Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Anand Bhardwaj

Date

Effects of Life History and Genome Architecture on ssRNA Virus Evolution and Extinction

By

Anand Bhardwaj Doctor of Philosophy

Graduate Division of Biological and Biomedical Sciences Population Biology, Ecology and Evolution

> Leslie Real, Ph.D. Advisor

David Cutler, Ph.D. Committee Member

Jacobus de Roode, Ph.D. Committee Member

> Lance Waller, Ph.D. Committee Member

Michael Zwick, Ph.D. Committee Member

Accepted:

Lisa A. Tedesco, Ph.D. Dean of the James T. Laney School of Graduate Studies

Date

Effects of Life History and Genome Architecture on ssRNA Virus Evolution and Extinction

By

Anand Bhardwaj

B.S., Emory University, 2007

Advisor: Leslie Real, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Population Biology, Ecology and Evolution 2013 Abstract

Effects of Life History and Genome Architecture on ssRNA Virus Evolution and Extinction

By

Anand Bhardwaj

Single-stranded RNA viruses have evolved to survive extremely high mutation rates. The ubiquity and effect of ssRNA viral diseases makes an understanding of the theoretical and mechanical underpinnings of rapid viral evolution vital to our ability to control them. In this body of work, we explore some of the ways in which ssRNA viruses can uncouple the rate at which variation is generated (mutation rate) from the rate at which variation is observed (measured rate of molecular evolution).

A combination of replication strategies and genome architecture allow ssRNA viruses to evolve rapidly while avoiding many of the consequences of their error-prone replication process. However, this also means that ssRNA viruses exist at the very periphery of viable parameter space. Our models of viral evolution suggest that this can be exploited as a means of viral control, an idea that is reflected in the relatively new and experimental process of lethal mutagenesis.

We also highlight the general need for more molecular data and better estimates of viral replication parameters. Ironically, the latter is rare in scientific literature because of a lack of awareness of their impact on the rates of ssRNA virus evolution, and not because of any particular difficulty in obtaining them.

Effects of Life History and Genome Architecture on ssRNA Virus Evolution and Extinction

By

Anand Bhardwaj

B.S., Emory University, 2007

Advisor: Leslie Real, Ph.D.

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Population Biology, Ecology and Evolution 2013

Contents

1	On	ng a Better Portrait	1		
2	2 Demographic Extinction of ssRNA Viruses				
	2.1	Introd	luction	8	
		2.1.1	Lethal Mutagenesis	10	
		2.1.2	Limitations of a Formulation based on the Zero Class $\ . \ . \ .$	12	
	2.2	Metho	ods	14	
		2.2.1	Modeling Viral Intracellular Replication	14	
		2.2.2	Simulation	17	
	2.3 Results		55	18	
		2.3.1	Variation in $P(E_1)$ under extinction conditions	18	
		2.3.2	Variation in $P(E_1)$ with replication parameters	19	
		2.3.3	Extinction in a complex fitness landscape	21	
2.4 Discussion			ssion	22	
		2.4.1	A case for $P(E_1)$	22	
		2.4.2	The importance of the intracellular replication process	24	

		2.4.3 Implications for lethal mutagenesis in practice	25	
	2.5	Conclusions	26	
	2.6	Acknowledgments	27	
3	Gen	nome Architechture & Adaptive Evolution.		
	3.1	Introduction		
		3.1.1 Adaptive evolution in non-recombining asexuals	31	
	3.2	Methods	34	
		3.2.1 Data	35	
	3.3	Results	37	
		3.3.1 Variation in k between species	37	
		3.3.2 Variation in k by gene \ldots	37	
	3.4	Discussion	41	
		3.4.1 The effect of deleterious mutations on adaptive substitution .	41	
		3.4.2 Adaptive optima and mutation rates in nature	43	
		3.4.3 The effect of deleterious mutations on neutral substitution	44	
	3.5	Conclusions	45	
	3.6	Acknowledgments	46	
4	The Fallacy of Neutral Optima 4.1 Neutral Optima: A scientifically inconsistent theory		47	
			48	
	4.2	Rebuttal and Discussion	49	

5	Intracellular Dynamics & Adaptive Evolution				
	5.1	Introduction	54		
	5.2	Limitations of Orr's framework	58		
	5.3	The Number of New Adaptive Mutations per Generation	61		
	5.4	The Probability of Fixation	63		
		5.4.1 The Linear case	67		
		5.4.2 The Non-linear Case	73		
	5.5	A New Formulation for Adaptive Evolution in SSRNA viruses	77		
	5.6	Results and Discussion	77		
		5.6.1 Probability of Fixation	77		
		5.6.2 Rate of Adaptive Evolution	79		
	5.7 Conclusions				
	5.8	.8 Acknowledgements			
6	Cor	clusions: Portrait of a Virus	83		
7	Bib	liography, Indices, and Supplements	89		
	Raw Data				
	List of Equations				
	List	List of Figures			
	Bibl	ibliography			

Chapter 1

On Painting a Better Portrait

It inevitably rests on any researcher to justify the very existence and relevance of her or his work. For doctoral researchers, after 5-odd years of toil, this request might seem unfair. However, in our times, when funding is sparse, and prioritization is a must, it is important to understand and to state the broader context in which to place our research. So what is the utility of this body of work? The short answer to that question is: it helps us paint a better portrait of the archetypical virus.

Why do we care about ssRNA virus evolution?

Evolution, as we understand it, is the result of the interaction of multiple processes - a mutation process generates prime variation; a filter process then eliminates a majority of this variation. We count up what little makes it through the filter, call it the measured rate of evolution and use it to infer something about the filter process itself. For most evolutionary processes, this filter is some combination of selection and drift. In the case of single stranded RNA (SSRNA) viruses, however, this filter process is largely driven by the unique demographic conditions and replication processes of SSRNA viruses. These viruses have evolved unique life history strategies that allow them to *get away with* a rapid but error-prone replication process. In a sense, SSRNA viruses have evolved a replication process that uncouples the rate at which variation is generated (mutation rate) from the rate at which variation is observed (the measured rate of molecular evolution).

ssRNA viruses are ubiquitous and are responsible for many of the most reconizable diseases known to man: Rabies, influenza, dengue, hepatitis C, measles, polio, and ebola are just a few of the more recognizable ssRNA viruses. The ubiquity and consequences of viral diseases, measured in terms of mortality and morbidity, make the understanding of viral evolution vital to our ability to control them. Many of our major concerns relating to ssRNA viruses stem from their evolution and rapid emergence [Lederberg, 1998, Sardanyes et al., 2009, Domingo et al., 2001].

In addition, from a purely intellectual standpoint, RNA virus mutation rates, which are orders of magnitude greater than comparable DNA-based viruses, allow RNA viral evolution to occur at ecological times scales, and allow us to ask and address questions about the interaction of ecological and evolutionary processes [Holmes, 2009, Pybus and Rambaut, 2009].

Many of our expectations of the patterns and rates of virus evolution comes from population genetic literature [Orr, 2000, Orr, 2003]. While these are elegant and appropriate for describing evolution in broad strokes, they fall short of describing the complexity of viral replication and demographics and the various strategies by which viruses dodge the deleterious effects of a high error rate.

A recurring theme of this dissertation is an appeal for more data and better estimates of parameters. In the following chapters, I hope to demonstrate the enormous value of having information on the mode of replication, template number, and fecundity of viral populations. High quality estimates of these parameters are rare - not because of any particular difficulty in obtaining them [Drake, 1993, Drake and Holland, 1999, Garcia-Villada and Drake, 2012], but because of a general lack of awareness of their impact on the rates of molecular evolution.

In the following chapters I look at different aspects of viral evolution, and explore the ways in which the dynamics of the viral replication process, viral demographic parameters, and genome architecture affect the measured rate of molecular evolution in single stranded RNA viruses. In **Chapter 2**, I explore the upper limits of viral evolution through the lens of demographic extinction, and the phenomenon of lethal mutagenesis. This is a relatively new and experimental process of viral control, in which artificially increasing the mutation rate of a viral population can cause rapid extinction. This process exploits the long-standing idea that RNA viruses, by virtue of their highly error-prone replication process, are near some critical upper bound in mutation rates, more so than DNA-based organisms. What exactly constitutes this upper bound is unclear. The theoretical underpinnings behind this phenomenon are still poorly understood, and existing models have poor predictive ability [Bull et al., 2013]. I examine the limitations of existing models that attempt to explain lethal mutagenesis, and then proceed to present my own models, which I believe are more accurate because they account for critical complexities in the viral intracellular replication process that are ignored by existing models.

While viral extinction as a means of control is important in its own right, understanding the processes that determine the rate of viral mutation and evolution in nature are equally important. In **Chapter 3**, I dissect a long-standing assumption about viral evolution - that adaptive substitutions can only occur on viral genomes that are free of deleterious mutations. I look at the validity of this assumption with different types of viral genome architecture. I use a massive dataset of RNA sequences collected from patients of H3N2 Seasonal Influenza Type A, and Dengue Type I, II, and III from around the world, and Bayesian phylogenetic techniques to estimate the rate of neutral, adaptive and overall evolution in these two viral systems, to elucidate how genome architecture affects the *effective adaptable population size* of viruses.

Chapter 4 is a brief note and rebuttal to a peer reviewed and published paper from 2012 which uses a demonstrably wrong mathematical model to assert the existence of an "error threshold" in nature based on an alleged (but fundamentally wrong) relationship between mutation rate and the rate of neutral evolution. My rebuttal is supported by long-standing theoretical results and by new evidence I present in Chapter 3.

In Chapter 5 I develop and present a general mathematical framework to describe the expected rate of adaptive evolution in SSRNA viruses that can take into account and explore the effects of variation in replication dynamics and demographics. I use this mathematical framework to predict conditions under which rapid fixation of small effect adaptive mutations are possible, and how the measured rate of molecular evolution can be of limited informative value in the absence of replication parameters like mode of replication, template number and viral fecundity and population size.

Chapter 2

Demographic Extinction of ssRNA Viruses

Anand Bhardwaj, Leslie A. Real & David J. Cutler

In this study model I the effects of variation in the process of intracellular replication of single stranded RNA viruses on the rate of extinction of viral infection chains. I highlight the importance of mutations on opposite sense templates, which act as mutation-accumulation bottlenecks, amplifying the frequency of lethal mutations. I explore the drawbacks of ambiguous and biologically simplistic mathematical descriptions of the phenomenon of lethal mutagenesis, which cannot be used to make reliable predictions of the conditions required to drive populations to extinction.

2.1 Introduction

Viruses, and single stranded RNA viruses in particular, have extremely high mutation rates that are serveral orders of magnitude higher than those for humans and other DNA-based organisms [Sanjuan et al., 2010, Drake and Holland, 1999]. High mutation rates in tandem with - and perhaps as a consequence of - rapid replication allow viruses to quickly evolve and adapt to novel environments [Elena and Sanjuan, 2005]. In order to understand the limits to viral evolution in the wild at the population level and to effectively exploit this as a potential means of control at the host level, a better understanding is needed of the ways in which ecological characteristics of viruses - like fecundity and the mechanism of intracellular replication - affect the ability of viral populations to survive their high mutation rates.

Viruses have a life cycle that might help them mitigate some of the deleterious effects of mutation. Typically, a single stranded RNA viral particle enters a host cell, creates some number of opposite sense RNA templates, and produces a number of progeny. Some of these progeny can themselves act as the basis for secondary templates for use in a subsequent round of replication. After some t_c rounds of replication, some target fecundity is reached and viral particles are released into the extracellular environment, either all at once by lysing the cell, or gradually, by budding off the cell membrane. The precise number of rounds of viral replication t_c within the cell can vary significantly [Chao et al., 2002, Duffy et al., 2002, Garcia-Villada and Drake, 2012]. At one extreme, all progeny genomes produced per generation may originate from a single original template as a result of a single round of replication - the stamping machine mode of viral replication where mutations accumulate linearly. At the other extreme is binary replication, where the number of viral particles doubles after each round of replication, with templates for further replication being produced from early copies. Under this mode of replication, mutations accumulate geometrically. The precise mode of replication for specific viruses is unknown, but it presumably varies between these two extremes.

Here, and for the rest of this study, I define a generation as a single cell infection cycle, during which a virus infects a cell, replicates within the cell by highjacking its molecular machinery, ultimately releasing daughter viruses into the extracellular environment. Recent work suggests that explicitly modeling the within-host replication process reveals significant deviations in expected evolutionary outcomes, when compared to simpler models of evolutionary escape and emergence [Loverdo et al., 2012].

In this study, I examine the effects of variation in the processes of intracellular viral replication [Duffy et al., 2002, Holmes, 2009] on deleterious mutation accumulation and consequently the persistence of viral infection chains over the short term [Sardanyes et al., 2009].

2.1.1 Lethal Mutagenesis

RNA viruses have evolved and evidently tolerate extremely high mutation rates [Holland et al., 1982, Drake and Holland, 1999]. On the other hand, artificially increasing the mutation rate of riboviral populations 3-4 fold through treatment with chemicals like ribavirin has been shown to cause a catastrophic drop in population fitness, and population extinction by lethal mutagenesis within a few generations [Holland et al., 1990, Crotty et al., 2000, Crotty et al., 2001, Domingo et al., 2005]. Consequently, the consensus that RNA virus mutation rates are near some threshold for tolerance is a long-held one, beginning with, but not limited to Manfred Eigen's formulation of an evolutionary extinction threshold [Eigen, 1971, Eigen, 2002, Beibricher and Eigen, 2005] beyond which the error rate is too high for information contained in nucleotide molecules to be successfully passed on from generation to generation

However, the current understanding of lethal mutagenesis is defined by a demographic extinction threshold. Extinction occurs when the mutation rate of a virus is high engough to prevent successful population replacement, when a virus infecting a single cell can no longer produce enough viable progeny to go on to successfully infect one or more other cells [Bull et al., 2007].

11

Some deleterious mutations are of large enough effect to consistently prevent the perpetuation of riboviral cell infection chains. If these mutations can be classified as lethal, then lethal mutagenesis could be said to occur when the rate of mutations per generation is high enough to bring the expected number of lethal mutation-free viral particles released per generation below 1. Assuming that the number of lethal mutations occuring per genome in a single generation is Poisson distributed with mean $U_c X_L$, where U_c is the mean number of mutations per genome per cell infection cycle and X_L is the proportion of mutations that are lethal in effect, the fraction of viral progeny with no lethal mutations or the lethal mutation zero class p_0 can be described as: $p_0 = e^{-U_c X_L}$. The number of viral progeny per generation with no lethal mutations is $e^{-U_c X_L} \cdot N_c$, where N_c is the total viral fecundity per infected cell. This allows an extinction criterion to be set. For lethal mutagenesis to occur, the expected number of lethal mutation-free viral progeny produced per cell must be less than one [Bull et al., 2007]. That is,

$$e^{-U_c X_L} \cdot N_c < 1 \tag{2.1}$$

For extinction under this condition, the number of lethal mutations/genome/cell $U_c X_L$ must be greater than $Ln(N_c)$.

The inequality above assumes that all viable viral particles released on burst survive and go on to successfully infect a secondary cell and even a single viable viral particle is capable of perpetuating cell infetion chains. This mathematical formulation also suggests that the critical mutation rate required to achieve lethal mutagenesis is dependent on the total fecundity of the cell. Given a fitness landscape, viruses with higher fecundity can therefore be expected to have higher critical mutation rates than less fecund viruses.

2.1.2 Limitations of a Formulation based on the Zero Class

The above formulation for the conditions required for achieving lethal mutagenesis, however, is flawed in many ways. The two main drawbacks are that of ambiguity and a lack of biological realism.

The conditions for lethal mutagenesis are satisfied when the mutation rate per generation is theoretically high enough to bring the expected size of the lethal mutant zero class p_0 below 1. However, this zero class is a function of both the mutation rate and the mean fecundity of the virus in the absence of mutation. Therefore, an extinction condition based on the size of the zero class can be satisfied by applying an extremely high lethal mutation rate to a high fecundity virus, or with a moderate lethal mutation rate for a low fecundity virus. The case I would like to make in this study is that these two situations are not equivalent.

The second major source of ambiguity, as well as the primary lack of biological realism in the zero class formulation, comes from the measure of mutation rate used in the zero class formulation of the demographic error threshold. The mutation rate U_c referred to up to this point is a measure of the mean number of errors on the viral progeny of a cell infection cycle, compared to the genome of the virus that initiated the cell infection. This is a relatively common measure of mutation rate, as it can be measured empirically [Sanjuan et al., 2010].

This mutation rate per cell infection cycle or generation is distinct from some true biological mutation rate U, which is a measure of the number of errors accumulated per genome during a single replication event, of which there could be several within a single generation. U_c is dependent on the mechanism of viral replication within a cell. Assuming the absence of selection during intracellular viral replication, the mean number of mutations per genome U_t in the viral population within a cell at any time t is a function of the number of mutations per genome per replication U and the t rounds of replication the population has gone through. Therefore, $U_t = U2t$ [Drake and Holland, 1999] and the number of mutations per genome at the end of a cell infection cycle $U_c = U2t_c$, where t_c is the number of rounds of replication required to produce the viral progeny. The number of mutations per genome scales with twice the number of rounds of replication because each round of replication involves the formation of an opposite sense template, which can accumulate errors as well [Domingo et al., 2001].

The dynamics of viral intracellular replication suggests that while a mean value of U_c can be achieved either by a high biological mutation rate U and a low value of t_c or by a low value of U and a high value of t_c , the distribution of mutations per genome among the viral progeny is likely to be different in these two cases, as mutations accumulated during early replication events are likely to be passed on to all subsequent genomes further down along the intracellular replicative lineage of the virus.

2.2 Methods

2.2.1 Modeling Viral Intracellular Replication

In order to look at the impact of different replication strategies on the ability of a virus to be driven to extinction, I explicitly modeled the process of intracellular replication as a modified Walton-Gaston branching process [Feller, 1968]. This framework allows us to estimate the extinction probability of individual lineages within a cell in some pre-determined number of replication events, as well as the impact of fecundity and the number of opposite sense templates generated per replication event. I assume here that the rate of mutation during the production of the opposite sense template is the same at the rate of mutation during the production of a daughter progeny from that template. This is a reasonable assumption in the case of single stranded RNA viruses where these steps are carried out by similar RNA-dependant RNA polymerase enzymes [Ahlquist, 2002]. This assumption would be biologically inaccurate in the case of retroviruses because of the inclusion of intermediate DNA steps during the replication process which involve additional enzymes with different rates of error.

Assuming discrete rounds of replication, if viral fecundity N_c can be described by an equation for exponential growth where $N_c = x \cdot g^{t_c}$, and x describes the number of opposite sense initial templates copied from a viral genome to produce its progeny, then mutations accumulate linearly when t_c is 1, and more geometrically as t_c approaches $Log_2(N_c)$. This assumes that a single viral particle initiates a cell infection.

Assuming that the number of direct offspring of any viral genome in a single round of replication is geometrically distributed of the form $\{qp^k\}$ with mean p/q = g, then we can also assume that the number of viable, lethal mutation free progeny produced from a single individual per replication event is $g \cdot e^{-2.U.t_c.X_L}$. This allows us to use the probability generating function for having s direct descendants after t rounds of a branching process with geometrically distributed offspring [Feller, 1968]:

$$P_t(s) = q \cdot \frac{(p^t - q^t - (p^{t-1} - q^{t-1}) \cdot p \cdot s)}{(p^{t+1} - q^{t+1} - (p^t - q^t) \cdot p \cdot s)}$$
(2.2)

This allows us to get an expression for the probability of an individual having no viable decendants after t_c rounds of replication. We can then combine that with the probability of a lethal initial template to get an expression for the probability of a viral infection chain going extinct in a single generation $P(E_1)$, as follows:

$$P(E_1) = \left(e^{-U \cdot X_L} \cdot \frac{\left(q \cdot \left(p^{t_c} - q^{t_c}\right)\right)}{\left(p^{t_c+1} - q^{t_c+1}\right)} + \left(1 - e^{-U \cdot X_L}\right) \cdot 1\right)/x$$
(2.3)

The above expression is the product of the probability of having a lethal template and the conditional probability of extinction given a lethal or non-lethal template. As in the original formulation based on the zero class, I assume that even a single viable virus produced at the end of a generation is sufficient to prevent extinction. An added advantage of this assumption is that it allows us to easily extend the above expression to get the probability of extinction in some n generations, by replacing t_c with $t_n = n.t_c$.

2.2.2 Simulation

I used a mechanistic stochastic simulation to test my predictions. All simulations were written and implemented in R [R Development Core Team, 2013], and were based on Poisson processes for growth and mutation. In each simulation a single individual was allowed to replicate and accumulate mutations until the population reached a target size. Growth was modeled stochastically: the number of secondary particles nproduced at time t by a single template i was sampled from a Poisson distribution with mean $g = e^r$. The number of mutations $m_{i(t)}$ accumulated by an individual i at replication t was sampled from a Poisson distribution with mean U.

For simulations with non-lethal deleterious mutations, the fitness effect w of each mutation was sampled from a previously published distribution of fitness effects of random point mutations in Vesicular Stomatitis Virus VSV [Sanjuan et al., 2004, Sanjuan, 2012]. Compensatory or back mutations were not allowed and fitness effects were combined additively to get total fitness effect E of all mutations accumulated by individual i at replication t ($E_{i(t)} = \sum_{j=1}^{m_{i(t)}} w_j$). To account for errors that are passed on to all offspring produced in a single round of replication when templates themselves are mutated, an additional template error step was incorporated into the stochastic algorithm. I assumed that there is no selection on viral particles during the initial rounds of intracellular replication, but that selection is imposed on the

viruses by the intercellular environment [Drake and Holland, 1999]. The number of mutations accumulated by each individual and the additive fitness effects of each mutation were recorded for each individual in the growing population and at the end of the replication. All simulations were repeated 1000 times each unique combination of parameters.

2.3 Results

Overall, I found large variation in the probability of extinction explained by differences in the mode of replication, number of templates and mean fecundity of the virus. This variation is entirely unaccounted for in the simple extinction condition described in Equation 2.1.

2.3.1 Variation in $P(E_1)$ under extinction conditions

The probability of extinction in a single cell infection cycle varied with the value of mean fecundity at mutations rates that satisfity the extinction condition for lethal mutagenesis (Figure 2.1a). This variation in extinction probabilities was even more drastic with an increase in the number of initial templates for replication. The probability of extinction in a single cell infection cycle at critical mutation rates that satisfy

Figure 2.1: Variation in the probability of exctinction at critical mutation rates that satisfy the zero class extinction condition described in Equation 2.1. a) Preventing replacement for a high-fecundity virus is associated with a greater probability of extinction than preventing replacement in a low-fecundity virus; b) The probability of extinction in a single generation varies radically with the number of initial templates. With many templates, viral populations may easily survive critically high mutation rates.

the zero class extinction condition described in Equation 2.1 drops rapidly with an increase in the number of initial templates (Figure 2.1b).

2.3.2 Variation in $P(E_1)$ with replication parameters

Under conditions of linear replication, I found that the probability of extinction in a single cell infection cycle increases with mutation rate per generation. There doesn't appear to be much of an effect of fecundity on extinction curves, as the probability of excitntion given a particular mutation rate does not vary significantly for any value of mean fecundity on the order of 100 or higher (Figure 2.2a).

Figure 2.2: Variation in the probabily of extinction under linear replication. a) Effect of fecundity: The value of mean fecundity has only a marginal effect on the probability of extinction, given some mutation rate; b) Effect of template: The number of initial opposite templates utilized in the replication process has a large and significant impact on the probability of extinction.

Consistent with the results depicted in Figure 2.1b, the number of templates involved in replication greatly affects the probability of extinction in a single generation.

Under conditions of non-linear replication, if an increase in the number of rounds of intercellular replication is associated with an overall increase in the mutation rate per cell (U mutations/replication is kept constant), then the probability of extinction also increases (Figure 2.3a). This is expected as an increase in the number of rounds of replication leads to an increase in the mutation rate per generation. On the other hand, increasing the number of rounds of replication while keeping the mutation rate per generation constant also leads to an increase in the probability of extinction, albeit to a lesser extent than the former case. Given a fixed mutation rate per cell, there

Mode of Replication

Figure 2.3: Variation in the probabily of extinction under non-linear replication. a) Variation in the probability of extinction with increasing mutation rate per generation; b) variation in the probability of extinction with constant mutation rate per generation. Some non-linear mode of replication minimizes the risk of extinction.

is some non-linear mode of replication that minimizes the probability of extinction (Figure 2.3b).

2.3.3 Extinction in a complex fitness landscape

The results of my simulations, assuming additive fitness effects of individual deleterious mutations, suggest that the mean fitness of viable viral populations is low at mutation rates well below any critical mutational threshold. Drawing from the original source of my empirically derived distribution of fitness effects [Sanjuan et al., 2004], fitness here is defined as the ability of an individual virus to successfully infect another cell. The true rate of extinction of viral populations is therefore likely higher

Figure 2.4: Effects of a complex fitness landscape. The presence of non-lethal deleterious mutation affects bother the a) mean fitness and b) size of the zero class.

than what my projections, which only account for lethal mutations, would suggest for a given mutation rate.

2.4 Discussion

2.4.1 A case for $P(E_1)$

If the point of any mathematical exploration of the phenomenon of lethal mutagenesis is to make it more practical for use as a means of within-host control, then an understanding of the rate at which populations will go extinct is ultimately necessary for any practical use. A simple result of branching process theory mirrors the extinction condition described in Equation 2.1 - Populations for which we can assert that the mean number of offspring per individual per replication event is less than 1, will go extinct with probability=1. However, this assertion provides us with no information on how quickly populations go extinct. Among other things, we see from the results depicted in Figure 2.1b, the probability of extinction of a viral population in a single generation at critical mutation rates that satisfy the extinction condition described in Equation 2.1 varies radically with the number of initial templates used in the replication process. This suggests that failing to account for variation in the intercellular replication process of viruses can explain some of the deviations from expectations of extinction in in-vitro tests of lethal mutagenesis [Bull et al., 2013].

The significance of mutations accumulated on the opposite sense templates cannot be overstated. In a sense, templates can act as mutation accumulation bottlenecks, with all subsequent progeny inheriting any lethal mutations, barring the rare reversion or back mutation. In the results depicted in Figure 2.3b, we can see, at least initially, that an increase in the number of rounds of replication (while keeping the mutation rate per generation constant by proportionally reducing the mutation rate per replication) causes a decrease in the probability of extinction. This is because, given a non-lethal initial template, the probability of exinction of a lineage decreases with increasing rounds of replication. However, at some non-linear mode of replication, the effect of accumulated probability of a lethally mutated template superscedes the effect of increase rounds replication in the branching process, beyond which the probability of extinction rises again. This adds to the narrative that what really drives extinction in viral populations is mutation on a template, rather than a mutation rate high enough to prevent lineage replacement.

The linear special case of Equation 2.3 depicted below makes it especially apparent that the probability of extinction is driven by the probability of accumulating some non-zero number of lethal mutations on a template:

$$P(E_1) = (e^{-U.X_L}) \cdot q) + (1 - e^{-U.X_L}) \cdot 1)/x$$
(2.4)

As we can see, the probability of extinction given a non-lethal template is expressed in the linear case as q, which is the probability that a template produces no direct decendants, which is very small when the mean number of offspring per individual gis high.

2.4.2 The importance of the intracellular replication process

Given that a formulation for demographic extinction based solely on the expected size of the zero class cannot, by virtue of its structure, account either for variation in the process of intracellular replication or for the effects of mutated templates, we must look to the effects of these processes in order to try and understand deviations from extisting theory in the context of practical applications of lethal mutagenesis.

Based on our understanding of the replication process, it is likely that given some measured mutation rate per generation, viruses with highly non-linear replication are subject to higher rates of extinction than viruses with linear or near-linear modes of replication. We also know that there is some non-linear mode of replication that minimizes the risk of extinction given some measured mutations rate per generation. The exact number of rounds of replication that constitute this *replicative optimum*, of sorts, is inversely proportional the template mutation rate.

Finally, we see that the estimated mean fecundity of the virus in the absence of mutation has only a limited effect on extinction probabilities, to the extent that highly fecund viruses likely replicate with some non-linear mode of replication or utilize a large number of initial opposite sense templates.

2.4.3 Implications for lethal mutagenesis in practice

Estimating or predicting the effects of a complex fitness landscape with multiple, interacting non-lethal deleterious mutations requires information about the nature of interacting mutations. The total fitness effect of multiple mutations depends on whether the fitness effects of individual mutations are additive, or subject to some epistatic interaction. In my simulations, I assumed that fitness effects are purely additive. Apart from the rare cases, having multiple deleterious mutations is worse that having just one. Therefore, it it is likely that demographic extinction of populations could occur at a higher rate than what my projections, which only take lethal mutations into account, might suggest.

Indeed, the results of my simulations of viral intracellular replication with a complex fitness landcape that include non-lethal deleterious mutations also suggest that in addition to affecting the effective fecundity of viral population, high mutation rates could also reduce the mean relative fitness of subsequent viable, non-lethal progeny, in the sense that multiple accumulated deleterious mutations could affect the ability of viral progeny with any lethal mutations to successfully reinfect other susceptible cells in the host, thereby increasing the proability of extinction of viral infection chains.

2.5 Conclusions

We can now begin to put together a better picture of viral evolution, and ways in which the intracellular replication process of viruses can serve to uncouple the rate at which variation is generated from rate at which new variation is observed.

An corollary to the assertion that most mutations are deleterious, is that not all are.

Mutation is a double edged sword, making survival a delicate balancing act for SS-RNA viruses given the inherently higher error rate and lack of proofreading function of most RNA-dependant RNA polymerase enzymes. Survival requires balancing the need for variation to respond to ever-changing environment with the risk of extinction. If my mathematical projection are at all accurate, RNA viruses have several methods of mitigating the risk of extinction given their high mutation rates. In particular, the apparent survival of viruses at mutation rates that, according to formulations of extinction, suggests that such formulations are overly simplistic, and a deeper understanding of the viral replication process and empirical estimates of replicative parameters like those used in my projections are necessary in order to refine methods of viral control by lethal mutagenesis.

2.6 Acknowledgments

I acknowledge the help and assistance of Gavino Puggioni in writing my simulation of intracellular viral replication. This research was supported by NIH grant RO1 AI047498 to LAR and the RAPIDD Program of the Science and Technology Directorate, the Department of Homeland Security and the Fogarty International Center, National Institutes of Health.
Chapter 3

Genome Architechture & Adaptive Evolution.

Anand Bhardwaj, David J. Culter & Leslie A. Real

Here, I examine the impact of genome architecture on ability of RNA viruses to increase the amount of available genetic variation on certain parts of the genome on which selection can act, while maintaining essential, conserved regions in other parts of the genome. I use a large dataset of RNA sequences to assess the impact of segmented genomes and reassortment on the ability of viruses to support highly variable genomic regions. I find that this ability is likely limited to segmented viruses or viruses that have high rates of recombination.

3.1 Introduction

RNA viruses evolve rapidly because of their high mutation rates and short generation times [Holland et al., 1982, Elena and Sanjuan, 2005]. However, various ecological and biological factors can serve to uncouple the rates of mutation and evolution, and this study is an attempt at infering whether genome architecture can affect the relationship between mutation rate and the rate of adaptive evolution.

In general, the rate of evolution, measured as substitutions per unit of time, is proportional to the rate of generation of new variation, or mutation rate, and some measure of the probability that these new mutations spread and fix in the population. In the case of selectively neutral mutations, the probability of fixation is the reciprocal of the population size [Kimura, 1962], while in the case of selectively advantageous mutations, the probability of fixation depends on the selective advantage confered by that mutation [Kimura, 1962, Kimura, 1964, Fisher, 1930].

Assuming that mutations are generated at roughly the same rate across the RNA virus genome, any large differences in the rates of adaptive and neutral substitution between genomic regions could therefore be due to differences in the biological factors that affect their spread and fixation, as well as differences in availability of adaptive and neutral mutations.

3.1.1 Adaptive evolution in non-recombining asexuals

The presence of linked deleterious mutations slows down the rate of fixation of adaptive mutations and therefore the adaptive substitution rate in non-recombining asexuals [Orr, 2000]. This is due to the fact that for information-dense genomes like in the case of RNA viruses, deleterious mutations are both more common and on average, of larger effect than beneficial mutations [Sanjuan, 2010]. Adaptive evolution, therefore, is largely limited to beneficial mutations that occur on genomes that have not already accumulated any deleterious mutations [Fisher, 1930, Barton, 1995].

In general, the rate of adaptive evolution K_A (substitutions/genome/generation) is proportional to the number of new adaptive mutations generated by the population per generation, the probability that the new adaptive mutation occurs on a deleterious mutation-free genome, and the probability of fixation of the new mutation.

$$K_A \propto U_c \cdot X_A \cdot e^{-U_c \cdot X_D/s_H} \cdot \pi \tag{3.1}$$

Here, U_c is the mean number of mutations per genome per generation, X_A is the fraction of these mutations that are adaptive, X_D is the fraction of mutations that are deleterious, s_H is the harmonic mean of the of fitness effects of new mutations, and

 π is the probability of fixation of new adaptive mutations. $e^{-U_c \cdot X_D/s_H}$ is the expected fraction of genomes free of deleterious mutations at equilibrium, assuming a Poisson distribution.

The above equation is equivalent to Equation 5 of Orr's publication on the rate of adaptation in asexuals [Orr, 2000]. From the general form of the expression, we can see that there is a non-linear relationship between the rate of mutation and the rate of adaptive evolution. The rate of adaptive evolution increases with increasing mutation rate, until an "optimal" mutation rate $U_{c,opt}$ is reached. The rate of adaptive evolution drops rapidly with any further increase in mutation rate, since any increase in adaptive mutations is negated by the lack of availability of genomes free of deleterious mutations on which adaptive evolution can occur.

Here, $U_{c,opt} = s_H/X_D$. We can see that the optimal mutation rate for a population depends on the fraction of mutations that are deleterious.

Orr's expression for adaptive evolution makes some simplifying assumptions, in the interests of generalizability, about the evolving asexual population in question, sidestepping the issue of evolution measured at a particular locus versus evolution measured over the entire genome. In the case of real evolving asexuals like RNA viruses, the rate of substitution is usually measured by gene, and substitution rate can vary among genes on the same genome [Jenkins et al., 2001]. Prior work on the effects of reassortment on the rate of evolution in RNA viruses suggests that segmented genomes can be advantageous as they could increase the amount of variation in viral genetic information on which natural selection can act [Pressing and Reanney, 1984]. Theoretically, in unsegmented RNA viruses, we can imagine that the presence of a highly conserved gene slows the fixation of adaptive mutations on genes elsewhere on the genome. In contrast, in RNA viruses with segmented genomes, the deleterious mutation rate of a particular segment of the genome could slow down the adaptive substitution rate of that segment, with deleterious mutations occuring on other segments having a limited effect.

In this context, since K_A is measured by gene, and X_A refers to the available beneficial mutations for that particular gene, is the rate of adaptive evolution of any given gene limited by the rate of deleterious mutation $U_c \cdot X_D$ on that gene, or by the rate of deleterious mutation over the entire genome? Does the presence of genes on a genome that code for essential functions, like the highly conserved RNA polymerase gene [Poch et al., 1990] - where we can assume that the value of X_D is high - slow down the rate of adaptation in other, distant parts of the genome that are not themselves under comparable evolutionary constraint?

In this study, I use a large dataset of genetic sequences from four genes each from Dengue and H3N2 Influenza viruse Type A to try and answer the questions alluded to in the preceding sections: Does genome architecture play a role in whether the rate of adaptive evolution of a gene is limited by the deleterious mutations on that gene, or on the entire genome?

3.2 Methods

100 population-level estimates of gene-specific substitution were made from populations of Dengue Virus 1, 2 and 3 and Seasonal H3N2 Influenza type A, from a total of 10,662 genetic sequences obtained from Genbank (see SI for accession numbers) [Benson et al., 2013]. Whole genome sequences from each population of virsuses were aligned using Geneious and the sequences of the genes of interest were extracted for substitution rate estimation [Drummond et al., 2011] so that the individual estimates of gene-specific substitution rate all came from the same set of individuals for each population of each viral species. Estimates of substitutions/nucleotide/year were made using BEAST, a Bayesian MCMC program that uses phylogenies with dated tips to estimate parameters [Drummond et al., 2012].

Codon-Position Substitution Rates: Substitution rate estimates were further divided into substitution rate on the 1^{st} , 2^{nd} and 3^{rd} codon positions for each gene. The substitution rate on the 3^{rd} codon position was used as a proxy for neutral substitution rate, since the degeneracy of the genetic code means that only a small fraction of these substitutions are expressed as amino acid changes [Lagerkvist, 1978]. While evidence

suggests that synonymous substitutions are not always selectively neutral, at the very least, substitutions on the 3^{rd} codon position are *more neutral* than substitutions on the 1^{st} and 2^{nd} codon position [Schoniger et al., 1994]. Substitutions that occur on the 1^{st} and 2^{nd} codon positions, by virtue of very often being non-synonymous substitutions, were used as proxies of adaptive substitution rate [Xia, 1998], under the assumption that mutations that coded for amino acid changes would be unlikely to show up in representative samples of the viral genome if the associated amino acid change was selectively deleterious.

All subsequent analyses of the general and codon position-specific estimates of substitution rate were done using the STATS package in the R programming language [R Development Core Team, 2013].

3.2.1 Data

RNA sequences from four genes each from Dengue and Influenza were selected for use in this study. For each viral system, I selected two genes that were described in the literature as coding for essential functional enzymes under evolutionary constraint and two genes that code for structural proteins or genes under relatively less constraint.

Dengue and Influenza were selected as exemplars of unsegmented and segmented ssRNA viruses, in particular because of the relative abundance of freely available sequence data annotated with temporal and geographic information from these two viral systems. Sequences associated with lab strains, or any other non-representative sequences were not used in this study.

In Dengue type 1, 2 and 3, an unsegmented positive sense SSRNA virus and member of the viral family *Flaviviridae*, the Env gene, which codes for an structural surface protein, and NS1, a membrane associated glycoprotein with a role in combating host immune response were selected as less constrained genes [Schlesinger et al., 1990]. The genes NS3 - a protease-helicase, and NS5 - a methyl transferase-polymerase, were selected as genes that were potentially under relatively high evolutionary constraint because of their vital function [Perera and Kuhn, 2008].

In H3N2 seasonal Influenza type A, a segmented negative sense SSRNA viruses and member of the viral family *Orthomyxoviridae*, the HA haemagglutinin and NA neuraminidase genes, both surface structural proteins, were selected as less constrained genes. The NP gene, which codes for a multifunctional nucleoprotein with a role in genome packaging and transport, and the PA gene, which codes for a polymerase, were selected as genes that are under high constraint [McCauley and Mahy, 1983, Portela and Digard, 2002]. Each of the four genes selected for Influenza occur on separate genome segments.

3.3 Results

3.3.1 Variation in k between species

I found significant differences in estimates of substitutions/nucleotide/year k between influenza and dengue (ANOVA, F(1,98)=191.46, p << 0.05), independent of gene.

I also found significant differences in the substitution rate on the 3^{rd} codon position - k_{CP3} between influenza and dengue. (ANOVA, F(1,98)=167.86, $p \ll 0.05$).

Despite influenza being more variable in overall substitution rate, no significant effects of population on substitution rate were found for influenza (ANOVA, F(12,19)=2.14, p = 0.06). In contrast, population-level estimates of dengue substitution rate varied significantly in substitution rate (ANOVA, F(13,46)=8,298, p << 0.05). In addition no significant differences in substitution rate were found between estimates of substitution rate from dengue types 1, 2 and 3 (ANOVA, F(2,57)=0.896, p = 0.414).

3.3.2 Variation in k by gene

I found significant differences between estimates of substitution rate k by gene in the case of segmented influenza (ANOVA, F(3,28)=2.897, p=0.03257), but no significant

Figure 3.1: Variation in substitution rate by gene in Dengue and H3N2 Influenza. a) No significant pairwise difference between any two pairs of gene in Dengue; b) Significant pairwise differences for across-group pairs of genes in Influenza.

effect of gene in the case of unsegmented dengue (ANOVA, F(3,56)=0.8664, p = 0.464). A subsequent post-hoc comparison of influenza gene substitution rates using the Tukey HSD test showed that only substitution rate k of the influenza genes PA and HA differed significantly at the p < 0.05 level.

Substitution at CP1: When estimates of substitution rate were partitioned by codon position, I found significant effects of gene on substitution rates of the 1st codon position - k_{CP1} in Dengue (ANOVA, F(3,56)=3.1334, p=0.03946), and influenza (ANOVA, F(3,28)=8.1476, p << 0.05).

A post-hoc Tukey HSD test to compare influenza gene-specific substituion rates suggests significant differences between the value of k_{CP1} for genes NP and HA, NP and NA, PA and HA, and PA and NA at the p < 0.05 level. No significant differences in k_{CP1} were found between the NA and HA genes and the PA and NP genes. In contrast, the same test suggests no significant pairwise differences between Dengue gene-specific estimates k_{CP1} at the p < 0.05 level.

Substitution at CP2: No significant effect of gene was found on k_{CP2} for dengue (ANOVA, F(3,56)=2.2494, p = 0.092). A strong effect of gene on k_{CP2} was found for influenza (ANOVA, F(3,28)=17.736, p << 0.05).

Post-hoc tests revealed, as in the case of k_{CP1} , highly significant differences in estimates of k_{CP2} for all pairwise combinations of influenza genes except for between the NA and HA, and PA and NP genes at the p < 0.05 level. As before, no significant pairwise difference in k_{CP2} were found between any pair of genes in dengue.

Substitution at CP3: Analyses of estimates of substitution at the 3^{rd} codon position, k_{CP3} suggests no significant differences based on gene either in influenza (ANOVA, F(3,28)=0.6363, p = 0.5979) or dengue (ANOVA, F(3,56)=0.6636, p =0.5779). A subsequent Tukey HSD post-hoc analysis also suggested no significant differences in estimates of k_{CP3} for any pair of genes either in dengue or influenza at the p < 0.05 level.

Figure 3.2: Substitution rate on the 1^{st} codon position k_{CP1} for genes from a) Dengue and b) Influenza; Substitution rate on the 2^{nd} codon position k_{CP2} for c) Dengue and d) Influenza; and Substitution rate on the 3^{rd} codon position k_{CP3} for e) Dengue and f) Influenza. Boxplots in red indicate genes that were described in the literature as conserved and under evolutionary constraint.

3.4 Discussion

3.4.1 The effect of deleterious mutations on adaptive substitution

Substitution rate k varies weakly by gene both in the case of influenza and dengue. However, my results show that estimates of substitution rate k are only significantly different across a single pair of genes in the case of influenza, and are not significantly different across any pair of genes in dengue. This stands in contrast to the highly significant pairwise differences in estimates of substitution rate on the 1st and 2nd codon position between several genes, and the complete lack of any significant differences in k_{CP3} across genes in influenza.

Assuming that k_{CP1} and k_{CP2} are proxies for adaptive substitution rate, and k_{CP3} stands in for neutral substitution rate, my results suggest that in the case of segmented viruses, the rate of adaptive substitution varies by gene (or genome segment), but the rate of neutral substitution is unaffected by gene. In the case of unsegmented viruses, neither adaptive nor neutral substitution rate varies by gene.

The relatively large amount of variation in substitution rate k between genes of influenza, when compared to dengue, is easily visualized (Figure 3.1). In addition, the *a priori* classification, based on the literature, of genes into two categories - the highly conserved functional genes (depicted in Figure 3.1 in red) which are likely under purifying selection, and the relatively less conserved genes (either structural or with functions that require genetic variation) is partially validated. In the case of the segmented influenza virus, all significant pairwise differences in estimates of k, k_{CP2} and k_{CP2} were found across these two categories, with no significant pairwise differences found among pairs within each category.

The lack of effect of gene on overall substitution rate, as well as on substitution rates on the 1^{st} and 2^{nd} codon positions in the unsegmented dengue virus suggests that the rate of evolution of genes that we do not typically think of as being under heavy selective constraint, like the Env gene, could in fact be limited by the presense of highly conserved genes like the NS5 polymerase elsewhere on the genome. This is particularly apparent when compared to the high rate of substitution of the influenza structural genes HA and NA, which evolve almost an order of magnitude faster than functional genes NP and PA.

Overall, my results suggest that the presence of highly conserved regions in a genome can slow down the fixation of adaptive mutations on other parts of the genome. However, this effect of linked deleterious mutations likely depends on the strength of linkage between the region of concern and other highly conserved regions of the genome, and is much weaker when the deleterious mutation occurs on a separate gene segment and can be lost by reassortment.

Assuming that most expressed amino acid substitutions are adaptive, we can surmise that the adaptive substitution rate varies by gene in the case of segmented viruses, and either does not vary or varies to a much smaller extent by gene in unsegmented viruses. It is admittedly harder to distinguish, using only phylogenetic data, between high adaptive substitution rates due to high availability of adaptive mutations in the fitness landscape around the genome and high adaptive substitution rates due to a relative lack of linked deleterious mutations [Burch and Chao, 2000].

3.4.2 Adaptive optima and mutation rates in nature

The results of this study have implications for the concept and estimation of adaptive optima and our understanding of viral mutation rates in nature. As expressed in the introduction, the expected rate of substitution for a particular gene is an increasing function of the beneficial mutation rate in the context of that gene, and a decreasing function of the deleterious mutation rate over the linked part of the genome. The mutation rate that maximizes the rate of adaptive substitution, or the adaptive optimum U_{opt} is a function of the fraction of all mutations that are deleterious, X_D .

However, as the result of this study suggest, the value of X_D used to calculate adaptive optima depends on the organization of the genome in question. The mutation rate that optimizes the rate of adaptive evolution for a particular gene is likely limited by deleterious mutation rate of genes on the same segment in the case of segmented genomes, and by the deleterious mutation rate of the entire genome for non-recombining unsegmented genomes.

Higher mutation rates mean more variation on which natural selection can act. For segmented viruses, in an ecological context where a high level of variability can be evolutionarily advantageous for a gene on a genome segment, viral populations could exist at a theoretical mutation rate above the optimal mutation rate calculated with respect to a highly conserved functional gene occuring on another gene segment. This would not be possible in non-recombing unsegmented viruses. Given recent data that suggest that viral populations in nature could have mutation rates at or around this theoretical optimum [Sanjuan, 2012], this may explain the relatively larger betweengene variation in substitution rates of the unsegmented influenza virus.

3.4.3 The effect of deleterious mutations on neutral substitution

As mentioned in the results section, there is no comparable effect of linked deleterious mutation rates on the rate of neutral substitution. This is supported by long-standing theoretical conclusions that the rate of neutral evolution is unaffected by linked deleterious mutations [Birky and Walsh, 1988]. This also serves as an effective rebuttal to recent claims that neutral mutation rates are affected by deleterious mutations, leading to a misperception that there is such a thing as a neutral optimum, or a neutral mutation error threshold in nature. Such claims are unsound, and I will elaborate on this in the next chapter of this dissertation.

3.5 Conclusions

My results suggest that adaptive substitution is largely limited to new adaptive mutations that occur on deleterious mutation-free genomes. However, in the case of segmented genomes, adaptive substitution on a gene on a genome segment is relatively unaffected by deleterious mutations occuring on other genome segments. The effect of linked deleterious mutations on adaptive substitution is therefore largely dependent on the strength of the linkage.

This can allow a virus with a segmented genome to have some rapidly evolving genes, while retaining highly conserved functional genes in other distant parts of the genome, something that would not be possible in the case of unsegmented genomes with low or no recombination. This is particularly relevant when it comes to segmented viruses like influenza which routinely evolve to escape the immune respose and control methods of their hosts. These findings should inform our models of adaptive evolution for viruses. In particular the manner in which we parameterize our models should depend on the genome architecture of the virus in question, since segmented and unsegmented viruses display different patterns of between-gene variation in substitution rate, which affect where we think the viral populations exist in parameter space. Our data also suggest that, in the case of segmented viruses, estimates of subsitution rate made based on single genes may not be represtative of the rate of evolution of the entire genome. Indeed, the very idea of a single value for the rate of evolution of a segmented RNA virus genome is inconsistent with our findings.

3.6 Acknowledgments

This research was supported by NIH grant RO1 AI047498 to LAR and the RAPIDD Program of the Science and Technology Directorate, the Department of Homeland Security and the Fogarty International Center, National Institutes of Health.

Chapter 4

The Fallacy of Neutral Optima

Anand Bhardwaj & David J. Cutler

In this comment, I criticize a recent peer-reviewed publication in which the author uses a flawed mathematical formulation for neutral evolution in order to make a case for so-called "neutral optima" and the idea of an error threshold in nature based on the alleged relationship between mutation rate and the rate of neutral evolution.

4.1 Neutral Optima: A scientifically inconsistent theory

Recent theoretical work on variation in the rate of neutral evolution suggests that the presence of deleterious mutations can also slow down the rate of fixation of neutral muations [Sanjuan, 2012]. This theoretical result is extrapolated from Orr's conclusions on adaptive evolution described in the previous section and extended to neutral evolution. This study also presents data that suggests that some viral populations in nature exist at or near the mutation rate that maximizes the neutral mutation rate, which happens to be mathematically identical, according to this theory, to Orr's formulation of the adaptive optimum U_{opt} .

$$K_N \propto U_c \cdot X_N \cdot e^{-U_c \cdot X_D/s_H} \tag{4.1}$$

However, the idea of neutral mutation rates being affected by linked deleterious mutations runs in contrast to a long-standing theoretical result that neutral substitution rates are directly proportional to the rate of generation of neutral variation and are unaffected by the rate and strength of linked deleterous mutations [Birky and Walsh, 1988]. Since Sanjuan's neutral optimum is mathematically identical to Orr's adaptive optimum, it begs the question of whether Sanjuan's data support his own theory, or Orr's.

4.2 Rebuttal and Discussion

If, as Sanjuan's work suggests, the relationship between neutral substitution rate and mutation rate is similar to the relationship between adaptive substitution rate and mutation rate, we would expect to see similar results for variation in adaptive substitution and neutral substitution. However, this is not the case, as the data pertaining to k_{CP3} is quite different from k_{CP1} and k_{CP2} , as shown in the previous chapter.

Sanjuan's formulation of a neutral mutational optimum, beyond which the rate of neutral substitution rapidly drops off with any increase in mutation rate, hinges on an inconsistent treatment of individuals that have accumulated deleterious mutations. Assuming mutation-selection equilibrium, $P_0 = e^{-U_c \cdot X_D/s_H}$ is the expected fraction of individuals in the population that have not accumulated any deleterious mutations. We expect these individuals to be rapidly lost. Sanjuan includes this fraction when estimating the number of new neutral mutations arising in the population per unit of time, but fails to correct for this loss of individuals in the term for the probability of fixation of new mutations, in effect, erroneously assuming that the probability of fixation of neutral mutations with linked deleterious mutation is 1/N and not nearly zero, as we assume in this famework, like the deleterious mutations to which they are linked.

The rate of neutral substitution is proportional to the rate of generation of new neutral variation, the probability that these new neutral mutations occur on deleterious mutation-free genomes, and the probability of fixation of these new mutations, as follows:

$$K_N = (N.U_C.X_N).(P_0).(1/N.P_0)$$
(4.2)

$$K_N = U_c X_N \tag{4.3}$$

Here, K_N is the neutral substitution rate and X_N is the fraction of all mutations that are neutral.

The above, in combination with the data presented in the previous chapter of this dissertation, suggest that neutral substitution rates increase monotonically with mu-

tation rate, are not affected by the presence of linked deleterious mutations, and do not have optima with respect to mutation rates. This is consistent with the longstanding theoretical interpretation [Birky and Walsh, 1988].

Chapter 5

Intracellular Dynamics & Adaptive Evolution

Anand Bhardwaj, David J. Cutler & Leslie A. Real

In this chapter I examine the effects of variation in the intracellular replication process and viral demographics on the rate of adaptive evolution ssRNA viruses. I highlight demographic conditions under which rapid fixation of small-effect adaptive mutations is possible.

5.1 Introduction

Viral diseases are ubiquitous and are the cause of significant health and economic burdens. Among viruses, those with RNA genomes are of particular interest because the lack of a proofreading mechanism in RNA polymerase leads to error rates several orders of magnitude higher than in DNA viruses and other DNA based organisms [Holland et al., 1982]. This, in combination with their rapid replication rate allows for a relatively fast rate of evolution [Holmes, 2009], making it more likely that the control of RNA viral diseases will be balanced by the emergence of new viral diseases in comparable time scales [Lederberg, 1998]. It is in this context that I must investigate some of the factors that affect this high rate of evolution in RNA viruses.

The rate of evolution, measured as substitutions per unit of time, is proportional to the rate of generation of new variation, or mutation rate, and some measure of the the probability that these new mutations spread and fix in the population.

We know that the rate of fixation of neutral mutation is inversely proportional to population size, while the number of new neutral mutations entering the population per unit of time is directly proportional to population size [Kimura, 1962, Kimura, 1964]. These terms cancel each other out to make neutral evolution a function of the mutation rate, and only weakly dependent on population size.

$K_N \propto U_c \cdot X_N$

Here, K_N is the number neutral substitutions per generation, U_c is the number of mutations per generation and X_N is the fraction of these mutations that are neutral. The question of adaptive substitution and evolution is far more complex, and deserves further exploration.

Our historic understanding of adaptive evolution in asexuals with low rates of recombination suggests that genomes free of deleterious mutations are required in order for adaptive evolution to proceed [Fisher, 1930]. This rests on the assumption that deleterious mutations are, on average, more numerous and of typically larger effect than adaptive mutations.

For genomes of unsegmented SSRNA viruses and genome segments of segmented SSRNA viruses, these are reasonable assumptions. We know from recent studies on the distribution of fitness effects of mutations in RNA viruses that some significant fraction of mutations are selectively neutral, a larger fraction are either deleterious or lethal, while a very small fraction are adaptive or beneficial and are typically of small effect [Sanjuan et al., 2010, Sanjuan, 2010].

[Orr, 2000] proposes a mathematical expression for the expected adaptive substitution rate that reveals the main factors that drive the rate of adaptive evolution: In simple terms, the rate of adaptive evolution is proportional to the number of new adaptive mutations arising in the population per generation, the probability that this new adaptive mutation does not co-occur with a deleterious mutation, and the probability of fixation of this new mutation.

$$K_A \propto N \cdot U_c \cdot X_A \cdot e^{-U_c \cdot X_D/s_H} \cdot \pi \tag{5.1}$$

Here, K_A is the rate of adaptive substitution per generation, N is a measure of population size, X_A is the fraction of mutations that are adaptive or beneficial, X_D is the fraction of mutations that are deleterious, s_H is the harmonic mean of selection coefficients of all mutations, and $\pi = 2 \cdot s_A$ is some measure of the probability of fixation of new adaptive mutations where s_A is the mean selective advantage of adaptive mutations.

Both neutral and adaptive evolution depend heavily on the fitness landscape of the virus in question, on the availablity of adaptive and neutral mutations, and (in the case of adaptive evolution) on the probability of these mutations not being linked to deleterious mutations.

We can see now from the general structure of the mathematical framework used to describe the rate of adaptive evolution that there are two major classes of factors that affect the rate of adaptive evolution:

Characteristics of Deleterious Mutations:

Since the primary requirement for adaptive evolution is the presence of genomes free of deleterious mutations on which adaptive evolution can occur, the rate and nature of linkage of deleterious mutations is important to examine. As we explored in the two previous chapters, while the rate of adaptive evolution is measured empirically by gene, the availability of genomes without deleterious mutations depends on the rate of deleterious mutation over the entire genome in the case of unsegmented viruses, or over the entire genome segment in the case of segmented mutation. Therefore, the presence of highly conserved regions on a genome can potentially limit the rate of adaptive evolution elsewhere on the genome, depending on the genome architecture of the virus under examination. In the context of mathematical frameworks like the one described above, terms like X_A and X_D take on a special significance. In a sense, the rate of deleterious mutations per generation can give us an idea of the effective adaptable population size of a virus, by allowing us to estimate the expected fraction of genomes in the population that are free of deleterious mutations.

Characteristics of Adaptive Mutations:

While the empirically derived distributions of fitness effects of point mutations mentioned earlier do suggest that some fraction of mutations are selectively advantageous, this empirical distribution was derived from stable laboratory populations of viruses, and does not account for the effects of environmental disruption, host immunity, and the co-evolutionary history between virus and host. In addition, the mathematical framework described above makes certain simplifying assumptions about the probability of fixation of new mutations, and the initial frequency of new mutations that, while effective as a general way of thinking about adaptive evolution, might be inaccurate in the context of true viral evolution.

The aim of this study is to build a mathematical framework for exploring the effects of variation in the mode of viral intracellular replication and demographic parameters like viral fecundity on the probability of fixation and therefore the rate of adaptive substitution.

5.2 Limitations of Orr's framework

:

The rate of adaptive evolution is proportional to two component characteristics of adaptive mutations - the number of new adaptive mutations arising in the population on genomes free of deleterious mutations, and the probability of fixation of these new mutations. The mathematical framework described in the previous section cannot accurately account for either of these two components in the case of viral populations for the following reasons:

The Tiered Nature of Viral Populations:

Viral populations can be conceptually subdivided into intracellular and extracellular populations. The general scientific consensus is that viral genomes are not under selection during the intracellular replication process [Drake and Holland, 1999]. They are only subject to selection when packaged in proteins and released into the extracellular environment. A typical viral cell infection cycle involves a single or very small number of viral particles entering a cell and replicating a large number of daugher progeny that can either be released all at once by lysing the cell or gradually, by budding off the cell membrane. The tiered nature of viral populations is critical to adaptive evolution because of the potential effect of simultaneously releasing multiple copies of new adaptive mutants into the environment. This violates some common simplifying assumptions about the initial frequency and the probability of fixation of new mutations made in the general mathematical framework for adaptive evolution mentioned in the previous section.

Variation in Viral Intracellular Replication: There is considerable variation in the process of ssRNA viral intracellular replication. In general, after the initial infection of a cell, all subsequent daughter progeny are direct decendants of one or more initial opposite sense templates. Some of these daughter progeny can be the basis for further opposite sense templates and secondary and tertiary daughter progeny [Drake, 1993]. The mode of viral replication can therefore vary all the way from completely linear - where all daughter progeny are produced in a single round of replication, to binary - where the size of the intracellular viral population doubles in each round of replication until some target fecundity is reached [Duffy et al., 2002]. This has implications for the the initial frequency and probability of fixation of new mutations as well. In some ways, the initial frequency ρ_0 of a new mutation is a function of how early along the viral replication process the mutation occurs, i.e., a mutation occuring during the production of an initial opposite sense template gets copied on to all progeny of that template, and potentially, the entire product of a cell infection cycle [Loverdo et al., 2012]. This assumes that any replication event within the cell is equally likely to incur a mutation. This is a reasonable assumption for single stranded RNA viruses where the template and progeny replications are performed by RNA-dependant RNA polymerase, and less reasonable in the context of DNA viruses or retroviruses, where there are DNA replication steps that involve other, less error-prone polymerase enzymes [Holmes, 2009].

Viral Fecundity:

If the per-cell fecundity of the virus is large, this could have a significant effect on

initial frequency. If we're interested in an isolated population of an organism (where N can reasonably be assumed to be much smaller than the true "global" N), in the context of evolution of a viral population within a single host or an emerging pathogen where global N itself is small, changes in initial frequency of new mutations could have a significant effect on the probability of fixation and on the rate of adaptive evolution.

What remains to be sees is whether any of the above will matter. Developing this mathematical framework will allow us to explore the areas of parameter space where mode of replication and demographics play a large role in accelerating or decelarating the rate of adaptive evolution. Ultimately, the mutational fitness landscape, i.e. $U_c \cdot X_A$ and $U_c \cdot X_D$, could play the dominant role in the biologically realistic parts of parameter space, in which case none of the above would matter. The aim of this study is to develop the tools to find out.

5.3 The Number of New Adaptive Mutations per Generation

As mentioned in the previous section, the tiered nature of viral populations means that viruses are not subject to selection when they are within a cell. The allows new genomes to be introduced into the populations in batches, with multiple copies of new mutations. Assuming equilibrium dynamics and constant population size, the population term in Equation 5.1 can then be unpacked into the mean size of an intracellular viral population, or viral fecundity N_c , and some measure of the number of infected cells N to give us an estimate of the total viral populations size $N \cdot N_c$.

The number of viral particles released per cell infection cycle or generation without any deleterious mutations is a product of viral fecundity and the expected fraction of deleterious mutation-free genomes (i.e., the probability of zero mutations), assuming that mutations/genome/generation are Poisson distributed with mean $U_c \cdot X_D$ is $N_c \cdot e^{-U_c \cdot X_D}$.

 $N \cdot N_c \cdot e^{-U_c \cdot X_D}$ then gives us the expected number of genomes free of deleterious mutations, or the effective *adaptable* population size. $U_c \cdot X_A$ is the number of new adaptive mutations per genome per generation. Accounting for multiple adaptive mutations on the same genome, and retaining the assumption of Poisson distribution, $(1 - e^{-U_c \cdot X_A})$ gives us the expected fraction of each "generation" or cell infection cycle that have some non-zero number of adaptive mutations. If the value of $U_c \cdot X_A$ is very low, it is a good approximation of $(1 - e^{-U_c \cdot X_A})$. Therefore, the expected number of new adaptive mutant genomes introduced into the population on genomes free of deleterious mutations per generation is:

$$E[A] = N \cdot N_c \cdot (1 - e^{-U_c \cdot X_A}) \cdot e^{-U_c \cdot X_D}$$
(5.2)

5.4 The Probability of Fixation

One of the major assumptions of the mathematical expression for adaptive evolution described in Equation 5.2 is that the probability of fixation π for new adaptive mutations is approximately $2 \cdot s_A$. This approximation is derived from Kimura's famous result for the probability of fixation of new small-effect adaptive mutations in large, constant-size populations [Kimura, 1962]:

$$\pi = \frac{1 - e^{-2 \cdot N \cdot \rho_0 \cdot s_A}}{1 - e^{-2 \cdot N \cdot s_A}} \tag{5.3}$$

Under the implicit assumption that population size N is large, mean selective advantage s_A is small and initial frequency of new mutations $\rho_0 = 1/N$, the approximation $\pi \approx 2 \cdot s_A$ is a reasonable one. However, as suggested in the previous section, the tiered nature of viral populations means that new adaptive mutations are not always singly introduced into the generation population.

To look at the effect of treating initial frequency as a random variable, equation 5.3 must be modified to reflect the tiered nature of viral populations. We now have:

$$\pi = \frac{1 - e^{-2 \cdot N \cdot N_c \cdot \rho_0 \cdot s_A}}{1 - e^{-2 \cdot N \cdot N_c \cdot s_A}} \tag{5.4}$$

The above expression accounts for the lack of selection during the viral intracellular replication process. Within this framework, the initial frequency of new mutations ρ_0 can range from $1/N \cdot N_c$, when a single copy of a new mutation is introduced into the population, to 1/N, where all viral progeny of a single cell infection cycle have a copy of the new adaptive mutation.

However, as mentioned earlier in this chapter, and repeatedly throughout this dissertation, adaptive evolution can only occur on genomes free of deleterious mutations. To account for this, the expected fraction of genomes in the population with some non-zero number of deleterious mutations can be incorporated into the expression for the probability of fixation of new adaptive mutations described in equation 5.4; yielding:
$$\pi = \frac{1 - e^{-2 \cdot N \cdot N_c \cdot e^{-U_c \cdot X_D} \cdot \rho_0 \cdot s_A}}{1 - e^{-2 \cdot N \cdot N_c \cdot e^{-U_c \cdot X_D} \cdot s_A}}$$
(5.5)

Modeling ρ_0 as a random variable:

For $\rho_0 = 1/N \cdot N_c$, often used in the literature to describe the initial frequency of new mutations, the mutation has to occur at the very last replication event. Mutations occuring at any earlier replication event would yield a higher initial frequency. This concept is reflected in prior studies suggesting that non-linear replication can enhance the rate of spread and fixation of mutations [Sardanyes et al., 2009, French and Stenger, 2003, Thebaud et al., 2010] and can even lead to a dampening of standing variation.

For any viral population with some fecundity N_c , the total number of replication events R that occur within the cell is related to the mode of replication, and the number of rounds of replication within the cell t_c as follows:

For $t_c = 1$: Under the simplest conditions, with purely linear replication, and assuming a single initial opposite sense template, 1 replication event produces the initial opposite sense template and N_c replication events to produce the progeny.

Here, $R = 1 + N_c$ replication events occur within the cell.

For all $t_c > 1$: Under conditions of nonlinear replication, the number of replication events can be generalized as follows:

Here, $R = 1 + 2[N_c^{1/t_c} + N^{2/t_c}... + N_c^{(t_c-1)/t_c}] + N_c$ replication events occur within the cell.

If the initial frequency of new mutations ρ_0 can be rewritten as $x/(N \cdot N_c)$ where x refers to the expected number of copies of a new mutation released per generation or cell infection cycle, we can think of x as some function of how early in the replication process the mutation occurs. For example, a mutation occuring on the very last round of replication, or the replication event that produces a progeny genome that is released into the extracellular environment, x = 1 and the associated initial frequency of that new mutation occurs. The value of a therefore ranges from 0, representing a mutation occuring during the production of the initial opposite-sense template, to t_c , representing a mutation occuring duing the very last replication event that produces a daughter progeny that is released into the extracellular environment.

We know that $x \in [1 : N_c]$. This can be re-written as $x = (N_c)^{t-a/t}$ with $a \in [0 : t]$ such that x = 1 when a = t and $x = N_c$ when a = 0. Smaller values of a are associated with larger values of x.

In general:

When
$$a = 0$$
 and $Pr[x = N_c^{(t_c - a)/t_c}] = Pr[x = N_c] = \frac{1}{R}$

When
$$a = t_c$$
 and $Pr[x = N_c^{(t_c - a)/t_c}] = Pr[x = 1] = \frac{N_c}{R}$

when
$$0 > a > t_c$$
; $Pr[x = N_c^{(t_c - a)/t_c}] = \frac{2.N_c^{a/t_c}}{R}$

Under conditions of linear replication linear $(t_c = 1)$:

$$Pr[x = N_c] = Pr[x = N_c^{(t_c - 0)/t_c}] = \frac{1}{R} = \frac{1}{1 + N_c}$$
$$Pr[x = 1] = Pr[x = N_c^{(t_c - t)/t}] = \frac{N_c}{R} = \frac{N_c}{1 + N_c}$$

Under conditions of nonlinear replication $(t_c > 1)$:

$$Pr[x = N_c] = Pr[x = N_c^{(t-0)/t}] = Pr[x = N_c] = \frac{1}{R} = \frac{1}{1 + 2[N_c^{1/t} + N^{2/t} \dots N_c^{(t-1)/t}] + N_c}$$
$$Pr[x = N_c^{(t-a)/t}] = \frac{2.N_c^{a/t}}{R} = \frac{2.N_c^{a/t}}{1 + 2[N_c^{1/t} + N^{2/t} \dots N_c^{(t-1)/t}] + N_c}$$
$$Pr[x = 1] = Pr[x = N_c^{(t-t)/t}] = Pr[x = 1] = \frac{N_c}{R} = \frac{N_c}{1 + 2[N_c^{1/t} + N^{2/t} \dots N_c^{(t-1)/t}] + N_c}$$

The above calculations do not account for the effect of linked deleterious mutations.

5.4.1 The Linear case

Here I explore how π (where the initial frequency is a random variable) compares with π' from the literature (where the initial frequency is constant), under conditions of linear replication.

Under the assumption of purely linear replication with one initial opposite sense template, where a total of $R = 1 + N_c$ replication events occurs, a mutation can occur on the template with probability $\frac{1}{1+N_c}$ leading to a high initial frequency $\frac{N_c \cdot e^{U_c \cdot X_D}}{N \cdot N_c \cdot e^{-U_c \cdot X_D}} = \frac{1}{N}$ or that mutation can occur on a progeny with probability $\frac{N_c}{1+N_c}$ leading to the initial frequency of $\frac{1}{N \cdot N_c \cdot e^{-U_c \cdot X_D}}$.

$$\pi = \frac{1}{1+N_c} \cdot \frac{1-e^{-2 \cdot N \cdot N_c \cdot e^{-U_c \cdot X_D} \frac{1}{N} \cdot s_a}}{1-e^{-2 \cdot N \cdot N_c \cdot e^{-U_c \cdot X_D} \cdot s_a}} + \frac{N_c}{1+N_c} \cdot \frac{1-e^{-2 \cdot N \cdot N_c \cdot e^{-U_c \cdot X_D} \frac{1}{N \cdot N_c \cdot e^{-U_c \cdot X_D} \cdot s_a}}}{1-e^{-2 \cdot N \cdot N_c \cdot e^{-U_c \cdot X_D} s_a}}$$
(5.6)

This can be rewritten as follows:

$$\pi = \frac{1 - e^{2 \cdot N_c \cdot e^{-U_c \cdot X_D \cdot s_A}} + N_c \cdot (1 - e^{-2 \cdot s_A})}{(1 + N_c)(1 - e^{-2 \cdot N \cdot N_c \cdot e^{-U_c \cdot X_D \cdot s_A}})}$$

The structure of the above expressions suggest that the probability of fixation π where initial frequency ρ_0 is a random variable is not quite equivalent to the probability of fixation π ' where the initial frequency is constant. This is explored in Figure 5.1 where we can see that we underestimate the probability of fixation if we treat ρ_0 as a constanct. The extent to which we underestimate π depends on the ratio of fecundity

Linear Replication

Figure 5.1: The effect of mean selective advantage s_A on the extent to which we underestimate the probability of fixation when we do not account for variation in the initial frequency of new adaptive mutations.

to global population size N_c/N as well as the magnitude of s_A . We can see that for adaptive mutations of large effect, the number of copies of new mutations released into the population has a relatively small effect on the probability of fixation.

Figure 5.1 might be a bit misleading, however, since higher values of s_A always lead to higher π (Figure 5.2). In general, $2 \cdot s_A$ is always a good approximation of π' , while it is a good approximation of π only for some values of s_A , depending on N_c .

Deviations due to multiple templates: Assume that m initial opposite sense templates are used to produce the entire progeny of a cell:

Figure 5.2: Change in the probability of fixation with selective advantage s_A . Prior to this, I assume that viral replication utilizes only one initial opposite sense templated. Here, $t_c = 1$, a can either be 0, where the mutation occurs on the template step or 1, where the mutation occurs on the progeny step.

$$\pi = \Pr[a=0] \cdot (1 - e^{-2 \cdot N_c^{(1-0)/1} \cdot s_A}) + \Pr[a=1] \cdot (1 - e^{-2 \cdot N_c^{(1-1)/1} \cdot s_A})$$
$$\pi = \frac{1}{1+N_c} \cdot (1 - e^{-2 \cdot N_c \cdot s_A}) + \frac{N_c}{1+N_c} \cdot (1 - e^{-2 \cdot s_A})$$

Given reasonably high values of N_c , the above can be approximated as follows:

$$\pi = \frac{1 + N_c \cdot 2 \cdot s_A}{1 + N_c} \approx 2 \cdot s_A$$

The probability of fixation is generally approximated as $2 \cdot s_A$ (it is typically slightly

Figure 5.3: The effect of number of templates m on the relative increase in the probability of fixation with random ρ_0 when compared to the probability of fixation with constant ρ_0 . Relatively small effect of template for large values of selective advantage s_A .

lower than $2 \cdot s_A$) but we see that this is a good approximation only under very specific circumstances; i.e.,

- When the mode of replication is purely linear, and
- When only a single initial opposite sense template is used to produce the entire progeny of a single viral cell infection cycle.

Assuming multiple templates: N_c is replaced with N_c/m with m being the total number of template strands used to produce the viral progeny.

$$\pi = \frac{m}{m+N_c} \cdot \frac{1 - e^{-2 \cdot N \cdot N_c \cdot \frac{(N_c/m)}{N \cdot N_c} \cdot s_A}}{1 - e^{-2 \cdot N \cdot N_c \cdot s_A}} + \frac{N_c}{m+N_c} \cdot \frac{1 - e^{-2 \cdot N \cdot N_c \cdot \frac{1}{N \cdot N_c} \cdot s_A}}{1 - e^{-2 \cdot N \cdot N_c \cdot s_a}}$$

Again, given reasonably high values of N_c , the above can be approximated as follows:

$$\pi = \frac{m}{m + N_c} \cdot (1 - e^{-2 \cdot (N_c/m) \cdot s_A}) + \frac{N_c}{m + N_c} \cdot (1 - e^{-2 \cdot s_A})$$
(5.7)

In this case, if m is high enough for the assumption that $1 - e^{-2 \cdot (N_c/m) \cdot s_A} \approx 1$ to no longer be true, we see deviations from the expectation that $\pi \approx 2 \cdot s_A$. In particular, $\pi > 2 \cdot s_A$ when $1 < N_c/m < 10$.

5.4.2 The Non-linear Case

Under conditions of non-linear replication, the number of replication events and initial frequency of new mutations is dependant on the mode of replication and the number of rounds of replication t_c . With non-linear replication, the initial opposite sense strand copied from the infecting strand is not the direct template for the viral progeny that are released from the infected cell. Instead, the viral progeny released from the cell are the product of opposite sense templates that are themselves copied from progeny of earlier opposite sense templates, and have as such undergone several rounds of potentially error-accumulating replication within the cell.

The frequency of a new mutation can range from $\frac{1}{N \cdot N_c}$ to $\frac{N_c}{N \cdot N_c}$ depending on how early in the replication process the mutation occurs. If a is a measure of how early along in the process the mutation has occured, a = 0 signifies a mutation that occured during the production of the initial opposite template (leading to an initial frequency of $\frac{N_c}{N \cdot N_c}$) and $a = t_c$ signifying a mutation that occured during the production of the final progeny (leading to an initial frequency of $\frac{1}{N \cdot N_c}$).

In general, the initial frequency of the new mutation is a function of a such that:

$$\rho_0 = \frac{N_c^{(a-t_c)/t_c}}{N \cdot N_c}$$

Assuming a branching process model with non-overlapping generations for viral intracellular replication:

Let $R = 1 + N_c + 2(N_c^{1/t_c} + N_c^{2/t_c}...N_c^{(t_c-1)/t_c})$ be the total number of replication events in the cell. The closer to purely linear replication, the more the values of R and N_c converge.

At each round of replication, a single template produces N_c^{1/t_c} progeny. A mutation that occurs at time *a* gets passed on to $N_c^{(t_c-a)/t_c}$ progeny.

- a = 0 for $\frac{1}{R}$ of all events. $\rho_0 = \frac{N_c^{(t_c a)/t_c}}{N \cdot N_c} = \frac{N_c}{N \cdot N_c}$.
- $0 > a > t_c$ for $\frac{2 \cdot [N_c^{1/t_C} + N_c^{2/t_c} \dots N_c^{(t_c-1)/t_c}]}{R}$ of all events. $\rho_0 = \frac{N_c^{(t_c-a)/t_c}}{N \cdot N_c}$

(There are
$$2(N_c^{a/t_c})$$
 events for each value of $0 > a > t_c$)

•
$$a = t_c$$
 for $\frac{N_c}{R}$ of all events. $\rho_0 = \frac{N_c^{(t_c-a)/t_c}}{N \cdot N_c} = \frac{1}{N \cdot N_c}$

1.

Clearly, with increasing t_c , the probability of acquiring a mutation with $\rho_0 > \frac{1}{N \cdot N_c}$ increases. As suggested in the linear case above, this will cause deviations from the π' with constant ρ_0 from the literature.

The distribution of a gives us the distribution of initial frequencies of new mutations. Note that linear replication is a special case of this where $t_c = 1$ and a is either 0 or

Figure 5.4: Explicitly modeling ρ_0 . a) Distribution of possible "ages" of mutations, with lower values of *a* being associated with larger initial frequencies. b)Distribution of initial frequencies of new mutations.

In figure 5.4b, $N_c = 10,000$ and $t_c = 10$. Clearly, the initial frequency of new mutations varies depending on when along the replication process the mutation occured.

As in the linear case, we expect to see an effect of mode of replication on the initial frequency, and by consequence, the probability of fixation of new beneficial mutations. For any given mutation rate and fitness landscape, the probability of fixation of new adaptive mutations, and therefore the rate of adaptive evolution increases as replication gets more binary. The effect of mode of replication on the rate of adaptive evolution is mitigated at high mutation rates (whether these are biologically relevant mutations rates requires investigation). The same measured mutation rate per generation can lead to different rates of adaptive substitution. These differences can be explained by mode of replication.

All the above depend on the associated rate of linked deleterious mutations. This can change substantially with recombination, and between segmented and unsegmented viruses, as has been explored in previous chapters of this dissertation.

5.5 A New Formulation for Adaptive Evolution in ssRNA viruses

We can now incorporate information about variation in ssRNA intracellular replication dynamics for a new mathematical framework of adaptive evolution. We can see that the summed probability of fixation of new adaptive mutations is a function of the distribution of initial frequencies of new mutations.

$$K_{A} = N \cdot N_{c} \cdot (1 - e^{-U_{c} \cdot X_{A}}) \cdot e^{-U_{c} \cdot X_{D}} \cdot \sum_{p=1/N \cdot N_{c} \cdot e^{-U_{c} \cdot X_{D}}}^{1/N} Pr(\rho_{0} = p) \cdot \frac{1 - e^{-2 \cdot N \cdot N_{c} \cdot e^{-U_{c} \cdot X_{D}} \cdot \rho_{0} \cdot s_{A}}}{1 - e^{-2 \cdot N \cdot N_{c} \cdot e^{-U_{c} \cdot X_{D}} \cdot s_{A}}}$$
(5.8)

5.6 Results and Discussion

5.6.1 Probability of Fixation

Under our model, the expected probability of fixation of new adaptive mutations increases with increasing rounds of replication. For any mutation rate, the value of

Figure 5.5: Variation in the expected probability of fixation due to the mode of replication. Non-linear and binary replication maximizes the probability of fixation given mutation rate and fitness landscape. On the X-axis, the number of rounds of replication goes from 1 to $Log_2(N_c)$.

 π increases as the mode of replication becomes more linear, with the probability of fixation maximized when the mode of replication is purely binary.

If we assume that the initial frequency of new mutations is constant, we almost always underestimate the probability of fixation of new mutations. An interesting corollary to this result is that the difference betteen the probability of fixation of new adaptive mutations under linear replication and under binary replication is inversely proportional to the mutation rate. This is consistent with the established scientific consensus (French and Stenger 2003; Sardanyes et al. 2009; Thebaud et al. 2010). This result is likely due to the fact that at extremely high mutation rates, the expected fraction of genomes free of any deleterious mutations produced per generation is quite low. Under these conditions, the difference between having a single copy of a new adaptive mutation and having all viable viral progeny contain a copy of the new adaptive mutation is not very large.

The above result suggests that the probability of fixation of new adaptive mutations is some function of the mean selective advantage of new mutations, the mode of replication, and **the linked deleterious mutation rate** of the viral genome. Again, as suggested in previous chapters of this dissertation, the genome architecture of the virus and its effects on the strength of linkage between regions of the genome must be considered in order to accurately assess the effect of linked deleterious mutation on both the probability of fixation of new mutations, as well as the rate of adaptive substitution.

5.6.2 Rate of Adaptive Evolution

Our results suggest that viral intracellular replication dynamics can have a large effect on the rate of adaptive evolution in ways that cannot be captured in simple models of evolution. Complex replication strategies allow viruses to uncouple the rate at which variation is generated from the rate at which variation is observed.

Figure 5.6: Variation in the expected rate of adaptive evolution in SSRNA viruses. Black lines are our projections and red lines are projections based on simpler models of evolution, like Orr's. a) The effect of mode of replication while keeping the biological mutation rate per replication constant, b) The effect of the mode of replication while keeping the mutation rate per generation constant, c) The effect of mutation rate per generation on the rate of adaptive evolution.

In Figure 5.6.2b, we can clearly see the effects of variation in the mode of replication on the rate of adaptive evolution. The same measured mutation rate per generation can be associated with radically different rates of adaptive evolution, the difference explained entirely by variation in the mode of replication. In general, for any mutation rate per generation, non-linear replication can amplify the rate of adaptive evolution.

In Figure 5.6.2c, we can see that the concept of the adaptive optimum [Orr, 2000] is recreated. We almost always underestimate the rate of adaptive evolution given a mutation rate if we treat the initial frequency of new adaptive mutations as a constant. Importantly, the extent to which we underestimate this rate is the greatest near this adaptive optimum.

5.7 Conclusions

My results suggests that simplifying assumptions ignoring the complexity of viral intracellular replication can lead to misleading conclusions about the rate of evolution and evolvability of viral populations. My models suggest that under the right replicative and demographic conditions, viruses could be capable of extremely rapid evolution, suggesting future empirical studies to verify this phenomenon.

We can see that many standard models of evolution apply to viruses only under particular conditions that do not reflect current understanding of viral replication, i.e., under conditions of purely linear replication with a single initial opposite sense template. For viruses with large values of fecundity, these assumptions are unrealistic.

We expect to see an effect of mode of replication on the initial frequency, and by consequence, the probability of fixation of new beneficial mutations. For any given mutation rate and fitness landscape, the probability of fixation of new adaptive mutations, and therefore the rate of adaptive evolution increases as replication becomes more binary. The effect of mode of replication on the rate of adaptive evolution is mitigated at high mutation rates (whether these are biologically relevant mutations rates is up for question). The same measured mutation rate per generation can lead to different rates of adaptive subsitution. All the above depend on the associated rate of linked deleterious mutations. This can change substantially with recombination, and between segmented and unsegmented viruses.

The next step would be to design empirical studies to verify the major claims of this theoretical work, i.e., whether the non-linear replication amplifies the rate of adaptive evolution, and whether certain demographic conditions can lead to rapid evolution, particularly conditions that reflect the early stages of viral infection of a new and naive host. The models presented in this study should also be modified to reflect the replication dynamics of double-stranded viruses and retroviruses, and refined to reflect new and current understanding of viral replication processes.

5.8 Acknowledgements

This research was supported by NIH grant RO1 AI047498 to LAR and the RAPIDD Program of the Science and Technology Directorate, the Department of Homeland Security and the Fogarty International Center, National Institutes of Health.

Chapter 6

Conclusions: Portrait of a Virus

We can now begin to put together a picture of the conditions under which viruses can survive in nature despite their high mutation rates, and under which conditions they can be pushed to extinction.

Summary

In Chapter 2, I examined the impact of typical simplyfying assumptions in existing models of lethal mutagenesis. My findings suggest that under a very limited subsets of conditions (linear replication, single initial opposite sense templates, and very high values of mean fecundity), simple models can provide accurate predictions of mutation rates sufficient to drive a viral population to demographic extinction. For viruses with non-linear replication and multiple templates, however, improvements are needed. I draw a distinction between mathematical conditions that suggest extinction conditions, and mathematical models that describe the rate at which populations will go extinct, and why the latter provide more focused reference to in-vitro tests of lethal mutagenesis, and hence, the drug development pipelines. I develop an explicit model of viral intracellular replication based on a Walton-Gaston branching process to derive an expression for the rate of extinction of viral populations under artificially elevated mutation rates. My models suggest that the presence of multiple initial opposite sense templates greatly mitigates the risk of extinction. I also show that there is some nonlinear mode of replication that minimizes the risk of extinction, given a particular mutation rate per generation. An important caveat is that my models only account for lethal mutations, and so for a viral population that exists in a real, complex fitness landscape, the critical mutation rates required to cause demographic extinction are likely lower than those predicted by my models.

Chapters 3 and 4 explore the effects of genome architecture and the effective *adapt-able* populations of viruses. Under the assumption that adaptive mutations are on average rarer and of small effect than deleterious mutations, adaptive evolution likely only occurs in regions of the genome that are free of linked deleterious mutations. In most single stranded RNA viruses, recombination rates are very low, and therefore this effect manifests itself differently in segmented and unsegmented viruses. Most

viral genomes include highly conserved regions, i.e., genes that code for critical functional enzymes like RNA polymerase. Within these conserved regions, most expressed substitutions are likely deleterious. In unsegmented viruses, the presence of these conserved regions limits the rate of adaptive evolution everywhere else on the genome. In contrast, in segmented viruses, the rate of adaptive evolution of any segment is uncoupled from the deleterious effects of mutations on other segments. In effect, viruses with segmented genomes can support highly variable genes while maintaining critical functional genes on other genome segments. Segmented viruse, therefore, are better suited to surviving in environments that impose directional and disruptive selection on parts of the genome, in addition to the inevitable purifying selection on other parts of the genome. While this effect is clearly manifested in gene-specific estimates of adaptive substitution rates from segmented and unsegmented viruses, no comparable effect is seen on neutral subsitution rates. My results call into question recent results suggesting that neutral evolution is also subject to the limiting effects of linked deleterious mutations. My models clarify assumptions and provide a link to a long-standing theoretical result [Birky and Walsh, 1988] suggesting that the rate of neutral evolution is unaffected by linked deleterious mutations.

I develop a novel mathematical framework for describing the expected rate of adaptive evolution in **Chapter 5**. Existing models of adaptive evolution in non-recombining asexuals make certain simplifying assumptions that are unrealistic in the case of single stranded RNA viruses. My models explicitly account for the tiered nature of viral populations - the current scientific consensus is that viral genomes are not under selection while they are still within a host cell, with selection only being imposed when viral particles are released into the extracellular environment. Mutation accumulation during the intracellular replication means that many adaptive mutations are released into the environment in multiple copies, which can affect the rate at which these adaptive mutations spread through the population. My model illustrates the effect of mode of replication and mutation-accumulation bottlenecks during template replication both on the number of new adaptive mutant genomes produced per generation, and the mean probability of fixation of these new adaptive mutations. I show that the same mutation rate per generation can lead to radically different rates of adaptive evolution, with the differences explained by the mode of replication of the virus. Non-linear modes of replication serve to amplify the rate of adaptive evolution. Under certain demographic conditions, when the mean fecundity of an infected cell is on the same order as the number of infected cells, extremely rapid evolution is possible. These conditions are best approximated when looking at evolution at the scale of a single host.

Over the course of this body of work, we can get an idea of a "best practice" of sorts for a single stranded RNA virus. Some non-linear mode of replication can serve both to minimize the risk of extinction due to deleterious and lethal mutations, and amplify the rate of adaptive evolution. The all-or-nothing nature of demographic extinction suggests that viruses that utilize multiple initial opposite sense templates during the intracellular replication can tolerate much higher rates of deleterious mutation, and could serve to explain the failure of existing predictive models of lethal mutagenesis, even with viruses with little or no replication. In addition, viruses that have segmented genomes can support highly variable regions of the genome in a way that viruses with unsegmented viruses cannot.

In all, we get the picture of a multidimensional fitness peak that extends far beyond the traditional "mutational" fitness landscape. Whether viruses in the wild are near this peak remains to be seen, as we lack estimates of replicative parameters like template number, mean fecundity, and replication mode (as well as better spatially and temporally annotated sequence data) needed to do so. I hope that this body of work serves as a call for more data, and serves to show the enormous impact of these parameters on virus evolution and extinction.

After all, knowledge about where these viral populations are in relation to this hypothetical peak will tell us just how much we need to push in order to toss them over the cliff.

Chapter 7

Bibliography, Indices, and Supple-

ments

#	Pop	Gene	Seq	k	k_{CP1}	k_{CP2}	k_{CP3}
1	Nicaragua	Env	45	0.00079	4.0e - 04	1.4e - 04	0.00181
2	Nicaragua	Ns1	45	0.00116	3.2e - 04	2.6e - 04	0.00290
3	Nicaragua	Ns3	45	0.00113	3.9e - 04	2.8e - 04	0.00272
4	Nicaragua*	Ns5	45	0.00070	3.4e - 04	3.6e - 04	0.00140
5	Mexico*	Env	70	0.00087	4.9e - 04	2.2e - 04	0.00190
6	Mexico*	Ns1	70	0.00059	1.3e - 04	2.2e - 04	0.00143
7	Mexico*	Ns3	70	0.00035	9.9e - 05	1.1e - 04	0.00086
8	Mexico	Ns5	70	0.00069	2.7e - 04	3.5e - 04	0.00143
9	Cambodia	Env	63	0.00076	4.0e - 04	9.5e - 05	0.00178
10	Cambodia	Ns1	63	0.00087	3.8e - 04	2.0e - 04	0.00203
11	Cambodia	Ns3	63	0.00059	1.7e - 04	5.4e - 05	0.00154
12	Cambodia	Ns5	63	0.00068	2.1e - 04	1.9e - 04	0.00162
13	Venezuela	Env	60	0.00016	5.1e - 05	3.7e - 05	0.00040
14	Venezuela	Ns1	60	0.00016	6.2e - 05	5.2e - 05	0.00035
15	Venezuela	Ns3	60	0.00020	4.5e - 05	2.2e - 05	0.00053
16	Venezuela	Ns5	60	0.00015	5.7e - 05	3.3e - 05	0.00035
17	Vietnam	Env	80	0.00103	5.2e - 04	1.7e - 04	0.00240

Substitution Rate Estmates for Chapter 3 $\,$

18	Vietnam	Ns1	80	0.00108	4.4e - 04	3.2e - 04	0.00250	
19	Vietnam*	Ns3	80	0.00080	2.4e - 04	6.4e - 05	0.00209	
20	Vietnam*	Ns5	80	0.00076	2.3e - 04	1.5e - 04	0.00189	
21	Thailand	Env	60	0.00021	7.2e - 05	1.9e - 05	0.00055	
22	Thailand	Ns1	60	0.00028	8.3e - 05	2.4e - 05	0.00072	
23	Thailand*	Ns3	60	0.00025	1.1e - 04	1.8e - 05	0.00062	
24	Thailand	Ns5	60	0.00015	6.2e - 05	1.9e - 05	0.00037	
25	Nicaragua	Env	190	0.00079	3.6e - 04	2.1e - 04	0.00181	
26	Nicaragua	Ns1	190	0.00110	6.3e - 04	4.2e - 04	0.00225	
27	Nicaragua	Ns3	190	0.00088	2.8e - 04	1.3e - 04	0.00224	
28	Nicaragua	Ns5	190	0.00078	4.4e - 04	2.6e - 04	0.00162	
29	US	Env	148	0.00082	3.8e - 04	1.9e - 04	0.00188	
30	US	Ns1	148	0.00078	2.9e - 04	1.5e - 04	0.00190	
31	US	Ns3	148	0.00070	1.7e - 04	8.9e - 05	0.00185	
32	US	Ns5	148	0.00087	3.6e - 04	1.6e - 04	0.00208	
33	Vietnam*	Env	140	0.00112	4.5e - 04	1.2e - 04	0.00278	
34	Vietnam	Ns1	140	0.00128	5.1e - 04	2.7e - 04	0.00308	
35	Vietnam*	Ns3	140	0.00095	3.4e - 04	1.5e - 04	0.00235	
36	Vietnam	Ns5	140	0.00094	3.5e - 04	1.9e - 04	0.00226	
37	Cambodia*	Env	44	0.00115	4.1e - 04	1.5e - 04	0.00288	

				I.		1	
38	Cambodia	Ns1	44	0.00124	4.8e - 04	1.9e - 04	0.00305
39	Cambodia	Ns3	44	0.00090	2.1e - 04	4.5e - 04	0.00241
40	Cambodia	Ns5	44	0.00111	4.5e - 04	2.0e - 04	0.00267
41	Brazil	Env	56	0.00074	3.4e - 04	1.9e - 04	0.00169
42	Brazil	Ns1	56	0.00057	3.7e - 04	1.2e - 04	0.00123
43	Brazil	Ns3	56	0.00057	1.9e - 04	8.7e - 05	0.00145
44	Brazil	Ns5	56	0.00051	1.4e - 04	1.0e - 04	0.00127
45	Nicaragua	Env	71	0.00115	5.7e - 04	2.4e - 04	0.00345
46	Nicaragua	Ns1	71	0.00094	3.4e - 04	2.4e - 04	0.00224
47	Nicaragua	Ns3	71	0.00088	2.8e - 04	1.3e - 04	0.00224
48	Nicaragua	Ns5	71	0.00071	2.2e - 04	1.8e - 04	0.00173
49	Venezuela	Env	89	0.00077	2.9e - 04	1.5e - 04	0.00188
50	Venezuela	Ns1	89	0.00084	3.7e - 04	2.3e - 04	0.00193
51	Venezuela	Ns3	89	0.00073	2.5e - 04	6.8e - 05	0.00186
52	Venezuela	Ns5	89	0.00079	2.3e - 04	1.6e - 04	0.00199
53	US*	Env	94	0.00027	9.4e - 05	7.4e - 05	0.00065
54	US*	Ns1	94	0.00036	2.3e - 04	1.3e - 04	0.00070
55	US*	Ns3	94	0.00023	7.9e - 05	3.8e - 05	0.00057
56	US*	Ns5	94	0.00016	5.8e - 05	4.3e - 05	0.00038
57	Cambodia	Env	58	0.00115	5.3e - 04	2.4e - 04	0.00268

58	Cambodia	Ns1	58	0.00121	6.8e - 04	3.4e - 04	0.00262	
59	Cambodia	Ns3	58	0.00111	4.3e - 04	1.4e - 04	0.00277	
60	Cambodia	Ns5	58	0.00102	4.4e - 04	2.9e - 04	0.00232	
61	Aus-West	Ha	61	0.00460	4.1e - 03	2.4e - 03	0.00731	
62	Aus-West	Mp	61	0.00384	2.4e - 03	1.1e - 03	0.00808	
63	Aus-West	Na	61	0.00403	3.0e - 03	1.9e - 03	0.00713	
64	Aus-West	Np	61	0.00260	1.1e - 03	5.1e - 04	0.00614	
65	Aus-West	Pa	61	0.00257	1.3e - 03	5.2e - 04	0.00587	
66	HongKong*	Ha	160	0.00504	3.2e - 03	2.9e - 03	0.00908	
67	HongKong	Mp	160	0.00178	1.6e - 03	6.5e - 04	0.00313	
68	HongKong*	Na	160	0.00328	2.2e - 03	1.5e - 03	0.00615	
69	HongKong*	Np	160	0.00282	1.5e - 03	3.9e - 04	0.00657	
70	HongKong	Pa	160	0.00234	9.0e - 04	3.3e - 04	0.00580	
71	Nicaragua*	Ha	102	0.00031	2.5e - 04	1.3e - 04	0.00055	
72	Nicaragua*	Mp	102	0.00185	1.3e - 03	7.3e - 04	0.00349	
73	Nicaragua*	Na	102	0.00226	1.8e - 03	1.7e - 03	0.00327	
74	Nicaragua*	Np	102	0.00126	5.4e - 04	3.4e - 04	0.00289	
75	Nicaragua*	Pa	102	0.00181	8.5e - 04	5.0e - 04	0.00407	
76	USA-BOS	Ha	103	0.00291	1.7e - 03	1.3e - 03	0.00576	
77	USA-BOS	Mp	103	0.00210	1.6e - 03	8.6e - 04	0.00385	

				1	1		1
78	USA-BOS	Na	103	0.00317	1.5e - 03	1.7e - 03	0.00626
79	USA-BOS*	Np	103	0.00284	8.6e - 04	7.4e - 04	0.00692
80	USA-BOS	Pa	103	0.00253	9.8e - 04	7.6e - 04	0.00585
81	USA-CA	Ha	177	0.00386	2.9e - 03	1.9e - 03	0.00681
82	USA-CA*	Mp	177	0.00194	1.7e - 03	5.0e - 04	0.00361
83	USA-CA	Na	177	0.00296	1.9e - 03	1.8e - 03	0.00523
84	USA-CA	Np	177	0.00252	9.2e - 04	4.7e - 04	0.00616
85	USA-CA*	Pa	177	0.00227	1.2e - 03	3.8e - 04	0.00520
86	USA-NY*	На	301	0.00243	1.7e - 03	1.3e - 03	0.00425
87	USA-NY	Mp	301	0.00188	1.4e - 03	7.2e - 04	0.00350
88	USA-NY	Na	301	0.00251	1.7e - 03	1.0e - 03	0.00481
89	USA-NY*	Np	301	0.00194	8.8e - 04	4.0e - 04	0.00455
90	USA-NY*	Pa	301	0.00105	6.3e - 04	2.7e - 04	0.00223
91	USA-TX	На	71	0.00391	3.0e - 03	1.5e - 03	0.00722
92	USA-TX	Mp	71	0.00159	1.1e - 03	5.4e - 04	0.00311
93	USA-TX	Na	71	0.00336	2.2e - 03	2.1e - 03	0.00584
94	USA-TX	Np	71	0.00297	1.3e - 03	5.6e - 04	0.00707
95	USA-TX	Pa	71	0.00214	1.1e - 03	4.2e - 04	0.00492
96	Viet Nam [*]	Ha	143	0.00281	1.6e - 03	1.5e - 03	0.00527
97	Viet Nam	Mp	143	0.00182	1.1e - 03	7.5e - 04	0.00363

		I			1	I	I	1	I
	98	Viet Nam [*]	Na	143	0.00240	2.0e - 03	1.4e - 03	0.00383	
	99	Viet Nam	Np	143	0.00259	1.2e - 03	5.9e - 04	0.00600	
_	100	Viet Nam	Pa	143	0.00177	7.4e - 04	4.0e - 04	0.00416	

GENBANK Accession Numbers for Data in Chapter 3 $\,$

=

_				
AY679147	CY000001	CY000009	CY000017	CY000025
CY000033	CY000041	CY000049	CY000057	CY000065
CY000073	CY000081	CY000089	CY000097	CY000105
CY000113	CY000129	CY000137	CY000153	CY000161
CY000169	CY000177	CY000185	CY000193	CY000201
CY000209	CY000217	CY000225	CY000233	CY000241
CY000249	CY000257	CY000265	CY000281	CY000289
CY000313	CY000321	CY000329	CY000337	CY000345
CY000353	CY000361	CY000369	CY000377	CY000385
CY000417	CY000425	CY000433	CY000441	CY000473
CY000481	CY000489	CY000497	CY000505	CY000513
CY000521	CY000529	CY000537	CY000545	CY000553
CY000561	CY000569	CY000584	CY000585	CY000625
CY000753	CY000761	CY000777	CY000785	CY000793
CY000865	CY000901	CY000909	CY000933	CY000941
CY000957	CY000965	CY000973	CY001013	CY001021
CY001029	CY001037	CY001045	CY001061	CY001064

CY001080	CY001088	CY001096	CY001104	CY001112
CY001128	CY001144	CY001152	CY001160	CY001168
CY001197	CY001205	CY001213	CY001221	CY001229
CY001261	CY001285	CY001293	CY001301	CY001309
CY001317	CY001333	CY001405	CY001421	CY001512
CY001552	CY001632	CY001648	CY001720	CY001728
CY001736	CY002000	CY002008	CY002016	CY002040
CY002048	CY002056	CY002064	CY002072	CY002128
CY002176	CY002184	CY002192	CY002208	CY002216
CY002224	CY002232	CY002248	CY002256	CY002328
CY002344	CY002424	CY002432	CY002440	CY002448
CY002456	CY002464	CY002488	CY002520	CY002592
CY002712	CY002720	CY002728	CY002736	CY002784
CY002816	CY003032	CY003056	CY003072	CY003080
CY003088	CY003096	CY003104	CY003120	CY003123
CY003136	CY003144	CY003152	CY003160	CY003168
CY003176	CY003184	CY003192	CY003200	CY003208
CY003408	CY003416	CY003424	CY003640	CY003648
CY003656	CY003664	CY003680	CY003777	CY006076
CY006084	CY006092	CY006291	CY006371	CY006379

CY008164	CY008884	CY009260	CY012792	CY013216
CY013224	CY013232	CY013805	CY014159	CY015676
CY015684	CY015692	CY015700	CY015708	CY015716
CY015724	CY015732	CY015740	CY015748	CY015756
CY015764	CY015772	CY015780	CY015788	CY015796
CY015804	CY015812	CY015820	CY015828	CY015836
CY015844	CY015852	CY015860	CY015868	CY015876
CY015884	CY015892	CY015900	CY015908	CY015916
CY015924	CY015932	CY015940	CY015948	CY015956
CY015964	CY015972	CY015980	CY015988	CY015996
CY016004	CY016012	CY016020	CY016028	CY016036
CY016044	CY016220	CY016979	CY016987	CY016995
CY017083	CY017091	CY017099	CY017107	CY017355
CY017797	CY018925	CY019141	CY019149	CY019157
CY019165	CY019173	CY019181	CY019189	CY019245
CY019253	CY019261	CY019269	CY019285	CY019293
CY019301	CY019309	CY019317	CY019325	CY019333
CY019811	CY019819	CY019827	CY019835	CY019843
CY019851	CY019859	CY019931	CY019939	CY020005
CY020053	CY020061	CY020069	CY020077	CY020085

CY020093	CY020101	CY020109	CY020117	CY020125
CY020133	CY020357	CY020365	CY020533	CY021989
CY025421	CY025485	CY025643	CY025715	CY025731
CY025739	CY025747	CY025835	CY025843	CY025851
CY026195	CY026275	CY026555	CY026787	CY027563
CY027579	CY028475	CY031563	CY032429	CY032437
CY032445	CY032453	CY032461	CY032469	CY032477
CY032485	CY032493	CY032501	CY032517	CY032525
CY032533	CY032541	CY032549	CY033638	CY034084
CY034092	CY034414	CY035086	CY035094	CY035102
CY036967	CY037359	CY037543	CY037607	CY037631
CY037711	CY037743	CY038511	CY038519	CY038527
CY038543	CY038559	CY038567	CY038583	CY038591
CY038607	CY038615	CY038623	CY038631	CY038639
CY038647	CY038663	CY038671	CY038679	CY038695
CY038703	CY038711	CY038727	CY038735	CY038743
CY038751	CY038791	CY038815	CY038911	CY038935
CY038943	CY038951	CY038959	CY038975	CY038983
CY038991	CY039007	CY039015	CY039023	CY039031
CY039039	CY039047	CY039055	CY039063	CY039159

CY039167	CY039175	CY039183	CY039207	CY039215
CY039223	CY039231	CY039239	CY039247	CY039439
CY039487	CY039495	CY039503	CY040298	CY040306
CY040314	CY040322	CY040338	CY040346	CY040354
CY043744	CY043752	CY043760	CY043768	CY044333
CY044381	CY044397	CY044429	CY044445	CY044453
CY044461	CY044469	CY044476	CY044492	CY044500
CY044508	CY044540	CY044548	CY044572	CY044580
CY044588	CY044596	CY044604	CY044612	CY044620
CY044628	CY044636	CY044644	CY044652	CY044668
CY044676	CY044692	CY044708	CY044716	CY044724
CY044732	CY044740	CY044748	CY044756	CY044772
CY044780	CY044788	CY044796	CY044804	CY044812
CY044820	CY044828	CY044844	CY044852	CY050452
CY050460	CY050468	CY050492	CY050500	CY050508
CY050532	CY050540	CY050556	CY050564	CY050572
CY050580	CY050588	CY050596	CY050604	CY050620
CY050628	CY050636	CY050652	CY050668	CY050676
CY050684	CY050708	CY050716	CY050724	CY050732
CY050788	CY050796	CY050820	CY050828	CY050836
CY055091	CY055099	CY058756	CY058764	CY058772
----------	----------	----------	----------	----------
CY058780	CY058796	CY058804	CY064815	CY064823
CY064847	CY064855	CY064863	CY064879	CY064887
CY066519	CY067197	CY067205	CY067213	CY067221
CY067229	CY067237	CY067245	CY067253	CY067921
CY067929	CY067937	CY067945	CY067953	CY067961
CY067969	CY067977	CY067985	CY067993	CY068001
CY068009	CY068017	CY068025	CY068033	CY068041
CY068049	CY068057	CY068065	CY068073	CY068081
CY068089	CY068097	CY068105	CY068113	CY068121
CY068129	CY068137	CY068145	CY068153	CY068161
CY068169	CY068177	CY068185	CY068193	CY068201
CY068209	CY068217	CY068225	CY068233	CY068241
CY068249	CY068257	CY068265	CY068273	CY068281
CY068289	CY068297	CY068305	CY068313	CY068321
CY068329	CY068337	CY068353	CY068361	CY068377
CY068385	CY068393	CY068401	CY068409	CY068417
CY068425	CY068433	CY068441	CY068449	CY068457
CY068465	CY068473	CY068481	CY068489	CY068497
CY068505	CY068513	CY068521	CY068529	CY068537

CY068545	CY068553	CY068561	CY068569	CY068577
CY068585	CY068593	CY068601	CY068609	CY068617
CY068625	CY068633	CY068678	CY068686	CY068694
CY068702	CY068710	CY068718	CY068726	CY068734
CY068742	CY068750	CY068758	CY068766	CY068774
CY068782	CY068790	CY068798	CY068806	CY068814
CY068822	CY068830	CY068838	CY068846	CY068854
CY068862	CY068870	CY068878	CY070919	CY070927
CY070935	CY070943	CY070951	CY070959	CY070967
CY072190	CY072198	CY072206	CY072214	CY073757
CY073869	CY074675	CY074683	CY074691	CY074699
CY074707	CY074715	CY074723	CY074731	CY074739
CY074747	CY074755	CY074763	CY074771	CY074779
CY074787	CY074795	CY074803	CY074811	CY074819
CY074827	CY074835	CY074843	CY074851	CY074859
CY074867	CY074875	CY074883	CY074891	CY074899
CY074907	CY074915	CY074923	CY074931	CY077425
CY080459	CY080467	CY080475	CY080483	CY080491
CY081025	CY084334	CY084385	CY084393	CY084401
CY084409	CY084417	CY088774	CY088782	CY088790

CY088843	CY088851	CY088859	CY088867	CY088875
CY088883	CY088891	CY088899	CY088907	CY088915
CY088923	CY088931	CY088939	CY088947	CY088955
CY088963	CY088971	CY088979	CY088987	CY088995
CY089003	CY089011	CY089019	CY089027	CY089540
CY089629	CY089733	CY089741	CY089749	CY089765
CY089773	CY090941	CY090957	CY091013	CY091021
CY091037	CY091053	CY091069	CY091101	CY091133
CY091173	CY091213	CY091221	CY091309	CY091429
CY091461	CY091501	CY091509	CY091517	CY091525
CY091533	CY091541	CY091549	CY091557	CY091581
CY092241	CY092249	CY092257	CY092265	CY092273
CY092281	CY092289	CY092297	CY092305	CY092313
CY092329	CY092353	CY092361	CY092369	CY092377
CY093117	CY093248	CY093343	CY098065	CY098073
CY098081	CY104076	CY104084	CY104092	CY104100
CY104108	CY104116	CY104124	CY104132	CY104140
CY104148	CY104156	CY104164	CY104172	CY104180
CY104188	CY104196	CY104204	CY104212	CY104220
CY104228	CY104236	CY104252	CY104260	CY104268

CY104316	CY104324	CY104332	CY104340	CY104348
CY104356	CY104364	CY104372	CY104380	CY104388
CY104396	CY104404	CY104412	CY104420	CY104428
CY104436	CY104444	CY104452	CY104460	CY104468
CY104476	CY104484	CY104492	CY104500	CY104508
CY104516	CY104524	CY104532	CY104540	CY104548
CY104622	CY104630	CY104638	CY104646	CY104678
CY105190	CY105206	CY105214	CY105238	CY105246
CY105254	CY105262	CY105270	CY105278	CY105286
CY105294	CY105302	CY105310	CY105318	CY105326
CY105334	CY105342	CY105358	CY105366	CY105374
CY105382	CY105390	CY105398	CY105406	CY105414
CY105422	CY105430	CY105438	CY105446	CY105454
CY105462	CY105470	CY105478	CY105486	CY105494
CY105502	CY105510	CY105518	CY105526	CY105534
CY105542	CY105550	CY105558	CY105566	CY105574
CY105582	CY105590	CY105598	CY105606	CY105614
CY105622	CY105630	CY105638	CY105646	CY105654
CY105662	CY105670	CY105678	CY105686	CY105694
CY105702	CY105710	CY105718	CY105726	CY105734

CY105742	CY105750	CY105758	CY105766	CY105774
CY105782	CY105790	CY105798	CY105806	CY105814
CY105822	CY105830	CY105838	CY105846	CY105854
CY105862	CY105870	CY105878	CY105886	CY106576
CY106584	CY106592	CY106600	CY106608	CY106616
CY106624	CY106632	CY106640	CY106648	CY106656
CY106664	CY106672	CY106680	CY106688	CY106696
CY106704	CY106712	CY106720	CY106728	CY106736
CY106744	CY106752	CY106760	CY106768	CY106776
CY106784	CY106792	CY106800	CY106808	CY106816
CY106824	CY106832	CY106840	CY106848	CY106856
CY106864	CY106872	CY106880	CY106888	CY106896
CY106904	CY106912	CY106920	CY106928	CY106936
CY106944	CY106952	CY106960	CY106968	CY106984
CY106992	CY111126	CY111134	CY111142	CY111150
CY111158	CY111166	CY111174	CY111182	CY111190
CY111198	CY111214	CY111222	CY111230	CY111238
CY111246	CY111270	CY111302	CY111310	CY111318
CY111326	CY111334	CY111342	CY111350	CY111358
CY111366	CY111382	CY111390	CY111406	CY111414

CY111422	CY111430	CY111438	CY111446	CY111454
CY111462	CY111470	CY111478	CY111546	CY114373
CY115464	CY115472	CY115480	CY115488	CY115496
CY115504	CY115512	CY115520	CY115528	CY115536
CY115544	CY115552	CY115560	CY115568	CY115576
CY115584	CY115592	CY115600	CY115608	CY115616
CY115624	CY115632	CY115640	CY115648	CY115656
CY115664	CY115672	CY115680	CY115688	CY115696
CY115704	CY115712	CY115720	CY115728	CY115736
CY115744	CY115752	CY115760	CY115768	CY115776
CY115784	CY115792	CY115800	CY115808	CY115816
CY115824	CY116699	CY116707	CY116715	CY117581
CY117589	CY121125	CY121736	CY125717	CY125791
CY134481	CY134505	CY134513	CY134529	CY134545
CY134561	CY134577	CY134593	CY134601	CY134609
CY134732	CY134740	CY134748	CY134756	CY134764
CY134772	CY134780	CY134788	CY134796	CY134804
CY134812	CY134820	CY134828	CY134836	CY134844
CY134852	CY134860	CY134868	CY134876	CY134884
CY134892	CY134900	CY134908	CY134916	CY134924

CY134932	CY134940	CY134948	CY134956	CY134964
CY134972	CY134980	CY134988	CY134996	CY135004
CY135012	CY135020	CY135028	CY135036	CY135044
CY135052	CY135060	CY135068	CY135076	CY135084
CY135092	CY135100	CY135124	CY135132	CY135140
CY135148	CY135156	CY135164	DQ181797	DQ181798
DQ181799	DQ181800	DQ181801	DQ181802	DQ181803
DQ181804	DQ181805	DQ181806	EF629366	EF629367
EF629368	EF629369	EF629370	EF629373	EF643017
EU482444	EU482446	EU482448	EU482450	EU482463
EU482464	EU482465	EU482466	EU482467	EU482468
EU482469	EU482470	EU482471	EU482472	EU482473
EU482474	EU482475	EU482541	EU482542	EU482543
EU482544	EU482545	EU482546	EU482547	EU482548
EU482549	EU482550	EU482551	EU482552	EU482553
EU482554	EU482555	EU482556	EU482557	EU482558
EU482559	EU482560	EU482561	EU482562	EU482563
EU482564	EU482565	EU482566	EU482568	EU482569
EU482570	EU482571	EU482572	EU482573	EU482574
EU482575	EU482576	EU482577	EU482578	EU482579

EU482580	EU482581	EU482582	EU482583	EU482584
EU482585	EU482586	EU482587	EU482588	EU482589
EU482590	EU482593	EU482594	EU482595	EU482596
EU482597	EU482598	EU482599	EU482600	EU482601
EU482602	EU482603	EU482609	EU482610	EU482611
EU482612	EU482613	EU482614	EU482615	EU482616
EU482617	EU482618	EU482619	EU482620	EU482621
EU482622	EU482623	EU482624	EU482625	EU482626
EU482627	EU482628	EU482629	EU482630	EU482631
EU482632	EU482633	EU482634	EU482635	EU482636
EU482637	EU482638	EU482639	EU482640	EU482641
EU482642	EU482643	EU482644	EU482645	EU482646
EU482647	EU482648	EU482649	EU482650	EU482651
EU482652	EU482653	EU482654	EU482655	EU482656
EU482657	EU482658	EU482659	EU482660	EU482661
EU482662	EU482663	EU482664	EU482665	EU482666
EU482667	EU482668	EU482669	EU482670	EU482671
EU482672	EU482673	EU482674	EU482675	EU482676
EU482677	EU482678	EU482679	EU482680	EU482681
EU482682	EU482683	EU482684	EU482685	EU482686

EU482687	EU482688	EU482689	EU48269@	EU482690
EU482691	EU482692	EU482693	EU482694	EU482695
EU482697	EU482698	EU482699	EU482700	EU482701
EU482702	EU482703	EU482704	EU482705	EU482719
EU482720	EU482721	EU482722	EU482723	EU482724
EU482725	EU482726	EU482727	EU482728	EU482729
EU482730	EU482731	EU482732	EU482733	EU482734
EU482735	EU482736	EU482737	EU482738	EU482739
EU482740	EU482741	EU482742	EU482743	EU482744
EU482745	EU482746	EU482747	EU482748	EU482749
EU482750	EU482751	EU482752	EU482753	EU482754
EU482755	EU482756	EU482757	EU482758	EU482759
EU482760	EU482761	EU482762	EU482763	EU482766
EU482769	EU482770	EU482771	EU482772	EU482773
EU482774	EU482775	EU482776	EU482777	EU482778
EU482779	EU482780	EU482781	EU482782	EU482783
EU482784	EU482785	EU482786	EU482787	EU482788
EU529683	EU529684	EU529685	EU529686	EU529687
EU529688	EU529689	EU529690	EU529691	EU529692
EU529693	EU529694	EU529695	EU529696	EU529697

EU529698	EU529699	EU529700	EU529701	EU529702
EU529703	EU529704	EU529705	EU529706	EU569688
EU569689	EU569690	EU569691	EU569692	EU569693
EU569694	EU569695	EU569696	EU569697	EU569698
EU569699	EU569700	EU569701	EU569702	EU569703
EU569704	EU569705	EU569706	EU569707	EU569708
EU569709	EU569710	EU569711	EU569712	EU569713
EU569714	EU569715	EU569716	EU569717	EU569718
EU569719	EU569720	EU569721	EU596483	EU596484
EU596485	EU596486	EU596487	EU596488	EU596489
EU596490	EU596491	EU596492	EU596493	EU596494
EU596495	EU596496	EU596497	EU596498	EU596499
EU596500	EU596501	EU596502	EU596503	EU596504
EU621672	EU660398	EU660399	EU660400	EU660404
EU660405	EU660406	EU660413	EU660414	EU660415
EU660416	EU660417	EU660420	EU677137	EU677138
EU677141	EU677142	EU677143	EU677144	EU677145
EU677146	EU677147	EU677148	EU677149	EU687196
EU687197	EU687198	EU687199	EU687212	EU687213
EU687214	EU687215	EU687216	EU687217	EU687218

EU687219	EU687221	EU687222	EU687223	EU687224
EU687225	EU687226	EU687227	EU687228	EU687229
EU687230	EU687231	EU687232	EU687233	EU687234
EU687235	EU687236	EU687237	EU687238	EU687239
EU687240	EU687241	EU687242	EU687243	EU687244
EU687245	EU687246	EU687248	EU687249	EU687250
EU726767	EU726768	EU726769	EU726770	EU726771
EU726772	EU726773	EU726774	EU726776	EU781135
EU781136	EU781137	EU854291	EU854292	EU854298
EU932687	EU932688	FJ024423	FJ024452	FJ024454
FJ024458	FJ024461	FJ024465	FJ024466	FJ024467
FJ024468	FJ024469	FJ024470	FJ024471	FJ024478
FJ024479	FJ024480	FJ024481	FJ024482	FJ024483
FJ024484	FJ024485	FJ182002	FJ182004	FJ182005
FJ182006	FJ182007	FJ182008	FJ182009	FJ182010
FJ182011	FJ182013	FJ182014	FJ182015	FJ182037
FJ182038	FJ182039	FJ182040	FJ182041	FJ205870
FJ205871	FJ205877	FJ205878	FJ205879	FJ205880
FJ205885	FJ226066	FJ373299	FJ373300	FJ373301
FJ373302	FJ373303	FJ373304	FJ373306	FJ390371

FJ390372	FJ390373	FJ390375	FJ390376	FJ390377
FJ390384	FJ390385	FJ390387	FJ390390	FJ390391
FJ410176	FJ410177	FJ410178	FJ410193	FJ410195
FJ410200	FJ410202	FJ410208	FJ410215	FJ410217
FJ410219	FJ410221	FJ410223	FJ410224	FJ410228
FJ410233	FJ410237	FJ410241	FJ410259	FJ410288
FJ410290	FJ410291	FJ432720	FJ432721	FJ432724
FJ432726	FJ461305	FJ461309	FJ461311	FJ461314
FJ461321	FJ478455	FJ478456	FJ478459	FJ547064
FJ547067	FJ547068	FJ547069	FJ547070	FJ547071
FJ547072	FJ547073	FJ547074	FJ547075	FJ547076
FJ547077	FJ547078	FJ547079	FJ547080	FJ547081
FJ547082	FJ547083	FJ547084	FJ547085	FJ547088
FJ547089	FJ547090	FJ562098	FJ562104	FJ562107
FJ639669	FJ639670	FJ639671	FJ639672	FJ639673
FJ639674	FJ639675	FJ639676	FJ639677	FJ639678
FJ639679	FJ639680	FJ639681	FJ639682	FJ639683
FJ639684	FJ639685	FJ639686	FJ639687	FJ639688
FJ639689	FJ639690	FJ639691	FJ639692	FJ639693
FJ639694	FJ639695	FJ639696	FJ639697	FJ639698

FJ639699	FJ639700	FJ639701	FJ639702	FJ639703
FJ639704	FJ639705	FJ639706	FJ639707	FJ639708
FJ639709	FJ639710	FJ639711	FJ639712	FJ639713
FJ639714	FJ639715	FJ639716	FJ639717	FJ639718
FJ639719	FJ639720	FJ639721	FJ639722	FJ639723
FJ639724	FJ639725	FJ639726	FJ639727	FJ639728
FJ639729	FJ639730	FJ639731	FJ639735	FJ639740
FJ639741	FJ639743	FJ639759	FJ639760	FJ639761
FJ639762	FJ639763	FJ639765	FJ639766	FJ639767
FJ639768	FJ639769	FJ639770	FJ639771	FJ639772
FJ639774	FJ639775	FJ639776	FJ639777	FJ639778
FJ639779	FJ639780	FJ639781	FJ639782	FJ639784
FJ639785	FJ639786	FJ639787	FJ639789	FJ639790
FJ639791	FJ639792	FJ639793	FJ639794	FJ639795
FJ639796	FJ639797	FJ639798	FJ639799	FJ639800
FJ639801	FJ639802	FJ639803	FJ639804	FJ639805
FJ639806	FJ639807	FJ639808	FJ639810	FJ639811
FJ639812	FJ639813	FJ639814	FJ639815	FJ639816
FJ639817	FJ639818	FJ639819	FJ639820	FJ639821
FJ639823	FJ639824	FJ639825	FJ639826	FJ639827

FJ639828	FJ639829	FJ639830	FJ639831	FJ639832
FJ639833	FJ639834	FJ639835	FJ639836	FJ639837
FJ687434	FJ687435	FJ687436	FJ687437	FJ687438
FJ687439	FJ687440	FJ687441	FJ687442	FJ687443
FJ687444	FJ687445	FJ687446	FJ687447	FJ744701
FJ744702	FJ744703	FJ744704	FJ744705	FJ744706
FJ744707	FJ744708	FJ744709	FJ744710	FJ744711
FJ744712	FJ744713	FJ744714	FJ744715	FJ744716
FJ744717	FJ744718	FJ744719	FJ744720	FJ744721
FJ744722	FJ744723	FJ744724	FJ744725	FJ744741
FJ744742	FJ744743	FJ744744	FJ744745	FJ810409
FJ810410	FJ810411	FJ810412	FJ810415	FJ810416
FJ810418	FJ810419	FJ850048	FJ850049	FJ850050
FJ850051	FJ850052	FJ850053	FJ850054	FJ850055
FJ850056	FJ850060	FJ850061	FJ850062	FJ850063
FJ850064	FJ850065	FJ850066	FJ850067	FJ850069
FJ850079	FJ850080	FJ850083	FJ850086	FJ850089
FJ850092	FJ850094	FJ850096	FJ850097	FJ850098
FJ850099	FJ850100	FJ850101	FJ850102	FJ850103
FJ850104	FJ850109	FJ850110	FJ850111	FJ850113

FJ850114	FJ850115	FJ850116	FJ850117	FJ850118
FJ850119	FJ850120	FJ850121	FJ859028	FJ873808
FJ873809	FJ873810	FJ873811	FJ873812	FJ873813
FJ873814	FJ882576	FJ882577	FJ882578	FJ882579
FJ882593	FJ882594	FJ898432	FJ898433	FJ898434
FJ898435	FJ898436	FJ898437	FJ898446	FJ898447
FJ898452	FJ898468	FJ898469	FJ898470	FJ898471
FJ898472	FJ898473	FJ898474	FJ898475	FJ898476
FJ898477	FJ898478	FJ898479	FJ906956	FJ906957
FJ906958	FJ906960	FJ906961	FJ906962	FJ913015
GQ199771	GQ199772	GQ199789	GQ199790	GQ199791
GQ199792	GQ199793	GQ199794	GQ199795	GQ199796
GQ199797	GQ199798	GQ199799	GQ199800	GQ199801
GQ199802	GQ199803	GQ199804	GQ199805	GQ199806
GQ199807	GQ199808	GQ199809	GQ199810	GQ199811
GQ199812	GQ199813	GQ199814	GQ199815	GQ199816
GQ199817	GQ199818	GQ199819	GQ199820	GQ199821
GQ199822	GQ199823	GQ199824	GQ199825	GQ199826
GQ199827	GQ199828	GQ199829	GQ199830	GQ199831
GQ199832	GQ199833	GQ199834	GQ199835	GQ199836

GQ199837	GQ199838	GQ199839	GQ199840	GQ199841
GQ199842	GQ199843	GQ199844	GQ199845	GQ199846
GQ199847	GQ199848	GQ199849	GQ199850	GQ199851
GQ199852	GQ199853	GQ199854	GQ199855	GQ199856
GQ199857	GQ199858	GQ199859	GQ199860	GQ199861
GQ199862	GQ199863	GQ199864	GQ199865	GQ199866
GQ199867	GQ199868	GQ199869	GQ199870	GQ199871
GQ199872	GQ199873	GQ199874	GQ199875	GQ199877
GQ199886	GQ199895	GQ199896	GQ199897	GQ199898
GQ252678	GQ868498	GQ868499	GQ868500	GQ868501
GQ868502	GQ868503	GQ868504	GQ868505	GQ868506
GQ868507	GQ868508	GQ868509	GQ868510	GQ868511
GQ868512	GQ868513	GQ868514	GQ868517	GQ868518
GQ868519	GQ868520	GQ868521	GQ868522	GQ868523
GQ868524	GQ868525	GQ868526	GQ868527	GQ868528
GQ868529	GQ868530	GQ868531	GQ868532	GQ868533
GQ868534	GQ868535	GQ868536	GQ868537	GQ868538
GQ868539	GQ868542	GQ868543	GQ868544	GQ868545
GQ868546	GQ868547	GQ868548	GQ868586	GQ868587
GQ868591	GQ868604	GQ868605	GQ868606	GQ868607

GQ868608	GQ868609	GQ868610	GQ868611	GQ868612
GQ868613	GQ868614	GQ868615	GQ868618	GQ868619
GQ868620	GQ868621	GQ868622	GQ868623	GQ868624
GQ868625	GQ868626	GQ868627	GQ868628	GQ868629
GQ868631	GQ868634	GQ868638	GQ868646	GU056029
GU056030	GU056031	GU056032	GU056033	GU131832
GU131833	GU131834	GU131835	GU131836	GU131837
GU131838	GU131839	GU131840	GU131841	GU131842
GU131844	GU131845	GU131846	GU131847	GU131848
GU131849	GU131850	GU131851	GU131852	GU131853
GU131854	GU131855	GU131856	GU131857	GU131858
GU131859	GU131860	GU131861	GU131862	GU131865
GU131866	GU131867	GU131868	GU131869	GU131870
GU131871	GU131872	GU131873	GU131874	GU131875
GU131876	GU131877	GU131878	GU131886	GU131896
GU131897	GU131898	GU131899	GU131900	GU131901
GU131902	GU131903	GU131904	GU131905	GU131906
GU131907	GU131908	GU131909	GU131910	GU131911
GU131912	GU131913	GU131914	GU131915	GU131916
GU131917	GU131918	GU131924	GU131927	GU131928

GU131929	GU131930	GU131931	GU131932	GU131933
GU131934	GU131935	GU131936	GU131937	GU131938
GU131939	GU131940	GU131941	GU131942	GU131943
GU131944	GU131945	GU131946	GU131956	GU131957
GU131958	GU131960	GU131961	GU131962	GU131963
GU131964	GU131965	GU131966	GU131967	GU131968
GU131969	GU131970	GU131971	GU131972	GU131973
GU131976	GU131977	GU131978	GU131979	GU131980
GU131981	GU131982	GU131983	GU131984	HM181933
HM181934	HM181935	HM181936	HM181937	HM181938
HM181939	HM181940	HM181941	HM181942	HM181943
HM181944	HM181945	HM181946	HM181947	HM181948
HM181949	HM181950	HM181951	HM181952	HM181953
HM181954	HM181955	HM181956	HM181957	HM181958
HM181959	HM181972	HM181973	HM181974	HM181975
HM181976	HM181977	HM181978	HM488255	HM631852
HM631853	HM631854	HM631855	HM631856	HM631857
HM631858	HM631859	HM631860	HM631861	HM631862
HM631863	HM631864	HM631865	HM631866	HM631867
HM631868	HM631869	HM756274	HM756275	HM756276

HM756277	HM756278	HM756280	HM756281	HM756282
HQ166030	HQ166031	HQ166032	HQ166033	HQ166034
HQ166035	HQ166036	HQ166037	HQ235027	HQ541785
HQ541786	HQ541787	HQ541788	HQ541789	HQ541790
HQ541791	HQ541792	HQ541793	HQ541794	HQ541795
HQ541797	HQ541798	HQ541799	HQ541802	HQ541804
HQ541805	HQ634199	HQ671176	HQ671177	HQ705609
HQ705611	HQ705612	HQ705613	HQ705614	HQ705615
HQ705616	HQ705617	HQ705618	HQ705619	HQ705620
HQ705621	HQ705623	HQ705624	HQ705625	HQ733861
HQ891025	JF295012	JF357905	JF357906	JF357907
JF730044	JF730045	JF730046	JF730047	JF730048
JF730049	JF730050	JF730051	JF730052	JF730053
JF730054	JF730055	JF937635	JF937644	JF937645
JF937651	JN697379	JN796245	JN819402	JN819403
JN819405	JN81941	JN819410	JN819411	JN819412
JN819413	JN819414	JN819415	JN819416	JN819420
JN819421	JN819423	JN819424	JN819425	JQ287664
JQ287665	JQ287666	JX079688	JX079690	JX079691
JX079694	KC882479	KC882639	KC882908	KC892437

List of Equations

2.1 [Bull et al., 2007]: Inequality condition based mutation rate per generation	
and mean fecundity for demographic extinction of viral populations by lethal	
mutagenesis.	11
2.2 [Feller, 1968]: Probability generating function for the number of direct de-	
scendants of an individual in a branching process after t rounds of replica-	
tions, assuming a geometrically distributed number of decendants per round	
of replication.	16
2.3 Expression for the probability of extinction of a viral cell infection chain in 1	
generation $P(E_1)$, conditional on a lethally mutated or mutation-free initial	
template	16
2.4 Special case of $P(E_1)$: Purely linear replication, with $t = 1$	24
3.1 Modified from [Orr, 2000]: Expression for the expected rate of adaptive	
evolution of non-recombining as exuals	31
4.1 [Sanjuan, 2012]: Scientifically inconsistent expression for the rate of neutral	
substitution in non-recombining as exuals	48

5.1 [Orr, 2000]: Expression for the rate of adaptive evolution in non-recombining	
asexuals	56
5.2 The expected number of new adaptive mutant genomes introduced into the	
population on genomes free of deleterious mutations per generation \ldots .	63
5.3 [Kimura, 1962]: The probability of fixation of new adaptive mutations	63
5.4 Modified expression for the probability of fixation of new adaptive mutations	
in populations of ssRNA viruses	64
5.5 Modified expression for the probability of fixation of new adaptive mutations	
in populations of ssRNA viruses, while accounting for the decelerating ef-	
fects of deleterious mutations	65
5.6 Probability of fixation of new mutations under conditions of linear replica-	
tion and one initial opposite sense template	68
5.7 Expression for the probability of fixation of new adaptive mutations under	
linear replication and multiple intial oppose sense templates	72
$5.8\mathrm{A}$ new formulation for the rate of Adaptive Evolution in ssRNA viruses $% 10^{-1}$.	77

List of Figures

- 2.1 Variation in the probability of exctinction at critical mutation rates that satisfy the zero class extinction condition described in Equation 2.1. a) Preventing replacement for a high-fecundity virus is associated with a greater probability of extinction than preventing replacement in a low-fecundity virus; b) The probability of extinction in a single generation varies radically with the number of initial templates. With many templates, viral populations may easily survive critically high mutation rates.
- 2.2 Variation in the probabily of extinction under linear replication. a)
 Effect of fecundity: The value of mean fecundity has only a marginal effect on the probability of extinction, given some mutation rate; b)
 Effect of template: The number of initial opposite templates utilized in the replication process has a large and significant impact on the probability of extinction.

19

- 2.3 Variation in the probabily of extinction under non-linear replication.
 a) Variation in the probability of extinction with increasing mutation rate per generation; b) variation in the probability of extinction with constant mutation rate per generation. Some non-linear mode of replication minimizes the risk of extinction.
- 2.4 Effects of a complex fitness landscape. The presence of non-lethal deleterious mutation affects bother the a) mean fitness and b) size of the zero class.
 22
- 3.1 Variation in substitution rate by gene in Dengue and H3N2 Influenza.
 a) No significant pairwise difference between any two pairs of gene in Dengue; b) Significant pairwise differences for across-group pairs of genes in Influenza.
 38

- 5.1 The effect of mean selective advantage s_A on the extent to which we underestimate the probability of fixation when we do not account for variation in the initial frequency of new adaptive mutations. 69
- 5.2 Change in the probability of fixation with selective advantage s_A . . . 70

- 5.5 Variation in the expected probability of fixation due to the mode of replication. Non-linear and binary replication maximizes the probability of fixation given mutation rate and fitness landscape. On the X-axis, the number of rounds of replication goes from 1 to $Log_2(N_c)$. 78

Bibliography

- [Ahlquist, 2002] Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296(5571):1270–1273.
- [Barton, 1995] Barton, N. (1995). Linkage and the limits to natural selection. Genetics, 140:821–841.
- [Beibricher and Eigen, 2005] Beibricher, C. and Eigen, M. (2005). The error threshold. Virus Res, 107(2):117–127.
- [Benson et al., 2013] Benson, D., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D., Ostell, J., and Sayers, E. (2013). Genbank. Nucleic Acids Res., 41:D36– D42.
- [Birky and Walsh, 1988] Birky, C. and Walsh, J. (1988). Effects of linkage on rates of molecular evolution. Proc. Natl. Acad. Sci. USA, 85(17):6414–6418.

- [Bull et al., 2013] Bull, J., Joyce, P., Gladstone, E., and Molineaux, A. (2013). Empirical complexities in the genetic foundations of lethal mutagenesis. *Genetics*, 195(2):541–552.
- [Bull et al., 2007] Bull, J., Sanjuan, R., and Wilke, C. (2007). Theory of lethal mutagenesis for viruses. *J Virol*, 81(6):2930–2939.
- [Burch and Chao, 2000] Burch, C. and Chao, L. (2000). Evolvability of an RNA virus is determined by its mutational neighbourhood. *Nature*, 406:625–628.
- [Chao et al., 2002] Chao, L., Rang, C., and Wong, L. (2002). Distribution of spontaneous mutants and inferences about the replication mode of RNA bacteriophage phi6. J Virol, 76(7):3276–3281.
- [Crotty et al., 2001] Crotty, S., Cameron, C., and Andino, R. (2001). RNA virus error catastrophe, direct molecular test by using ribavirin. *Proc Natl Acad Sci* USA, 98:6895–6900.
- [Crotty et al., 2000] Crotty, S., Maag, D., Arnold, J., Zhong, W., Lau, J., Hong, Z., Andino, R., and Cameron, C. (2000). The broad-spectrum antiviral ribunucleoside ribavirin is an RNA virus mutagen. *Nat Med*, 6(12):1375–1379.
- [Domingo et al., 2001] Domingo, E., Biebricher, C., Eigen, M., and Holland, J.
 (2001). Quasispecies and RNA Virus Evolution: Principles and Consequences.
 Landes Biosciences.

- [Domingo et al., 2005] Domingo, E., Escarmis, C., Lazaro, E., and Manrubia, S. (2005). Quasispecies dynamics and RNA virus extinction. Virus Res, 107:129– 139.
- [Drake, 1993] Drake, J. (1993). Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA, 90:4171–4715.
- [Drake and Holland, 1999] Drake, J. and Holland, J. (1999). Mutation rates among RNA viruses. *Proc Natl Acad Sci USA*, 96(24):13910–13913.
- [Drummond et al., 2011] Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A. amd Duran, C., Field, M., Heled, J. amd Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., and Wilson, A. (2011). Geneious v5.4.
- [Drummond et al., 2012] Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with beauti and the beast 1.7. *Molecular Biology* and Evolution.
- [Duffy et al., 2002] Duffy, S., Shackelton, L., and Holmes, E. (2002). Rates of evolutionary change in viruses: patterns and determinants. *Nat Rev Genet*, 9(4):267–276.
- [Eigen, 1971] Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. *Naturwissenschaften*, 58(10):465–523. 10.1007/BF00623322.

- [Eigen, 2002] Eigen, M. (2002). Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA, 99(21):13374–13376.
- [Elena and Sanjuan, 2005] Elena, S. and Sanjuan, R. (2005). Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol, 79(18):11555–11558.
- [Feller, 1968] Feller, W. (1968). An Introduction to Probability Theory and its Applications. Third Edition. John Wiley and Sons.
- [Fisher, 1930] Fisher, R. (1930). The evolution of dominance in certain polymorphic species. Am Nat, 64(694):384–406.
- [French and Stenger, 2003] French, R. and Stenger, D. (2003). Evolution of wheat streak mosaic virus: Dynamics of population growth within plants may explain limited variation. Ann Rev Phytopathol, 44:199–214.
- [Garcia-Villada and Drake, 2012] Garcia-Villada, L. and Drake, J. (2012). The three faces of riboviral spontaneous mutation: spectrum, mode of genome replication, and mutation rate. *PLoS Genet*, 8(7).
- [Holland et al., 1990] Holland, J., Domingo, E., de la Torre, J., and Steinhauer, D. (1990). Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J Virol, 64(8):3960–3962.

- [Holland et al., 1982] Holland, J., Spindler, K., Grabau, E., Nichol, S., and VandePol,
 S. (1982). Rapid evolution of RNA genomes. *Science*, 215(4540):1577–1585.
- [Holmes, 2009] Holmes, E. (2009). The Evolution and Emergence of RNA Viruses.Oxford Series in Ecology and Evolution. Oxford University Press.
- [Jenkins et al., 2001] Jenkins, G., Rambaut, A., Pybus, O., and Holmes, E. (2001). Rate of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J Mol Evol, 54:156–165.
- [Kimura, 1962] Kimura, M. (1962). On the probability of fixation of mutant genes in a population. *Genetics*, 47:713–719.
- [Kimura, 1964] Kimura, M. (1964). Diffusion models in populations genetics. J Appl Probab, 1:177–232.
- [Lagerkvist, 1978] Lagerkvist, U. (1978). "Two out of Three": An alternative method for codon reading. Proc Natl Acad Sci USA, 75(4):1759–1762.
- [Lederberg, 1998] Lederberg, J. (1998). Emerging infection: An evolutionary perspective. Emerg Infect Dis, 4(3):366–371.
- [Loverdo et al., 2012] Loverdo, C., Park, M., Schreiber, S., and Lloyd-Smith, J. (2012). Influence of viral replication mechanisms on within-host evolutionary dynamics. *Evolution*, 66(11):3462–3471.

- [McCauley and Mahy, 1983] McCauley, J. and Mahy, B. (1983). Structure and function of the influenza virus genome. *Biochem J*, 211:281–294.
- [Orr, 2000] Orr, H. (2000). The rate of adaptation in asexuals. *Genetics*, 155:961–968.
- [Orr, 2003] Orr, H. (2003). The distribution of fitness effects among beneficial mutations. Genetics, 163(4):1519–1526.
- [Perera and Kuhn, 2008] Perera, R. and Kuhn, R. (2008). Structural proteomics of dengue virus. *Curr Opin Microbiol*, 11:369–377.
- [Poch et al., 1990] Poch, O., Bloomberg, B., Bougueleret, L., and Tordo, N. (1990). Sequence comparison of five polymerases (L proteins) of unsegmented negativestrand RNA viruses: Theoretical assignment of functional domains. J Gen Virol, 71(5):1153–1162.
- [Portela and Digard, 2002] Portela, A. and Digard, P. (2002). The influenza virus nucleoprotein: a multifunctinal RNA-binding protein pivotal to virus replication. J Gen Virol, 83:723–734.
- [Pressing and Reanney, 1984] Pressing, J. and Reanney, D. (1984). Divided genomes and intrinsic noise. Journal of Molecular Evolution, 20(2):135–146.
- [Pybus and Rambaut, 2009] Pybus, O. and Rambaut, A. (2009). Evolutionary analysis of the dynamics of viral infectious disease. *Nat Rev Genet*, 10:540–550.

- [R Development Core Team, 2013] R Development Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
- [Sanjuan, 2010] Sanjuan, R. (2010). Mutational fitness effects in RNA and singlestranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. *Philos Trans R Soc Lond B Biol Sci*, 365(1548):1975–1982.
- [Sanjuan, 2012] Sanjuan, R. (2012). From molecular genetics to phylodnmamics: Evolutionary relevance of mutation rates across viruses. *PLoS Pathog*, 8(5).
- [Sanjuan et al., 2004] Sanjuan, R., Moya, A., and Elena, S. (2004). The distribution of fitness effects caused by single nucleotide substitutions in an RNA virus. *Proc Natl Acad Sci USA*, 101(22):8396–8401.
- [Sanjuan et al., 2010] Sanjuan, R., Nebot, M., Chirico, N., Mansky, L., and Belshaw, R. (2010). Viral mutation rates. J Virol, 84(19):9733–9748.
- [Sardanyes et al., 2009] Sardanyes, J., Sola, R., and Elena, S. (2009). Replication mode and landscape topology differentially affect RNA virus mutational load and robustness. J Virol, 83(23):12579–12589.
- [Schlesinger et al., 1990] Schlesinger, J., Brandriss, M., Putnak, J., and Walsh, E. (1990). Cell surface expression of yellow fever virus non-structural glycoprotein NS1: consequences of interaction with antibody. J Gen Virol, 71:553–599.

- [Schoniger et al., 1994] Schoniger, M., Janke, A., and von Haeseler, A. (1994). Studies in Classification, Data Analysis and Knowledge Organization, Chapter: How to deal with Third Codon Positions in Phylogenetic Analysis. Information Systems and Data Analysis. Springer Berlin Heidelberg.
- [Thebaud et al., 2010] Thebaud, G., Chadeouf, J., Morelli, M., McCauley, J., and Haydon, D. (2010). The relationship between mutation frequency and replication strategy in positive-sense single-stranded rna viruses. *Proc R Soc B*, 277(1602):809– 817.
- [Xia, 1998] Xia, X. (1998). The rate heterogeneity of nonsynonymous substitution in mammalian mitochondrial genes. Mol Biol Evol, 15(3):336–344.