be 

comparable to the 2004 data: 

• 𝑆𝐹 ≤  25: 𝐻𝑖𝑡𝑎𝑐ℎ𝑖 =  1.2534 ×  𝐵𝑖𝑜 − 𝑅𝑎𝑑 +  1.4683  

• 25 <  𝑆𝐹 ≤  65: 𝐻𝑖𝑡𝑎𝑐ℎ𝑖 =  1.2001 ×  𝐵𝑖𝑜 − 𝑅𝑎𝑑 +  1.4693  

• 𝑆𝐹 >  65: 𝐻𝑖𝑡𝑎𝑐ℎ𝑖 =  1.0791 ×  𝐵𝑖𝑜 − 𝑅𝑎𝑑 +  4.8183  

This was accomplished prior to the data release by NCHS. To adjust the 1999-2002 data to compare with 

the 2003-2004 data, the same regression equations were used.  The Roche Elecsys-170 sandwich 

immunoassay was used in 2009-2010. To convert the Roche E170 SF (ng/mL) concentrations to be 

equivalent to the Hitachi method, we applied a conversion equation following NHANES analytic notes: 
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• 𝐻𝑖𝑡𝑎𝑐ℎ𝑖 =  10
(𝑙𝑜𝑔10 (𝐸170)− 0.049)

0.989    

The Roche Mod E170 analyzer method was used for most of 2015-2016 SF data and replaced with the 

Roche Cobas e601 analyzer in mid-2016 and later in 2017-2018. On average, ferritin values measured 

from the Roche e601 analyzer were 8.8% higher than values from the Roche Mod E170 (p<.0001). A 

weighted Deming regression was used to adjust the e601 SF results (ng/mL) to be comparable with the 

E170 result: 

• 𝐸170 =  −0.2079 +  𝑒601 ×  0.9271  

Then the same conversion equation in 2009-2010 was used to keep consistency. After calibration SF 

values, we applied Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia 

(BRINDA) regression approach to adjust SF for inflammation. The reproducibility of the BRINDA 

method was published in detail elsewhere. 

The method for measurement of sTfR is immuno-turbidimetry using Roche kits on the Hitachi 912 

clinical analyzer in 1999-2008 and on the Hitachi Mod P clinical analyzer 2009-2010. In 2015-2016, the 

method principle for measurement of sTfR is a particle enhanced immunoturbidimetric assay that uses 

Roche kits on the Roche Mod P analyzer and Cobas® c501 clinical analyzer. The Roche Mod P analyzer 

was used for most of 2015-2016 and replaced with the Roche Cobas c501 analyzer in mid-2016 and later 

in 2017-2018. No adjustment of the data was needed.  

TBI (mg/kg) was calculated as previously described in detail (citation) from sTfR and SF concentrations 

by using a formula: 

• 𝑇𝐵𝐼 𝑠𝑡𝑜𝑟𝑒𝑠 =  − [𝑙𝑜𝑔10 (𝑠𝑇𝑓𝑅 ×  1000 ÷  𝑆𝐹)  −  2.8229]  ÷  0.1207  

Serum iron and TIBC was measured by a modification of the automated AAII-25 colorimetric method in 

1999-2000, which is based on the procedures of Giovaniello et al. and of Ramsey (citation).  In 2001-
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2010 and 2015-2016 the method used to measure the iron concentration was a timed-endpoint method and 

the serum iron was measured on the Beckman/Coulter LX20 analyzer and Beckman UniCel® DxC800 

analyzer, respectively. TIBC was calculated indirectly using the unsaturated iron binding capacity (UIBC) 

method in 2001-2006 and not available in 2007-2010 and 2015-2016.  In 2017-2018, serum iron was 

measured using a three-step process with FerroZine reagent on Roche Cobas 6000. TIBC was calculated 

indirectly using Iron (frozen), serum and UIBC. TS was calculated as (𝑖𝑟𝑜𝑛/𝑇𝐼𝐵𝐶) ×  100% in 1999-

2006 and 2017-2018. TIBC was not available in 2007-2010 and 2015-2016. 

The methods used to derive complete blood count (CBC) parameters (Hb, MCV, RBC, RDW) are based 

on the Beckman Coulter® method of counting and sizing, in combination with an automatic diluting and 

mixing device for sample processing, and a single beam photometer for hemoglobinometry. 

Demographic characteristics were based on self-reported data. Age was stratified into three groups: 15-19, 

20-34 and 35-49 years. Race-ethnicity following the NHANES guidelines included Mexican American, 

Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and other. Parity was based on self-report of 

the number of pregnancies that resulted in a live birth in women aged ≥12 y who reported that they had 

ever been pregnant. Parity was categorized into 0, 1, or ≥2 births. Family poverty income ratio, which is 

an index that measures the ratio of family income to poverty with poverty being defined by the 

Department of Health and Human Services’ (HHS) poverty guidelines, was categorized the family 

poverty income ratio as < 130% or ≥130%. This cutoff is commonly used to determine eligibility for 

various government assistance programs (US Department of Agriculture 2022). 

There are different cutoff points for abnormal values of anemia and ID of indicators stated above. WHO 

has different hemoglobin standards for different ages and sex groups. For nonpregnant women, the cutoff 

point is <120 g/L and is <110 g/L for pregnant women (Looker 1997b).  WHO has set up a global cutoff 

for hemoglobin levels, but the cut-off points might not be applicable for special populations. One study 

examined hemoglobin distributions of healthy White, Black, Mexican, Hispanic, and Asian non-pregnant 
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women to check race-specific hemoglobin cut-offs for mild anemia. They found that the Asian cut-off was 

lower than the WHO standard at 11.22g/dL (Varghese, Thomas, and Kurpad 2019). RBC for females was 

considered normal in the range of 4.2 – 5.8 million cells/μL and for males, 3.6 – 5.6 million cells/μL. The 

cut-off values for the red blood cell indices were as follows: MCV < 81 fL for people 15-49 years old 

(Mei et al. 2003), and RDW < 14.5 % (Abdelrahman et al. 2012). For serum iron and TIBC, the cutoff 

points are 60 μg/dL (10.74 μmol/L) and 410 μg/dL (73.39 μmol/L), respectively (Cook and Finch 1979). 

For transferrin saturation < 16% a subject is considered to be ID (Hallberg, The Swedish Nutrition 

Foundation, and The Swedish Society of Medicine 1996). The cut-off value of SF is < 15 µg/L for 

nonpregnant women (Anon 2020). The cutoff value of  sTfR is >8.3 mg/L for adults (Phiri et al. 2009). 

And the cutoff value of TBI is < 0 mg/kg (Cook, Flowers, and Skikne 2003).  

2.3 Statistical analysis 

Exam sample weights, primary sampling units (PSUs), and strata were used for analyses. We applied 

“survey” package in R (4.2.0) written by Thomas Lumley to derive statistics. For some PSUs that had 

only one unit, we specified “survey.lonely.psu = ‘adjust’” to accurate estimation of population parameters.  

We defined ID as having abnormal value of the following 9 tests: SF, sTfR, TBI, MCV, RBC, RDW, 

Serum iron, TS and TIBC. To be considered iron deficient, an individual had to have an abnormal value 

for any one of these biomarkers (Table 1).  For descriptive analysis, we visualized ID prevalence 

according to each iron biomarker and further stratified by age groups (12–19, 20–34, and 35–49 y), race-

ethnic group (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black and other), 

parity (0, 1, and >=2) and family income poverty income ratio (<130% compared with ≥130%),  Next, 

we calculated pairwise Pearson’s correlations between iron biomarkers. Furthermore, for those who had 

Hb, SF, sTfR, TBI, MCV, RBC, RDW, Serum iron, TS, and TIBC available, we repeated the visualization 

procedure among individuals with anemia. 
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Table 1. Abnormal values of different iron biomarkers 

Iron biomarker Acronym Abnormal values 

Serum ferritin* SF < 15 µg/L  

Serum iron serum iron < 10.74 μmol/L 

Transferrin saturation TS < 16% 

Total body iron stores†  TBI < 0 mg/kg 

Mean corpuscular volume MCV < 81 fL 

Red blood cell count RBC 

< 4.2 million 

cells/μL 

Red blood cell distribution width RDW > 14.5 % 

Total iron binding capacity TIBC > 4100 μg/L 

Soluble transferrin receptor sTfR > 8.3 mg/L 

* SF is adjusted using the BRINDA regression correction method (Namaste et al. 2017) 

† 𝑇𝐵𝐼 𝑠𝑡𝑜𝑟𝑒𝑠 =  − [𝑙𝑜𝑔10 (𝑠𝑇𝑓𝑅 ×  1000 ÷  𝑎𝑑𝑗_𝑆𝐹)  −  2.8229] ÷  0.1207 

 

Since we did not intend to perform population-based studies, the sample weights were not included in this 

part of analysis. IDA was defined as having abnormal values for Hb and SF,  and was treated IDA as an 

outcome. First, in order to identify the optimal number of clusters for our analysis, we used the Elbow 

method, Silhouette method, and Gap statistics. K-means clustering was used for partitioning the 

participants into different clusters with distinct iron biomarker profiles, considering 8 iron biomarkers 

(sTfR, Hb, RBC, MCV, Serum iron, TS, and TIBC). Hierarchical clustering was used to verify the results 

of K-means. Subsequently, logistic regression was used to examine the association between the clusters 

and the probability of having IDA and if the association is modified by demographic characteristics by 

including interactions. 
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All the above iron biomarkers, except TBI (since TBI is a function of SF and sTfR), were considered as 

candidate predictors for IDA. The model performance was measured by Area Under the Curve (AUC) and 

the accessibility of iron predictors. First, we split our data into a training set (n=2741, 60%) and a test set 

(n=1827, 40%). The training set was used to fit the logistic regression model and selected the model with 

the most effective combinations of iron biomarkers. we fitted logistic regression models with all 

combination sets of predictors (127 in total). For the selected model, we assessed the relationship between 

IDA and iron predictors adjusting for demographic covariates (age, race, parity, and family poverty 

income ratio). We further assessed the interaction between the iron predictors in the selected model. We 

used ROC curves to characterize the sensitivity and specificity of screening for IDA.  And we derived a 

threshold using the point on the ROC curves which maximized the Youden’s index. In the test set, we 

calculated a fitted possibility of having IDA for each individual using the selected model and classified 

them as “IDA” or “not IDA” using the derived threshold. Then we presented sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) for all individuals. We also repeated 

this procedure in the test set for people who were identified having anemia by Hb < 120 g/L for further 

validation.  

3 RESULTS 

In the total sample of US non-pregnant women from 1999 to 2010 and 2015-2018, the proportions of US 

non-pregnant women who were aged 15-19, 20-34, and 35-49 y were 10.45%, 43.69%, and 45.86%, 

respectively. The proportions of US non-pregnant women who were Mexican American, Other Hispanic, 

Non-Hispanic White, Non-Hispanic Black and other were 9.80%, 6.86%, 62.54%, 13.35%, and 7.45% 

respectively. The proportions of US pregnant women who were in 0, 1, and ≥2 parity at the time of the 

medical examination were 34.40%, 17.34%, and 48.26%, respectively. For 26.29% of US non-pregnant 

women, the family income was below the 130% poverty income ratio (Table 2).  
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Table 2. Sample size and weighted proportion by group 

 

 

 

 

 

 

 

 

 

 

Prevalence of ID in US non-pregnant women estimated different iron biomarkers was showed in Figure 1. 

The highest estimated prevalence of ID was obtained using serum iron among the 9 iron biomarkers 

analyzed (31.58%). The other biomarkers that showed an estimated prevalence of ID in decreasing order 

were TS, SF, TIBC, RBC, RDW, MCV, TBI. The lowest estimated prevalence of ID was obtained using 

sTfR (2.21%).  

 Group Sample size Proportion (%) 

Age 

15 - 19 2972 10.45 

20 - 34 4947 43.69 

35 - 49 4862 45.86 

Race 

Mexican American 2953 9.80 

Other Hispanic 1015 6.86 

Non-Hispanic White 4676 62.54 

Non-Hispanic Black 3048 13.35 

Other Race 1089 7.45 

Parity 

0 3868 34.40 

1 1644 17.34 

>= 2 4526 48.26 

Poverty income ratio 
< 130% 4239 26.29 

>= 130% 7482 73.71 
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Figure 1. Prevalence of iron deficiency estimated by different iron biomarkers 

 

When estimating the prevalence of ID using different iron biomarkers, it's not surprising that stratifying 

these estimates by additional factors, such as age(15-19, 20-34, and 35-49 y), race (Mexican American, 

Other Hispanic, Non-Hispanic White, Non-Hispanic Black and other), parity (0, 1, and ≥ 2), and poverty 

income ratio(<130% and ≥ 130%), resulted in further differences in the estimated prevalence of IDA. For 

example, in general, younger age group (15-19 y) had a higher prevalence of ID compared to other age 

groups. We found that there was a higher prevalence of ID among non-Hispanic Black populations 

compared to non-Hispanic White populations. Non-pregnant women who had more parity were at a 

higher risk of having ID.  The lower family parity income ratio was associated with an increased 

prevalence of ID. It's worth noting that even within these subgroups, there were similarities in the higher 

and lower pattern of estimated IDA prevalence between different iron biomarkers. The highest estimated 

prevalence of ID was obtained using serum iron among the 9 iron biomarkers in most of subgroups and 

the lowest estimated prevalence of ID was obtained using sTfR, still (Figure 2). 
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Figure 2. Prevalence of iron deficiency estimated by different iron biomarkers among different age (A), 
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race(B), parity(C), and poverty income ratio (D) groups 

Overall, there was no strong correlation between any two of these biomarkers except Serum iron and TS. 

It was not surprising since TS was calculated using serum iron and TIBC (Figure 3). 

 

Figure 3. Pairwise correlation between two biomarkers among all iron biomarkers 

Figure 4 shows the proportion of women with ID estimated by different biomarkers among those with 

anemia (IDA). When considering individuals with both hemoglobin and all iron biomarkers available, the 

prevalence of ID estimated by SF, serum iron, and TS was high and similar, ranging from 74.26% to 

77.04%. On the other hand, the prevalence of ID estimated by TBI, MCV, RBC, RDW, TIBC, and sTfR 

was relatively lower, ranging from 21.94% to 57.53%. 
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Figure 4. Prevalence of iron deficiency estimated by different iron biomarkers among anemic women 

After excluding those who had missing SF, sTfR, Hb, RBC, MCV, Serum iron, TS, or TIBC, final sample 

included size of 4568.  Three clusters represented distinct subgroups with different patterns of iron 

biomarkers and prevalence of IDA. We found that the standardized mean value of RBC was similar 

among all three clusters. Cluster 1 had higher standardized mean values for Serum iron, TS, TBI, and 

MCV and relatively lower standardized mean values for RDW, TIBC, and sTfR. On the other hand, 

Cluster 3 had lower standardized mean values for serum iron, TS, TBI, and MCV, and higher standardized 

mean values for RDW, TIBC, and sTfR. The values of iron biomarkers for Cluster 2 were average, 

indicating a normal population. Additionally, we found that Cluster 3 had the highest prevalence (61.95%) 

of IDA, followed by Cluster 2 (2.99%) and Cluster 1 (0.51%) (Figure 5).  

Figure 5. standardized mean of different iron biomarkers across three cluster groups (left); Prevalence of 

IDA of each cluster (right) 
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Figure 5. standardized mean of different iron biomarkers across three cluster groups (left); Prevalence of 

IDA of each cluster (right) 

Logistic regression suggested the relationship between IDA risk and clusters remains significant after 

controlling for covariates (age, race, parity, and family poverty income ratio) (Table 3). And there were no 

significant interactions between clusters and demographic characteristics. 
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Table 3. Parameters estimates for logistic regression model 

 

We identified an optimal model for predicting IDA that included RBC and MCV, with an AUC of 98.61% 

in the training set. To determine the optimal threshold for categorizing individuals as having IDA or not, 

we used Youden’s index, which was calculated as the maximum value of (sensitivity + specificity - 1) 

across all possible thresholds. The resulting threshold of 0.107 was the value that maximized the Youden’s 
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index in our study.  When applied to the test dataset, the model had a sensitivity of 97.4%, specificity of 

93.7%, PPV of 58.3%, and NPV of 99.7% using the derived threshold to determine IDA status. For 

anemic women in the test dataset, the model had a sensitivity of 97.4%, specificity of 15.4%, PPV of 

82.0%, and NPV of 60.0% (Table 4). 

 

Table 4. Performance results of the optimal model 

 

IDA status 

All women Anemia women 

Positive Negative Positive Negative 

Results from 

model 

Positive 148 106 148 33 

Negative 4 1572 4 6 

Calculation 

Sensitivity 97.4% 97.4% 

Specificity 93.7% 15.4% 

PPV 58.3% 82% 

NPV 99.7% 60% 

 

4 DISCUSSION 

ID is a major public health concern worldwide, particularly among non-pregnant women. The WHO 

considers SF as the primary biomarker for detecting ID in the general population (World Health 

Organization 2007). However, our study suggests that the prevalence of ID in non-pregnant women in the 

United States may vary depending on the biomarker used to estimate it. We found that serum iron had the 

highest estimated prevalence of ID (31.58%), while sTfR had the lowest estimated prevalence (2.21%). 

These findings suggest that relying on a single biomarker like SFmay not accurately capture the 

prevalence of ID in all populations, stressing the need for further research to refine iron status assessment 

and biomarker selection. 
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Previous research has also noted the challenges and limitations associated with different iron biomarkers, 

including SF, when assessing iron status in populations with inflammation or infection (Ganz 2013). The 

NHANES dataset has been extensively used to assess iron status using SF and total body iron models, 

providing valuable insights into the strengths and limitations of these approaches ((Pfeiffer and Looker 

2017)). Stratifying the estimates by age, race, parity, and poverty income ratio resulted in further 

differences in the estimated prevalence of ID, with younger age groups, non-Hispanic Black populations, 

and those with lower family parity income ratios having a higher prevalence of ID. These findings are 

consistent with previous studies and highlight the importance of considering these factors in developing 

targeted interventions to prevent and manage ID in at-risk populations (Barton et al. 2020; Looker 1997a). 

Furthermore, our study identified distinct subgroups of non-pregnant women based on patterns of iron 

biomarkers and prevalence of IDA. Cluster analysis revealed three distinct subgroups with different 

patterns of iron biomarkers and prevalence of IDA, highlighting the heterogeneity of ID in non-pregnant 

women. These subgroups may help clinicians identify individuals who are at a higher risk of developing 

IDA and may guide the development of targeted interventions to prevent and manage this condition. 

In addition to identifying distinct subgroups, we developed a model to predict IDA using RBC and MCV. 

The model had high sensitivity and specificity when applied to the test dataset, indicating its potential 

clinical usefulness. Furthermore, RBC and MCV values can be obtained from a standard complete blood 

count (CBC) test that is routinely ordered for many clinical indications, including anemia. This suggests 

that the prediction model we developed may be more feasible and cost-effective for clinicians to use in 

clinical practice than other biomarkers like SF. In recent years, there has been growing interest in using 

artificial intelligence (AI) and machine learning (ML) to predict and diagnose various health conditions, 

including anemia. Saputra developed an AI-based model using extreme learning machine (ELM) 

algorithm to predict and distinguish between different types of anemia, including beta thalassemia trait 

(BTT), IDA, hemoglobin E (HbE), and combination anemia (Saputra, Sunat, and Ratnaningsih 2023). 

The model achieved high accuracy, sensitivity, precision, and F1 score, indicating its potential clinical 
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usefulness in identifying and managing anemia in patients. Such predictive models could be useful in 

resource-limited settings, where access to laboratory testing and specialized healthcare may be limited. 

However, further research is needed to validate these models in different populations and settings before 

they can be widely implemented in clinical practice. 

Several limitations of our study should be considered. Firstly, our adjustment for inflammation using CRP 

did not consider the potential confounding effects of acute phase proteins such as alpha-1-acid 

glycoprotein (AGP) and C-reactive protein (CRP) together due to the lack of CRP data. This may have led 

to an overestimation or underestimation of ID prevalence, particularly among subgroups with a higher 

prevalence of inflammation. Secondly, there is no consensus on cutoff points for iron biomarkers in 

categorizing ID, which can lead to varying estimates of ID prevalence and limit the generalizability of our 

findings. Thirdly, the sample size used to develop the model predicting IDA using RBC and MCV may 

not be ideal for generalization to other populations or clinical settings. Additionally, calculating an 

individual's IDA status based on the model may not be practical for clinicians in some resource-limited 

settings. Finally, our study focused on non-pregnant women of reproductive age, limiting the 

generalizability of our findings to other populations such as men or older adults. Future studies should 

explore the prevalence and patterns of ID in these populations to better understand the burden of this 

condition and guide the development of targeted interventions. 

Our study aimed to investigate the prevalence and patterns of ID in non-pregnant women in the United 

States and evaluate the use of different iron biomarkers to assess iron status. By identifying distinct 

subgroups and developing a predictive model, we provided important insights into the accuracy of IDA 

diagnosis in clinical practice. However, further research is needed to address the limitations of our study 

and to validate the findings in other populations. Moreover, future studies should focus on developing 

effective interventions to prevent and manage ID, particularly in at-risk populations such as younger age 

groups, non-Hispanic Black populations, and those with lower family parity income ratios, who have a 

higher prevalence of ID. By addressing these gaps in knowledge, we can improve our understanding of 
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the complex mechanisms underlying ID and IDA and work towards improving the health outcomes of 

those affected by this condition. 
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