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Abstract

Effects of Life History and Genome Architecture on ssRNA Virus Evolution and
Extinction

By

Anand Bhardwaj

Single-stranded RNA viruses have evolved to survive extremely high mutation rates.
The ubiquity and effect of ssRNA viral diseases makes an understanding of the the-
oretical and mechanical underpinnings of rapid viral evolution vital to our ability to
control them. In this body of work, we explore some of the ways in which ssRNA
viruses can uncouple the rate at which variation is generated (mutation rate) from
the rate at which variation is observed (measured rate of molecular evolution).

A combination of replication strategies and genome architecture allow ssRNA viruses
to evolve rapidly while avoiding many of the consequences of their error-prone replica-
tion process. However, this also means that ssRNA viruses exist at the very periphery
of viable parameter space. Our models of viral evolution suggest that this can be ex-
ploited as a means of viral control, an idea that is reflected in the relatively new and
experimental process of lethal mutagenesis.

We also highlight the general need for more molecular data and better estimates
of viral replication parameters. Ironically, the latter is rare in scientific literature
because of a lack of awareness of their impact on the rates of ssRNA virus evolution,
and not because of any particular difficulty in obtaining them.
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Chapter 1

On Painting a Better Portrait

It inevitably rests on any researcher to justify the very existence and relevance of her

or his work. For doctoral researchers, after 5-odd years of toil, this request might

seem unfair. However, in our times, when funding is sparse, and prioritization is a

must, it is important to understand and to state the broader context in which to

place our research. So what is the utility of this body of work? The short answer to

that question is: it helps us paint a better portrait of the archetypical virus.

Why do we care about ssRNA virus evolution?

Evolution, as we understand it, is the result of the interaction of multiple processes

- a mutation process generates prime variation; a filter process then eliminates a

1
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majority of this variation. We count up what little makes it through the filter, call it

the measured rate of evolution and use it to infer something about the filter process

itself. For most evolutionary processes, this filter is some combination of selection and

drift. In the case of single stranded RNA (ssRNA) viruses, however, this filter process

is largely driven by the unique demographic conditions and replication processes of

ssRNA viruses. These viruses have evolved unique life history strategies that allow

them to get away with a rapid but error-prone replication process. In a sense, ssRNA

viruses have evolved a replication process that uncouples the rate at which variation is

generated (mutation rate) from the rate at which variation is observed (the measured

rate of molecular evolution).

ssRNA viruses are ubiquitous and are responsible for many of the most reconizable

diseases known to man: Rabies, influenza, dengue, hepatitis C, measles, polio, and

ebola are just a few of the more recognizable ssRNA viruses. The ubiquity and

consequences of viral diseases, measured in terms of mortality and morbidity, make

the understanding of viral evolution vital to our ability to control them. Many of

our major concerns relating to ssRNA viruses stem from their evolution and rapid

emergence [Lederberg, 1998, Sardanyes et al., 2009, Domingo et al., 2001].

In addition, from a purely intellectual standpoint, RNA virus mutation rates, which

are orders of magnitude greater than comparable DNA-based viruses, allow RNA viral

evolution to occur at ecological times scales, and allow us to ask and address ques-
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tions about the interaction of ecological and evolutionary processes [Holmes, 2009,

Pybus and Rambaut, 2009].

Many of our expectations of the patterns and rates of virus evolution comes from

population genetic literature [Orr, 2000, Orr, 2003]. While these are elegant and

appropriate for describing evolution in broad strokes, they fall short of describing the

complexity of viral replication and demographics and the various strategies by which

viruses dodge the deleterious effects of a high error rate.

A recurring theme of this dissertation is an appeal for more data and better estimates

of parameters. In the following chapters, I hope to demonstrate the enormous value

of having information on the mode of replication, template number, and fecundity of

viral populations. High quality estimates of these parameters are rare - not because

of any particular difficulty in obtaining them [Drake, 1993, Drake and Holland, 1999,

Garcia-Villada and Drake, 2012], but because of a general lack of awareness of their

impact on the rates of molecular evolution.

In the following chapters I look at different aspects of viral evolution, and explore

the ways in which the dynamics of the viral replication process, viral demographic

parameters, and genome architecture affect the measured rate of molecular evolution

in single stranded RNA viruses.
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In Chapter 2, I explore the upper limits of viral evolution through the lens of demo-

graphic extinction, and the phenomenon of lethal mutagenesis. This is a relatively

new and experimental process of viral control, in which artificially increasing the mu-

tation rate of a viral population can cause rapid extinction. This process exploits

the long-standing idea that RNA viruses, by virtue of their highly error-prone repli-

cation process, are near some critical upper bound in mutation rates, more so than

DNA-based organisms. What exactly constitutes this upper bound is unclear. The

theoretical underpinnings behind this phenomenon are still poorly understood, and

existing models have poor predictive ability [Bull et al., 2013]. I examine the limita-

tions of existing models that attempt to explain lethal mutagenesis, and then proceed

to present my own models, which I believe are more accurate because they account

for critical complexities in the viral intracellular replication process that are ignored

by existing models.

While viral extinction as a means of control is important in its own right, understand-

ing the processes that determine the rate of viral mutation and evolution in nature

are equally important. In Chapter 3, I dissect a long-standing assumption about

viral evolution - that adaptive substitutions can only occur on viral genomes that are

free of deleterious mutations. I look at the validity of this assumption with different

types of viral genome architecture. I use a massive dataset of RNA sequences col-

lected from patients of H3N2 Seasonal Influenza Type A, and Dengue Type I, II, and
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III from around the world, and Bayesian phylogenetic techniques to estimate the rate

of neutral, adaptive and overall evolution in these two viral systems, to elucidate how

genome architecture affects the effective adaptable population size of viruses.

Chapter 4 is a brief note and rebuttal to a peer reviewed and published paper from

2012 which uses a demonstrably wrong mathematical model to assert the existence

of an “error threshold” in nature based on an alleged (but fundamentally wrong)

relationship between mutation rate and the rate of neutral evolution. My rebuttal

is supported by long-standing theoretical results and by new evidence I present in

Chapter 3.

In Chapter 5 I develop and present a general mathematical framework to describe

the expected rate of adaptive evolution in ssRNA viruses that can take into account

and explore the effects of variation in replication dynamics and demographics. I

use this mathematical framework to predict conditions under which rapid fixation of

small effect adaptive mutations are possible, and how the measured rate of molecular

evolution can be of limited informative value in the absence of replication parameters

like mode of replication, template number and viral fecundity and population size.
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Chapter 2

Demographic Extinction of ssRNA

Viruses

Anand Bhardwaj, Leslie A. Real & David J. Cutler

In this study model I the effects of variation in the process of intracellular replication

of single stranded RNA viruses on the rate of extinction of viral infection chains.

I highlight the importance of mutations on opposite sense templates, which act as

mutation-accumulation bottlenecks, amplifying the frequency of lethal mutations. I

explore the drawbacks of ambiguous and biologically simplistic mathematical descrip-

tions of the phenomenon of lethal mutagenesis, which cannot be used to make reliable

predictions of the conditions required to drive populations to extinction.

7
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2.1 Introduction

Viruses, and single stranded RNA viruses in particular, have extremely high mutation

rates that are serveral orders of magnitude higher than those for humans and other

DNA-based organisms [Sanjuan et al., 2010, Drake and Holland, 1999]. High muta-

tion rates in tandem with - and perhaps as a consequence of - rapid replication allow

viruses to quickly evolve and adapt to novel environments [Elena and Sanjuan, 2005].

In order to understand the limits to viral evolution in the wild at the population level

and to effectively exploit this as a potential means of control at the host level, a bet-

ter understanding is needed of the ways in which ecological characteristics of viruses

- like fecundity and the mechanism of intracellular replication - affect the ability of

viral populations to survive their high mutation rates.

Viruses have a life cycle that might help them mitigate some of the deleterious effects

of mutation. Typically, a single stranded RNA viral particle enters a host cell, creates

some number of opposite sense RNA templates, and produces a number of progeny.

Some of these progeny can themselves act as the basis for secondary templates for use

in a subsequent round of repliation. After some tc rounds of replication, some target

fecundity is reached and viral particles are released into the extracellular environment,

either all at once by lysing the cell, or gradually, by budding off the cell membrane.
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The precise number of rounds of viral replication tc within the cell can vary signifi-

cantly [Chao et al., 2002, Duffy et al., 2002, Garcia-Villada and Drake, 2012]. At one

extreme, all progeny genomes produced per generation may originate from a single

original template as a result of a single round of replication - the stamping machine

mode of viral replication where mutations accumulate linearly. At the other extreme

is binary replication, where the number of viral particles doubles after each round of

replication, with templates for further replication being produced from early copies.

Under this mode of replication, mutations accumulate geometrically. The precise

mode of replication for specific viruses is unknown, but it presumably varies between

these two extremes.

Here, and for the rest of this study, I define a generation as a single cell infection

cycle, during which a virus infects a cell, replicates within the cell by highjacking its

molecular machinery, ultimately releasing daughter viruses into the extracellular en-

vironment. Recent work suggests that explicitly modeling the within-host replication

process reveals significant deviations in expected evolutionary outcomes, when com-

pared to simpler models of evolutionary escape and emergence [Loverdo et al., 2012].

In this study, I examine the effects of variation in the processes of intracellular vi-

ral replication [Duffy et al., 2002, Holmes, 2009] on deleterious mutation accumula-

tion and consequently the persistence of viral infection chains over the short term

[Sardanyes et al., 2009].
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2.1.1 Lethal Mutagenesis

RNA viruses have evolved and evidently tolerate extremely high mutation rates

[Holland et al., 1982, Drake and Holland, 1999]. On the other hand, artificially in-

creasing the mutation rate of riboviral populations 3-4 fold through treatment with

chemicals like ribavirin has been shown to cause a catastrophic drop in population

fitness, and population extinction by lethal mutagenesis within a few generations

[Holland et al., 1990, Crotty et al., 2000, Crotty et al., 2001, Domingo et al., 2005].

Consequently, the consensus that RNA virus mutation rates are near some thresh-

old for tolerance is a long-held one, beginning with, but not limited to Manfred

Eigen’s formulation of an evolutionary extinction threshold [Eigen, 1971, Eigen, 2002,

Beibricher and Eigen, 2005] beyond which the error rate is too high for information

contained in nucleotide molecules to be successfully passed on from generation to

generation

However, the current understanding of lethal mutagenesis is defined by a demographic

extinction threshold. Extinction occurs when the mutation rate of a virus is high

engough to prevent successful population replacement, when a virus infecting a single

cell can no longer produce enough viable progeny to go on to successfully infect one

or more other cells [Bull et al., 2007].
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Some deleterious mutations are of large enough effect to consistently prevent the

perpetuation of riboviral cell infection chains. If these mutations can be classified

as lethal, then lethal mutagenesis could be said to occur when the rate of mutations

per generation is high enough to bring the expected number of lethal mutation-free

viral particles released per generation below 1. Assuming that the number of lethal

mutations occuring per genome in a single generation is Poisson distributed with

mean UcXL, where Uc is the mean number of mutations per genome per cell infection

cycle and XL is the proportion of mutations that are lethal in effect, the fraction of

viral progeny with no lethal mutations or the lethal mutation zero class p0 can be

described as: p0 = e−UcXL . The number of viral progeny per generation with no lethal

mutations is e−UcXL ·Nc, where Nc is the total viral fecundity per infected cell. This

allows an extinction criterion to be set. For lethal mutagenesis to occur, the expected

number of lethal mutation-free viral progeny produced per cell must be less than one

[Bull et al., 2007]. That is,

e−UcXL ·Nc < 1 (2.1)

For extinction under this condition, the number of lethal mutations/genome/cell

UcXL must be greater than Ln(Nc).
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The inequality above assumes that all viable viral particles released on burst survive

and go on to successfully infect a secondary cell and even a single viable viral particle

is capable of perpetuating cell infetion chains. This mathematical formulation also

suggests that the critical mutation rate required to achieve lethal mutagenesis is

dependant on the total fecundity of the cell. Given a fitness landscape, viruses with

higher fecundity can therefore be expected to have higher critical mutation rates than

less fecund viruses.

2.1.2 Limitations of a Formulation based on the Zero Class

The above formulation for the conditions required for achieving lethal mutagenesis,

however, is flawed in many ways. The two main drawbacks are that of ambiguity and

a lack of biological realism.

The conditions for lethal mutagenesis are satisfied when the mutation rate per gen-

eration is theoretically high enough to bring the expected size of the lethal mutant

zero class p0 below 1. However, this zero class is a function of both the mutation

rate and the mean fecundity of the virus in the absence of mutation. Therefore, an

extinction condition based on the size of the zero class can be satisfied by applying

an extremely high lethal mutation rate to a high fecundity virus, or with a moderate

lethal mutation rate for a low fecundity virus. The case I would like to make in this
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study is that these two situations are not equivalent.

The second major source of ambiguity, as well as the primary lack of biological realism

in the zero class formulation, comes from the measure of mutation rate used in the

zero class formulation of the demographic error threshold. The mutation rate Uc

referred to up to this point is a measure of the mean number of errors on the viral

progeny of a cell infection cycle, compared to the genome of the virus that initiated

the cell infection. This is a relatively common measure of mutation rate, as it can be

measured empirically [Sanjuan et al., 2010].

This mutation rate per cell infection cycle or generation is distinct from some true

biological mutation rate U , which is a measure of the number of errors accumulated

per genome during a single replication event, of which there could be several within

a single generation. Uc is dependent on the mechanism of viral replication within

a cell. Assuming the absence of selection during intracellular viral replication, the

mean number of mutations per genome Ut in the viral population within a cell at any

time t is a function of the number of mutations per genome per replication U and

the t rounds of replication the population has gone through. Therefore, Ut = U2t

[Drake and Holland, 1999] and the number of mutations per genome at the end of

a cell infection cycle Uc = U2tc, where tc is the number of rounds of replication

required to produce the viral progeny. The number of mutations per genome scales

with twice the number of rounds of replication because each round of replication
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involves the formation of an opposite sense template, which can accumulate errors as

well [Domingo et al., 2001].

The dynamics of viral intracellular replication suggests that while a mean value of

Uc can be achieved either by a high biological mutation rate U and a low value

of tc or by a low value of U and a high value of tc, the distribution of mutations

per genome among the viral progeny is likely to be different in these two cases, as

mutations accumulated during early replication events are likely to be passed on to

all subsequent genomes further down along the intracellular replicative lineage of the

virus.

2.2 Methods

2.2.1 Modeling Viral Intracellular Replication

In order to look at the impact of different replication strategies on the ability of a virus

to be driven to extinction, I explicitly modeled the process of intracellular replication

as a modified Walton-Gaston branching process [Feller, 1968]. This framework allows

us to estimate the extinction probability of individual lineages within a cell in some

pre-determined number of replication events, as well as the impact of fecundity and

the number of opposite sense templates generated per replication event.
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I assume here that the rate of mutation during the production of the opposite sense

template is the same at the rate of mutation during the production of a daughter

progeny from that template. This is a reasonable assumption in the case of single

stranded RNA viruses where these steps are carried out by similar RNA-dependant

RNA polymerase enzymes [Ahlquist, 2002]. This assumption would be biologically

inaccurate in the case of retroviruses because of the inclusion of intermediate DNA

steps during the replication process which involve additional enzymes with different

rates of error.

Assuming discrete rounds of replication, if viral fecundity Nc can be described by an

equation for exponential growth where Nc = x ·gtc , and x describes the number of op-

posite sense initial templates copied from a viral genome to produce its progeny, then

mutations accumulate linearly when tc is 1, and more geometrically as tc approaches

Log2(Nc). This assumes that a single viral particle initiates a cell infection.

Assuming that the number of direct offspring of any viral genome in a single round

of replication is geometrically distributed of the form {qpk} with mean p/q = g, then

we can also assume that the number of viable, lethal mutation free progeny produced

from a single individual per replication event is g · e−2.U.tc.XL . This allows us to use

the probability generating function for having s direct descendants after t rounds of

a branching process with geometrically distributed offspring [Feller, 1968]:
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Pt(s) = q · (pt − qt − (pt−1 − qt−1) · p · s)
(pt+1 − qt+1 − (pt − qt) · p · s)

(2.2)

This allows us to get an expression for the probability of an individual having no

viable decendants after tc rounds of replication. We can then combine that with the

probability of a lethal initial template to get an expression for the probabilty of a

viral infection chain going extinct in a single generation P (E1), as follows:

P (E1) = (e−U ·XL · (q · (ptc − qtc))
(ptc+1 − qtc+1)

+ (1− e−U ·XL) · 1)/x (2.3)

The above expression is the product of the probability of having a lethal template

and the conditional probability of extinction given a lethal or non-lethal template.

As in the original formulation based on the zero class, I assume that even a single

viable virus produced at the end of a generation is sufficient to prevent extinction.

An added advantage of this assumption is that it allows us to easily extend the above

expression to get the probability of extinction in some n generations, by replacing tc

with tn = n.tc.
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2.2.2 Simulation

I used a mechanistic stochastic simulation to test my predictions. All simulations were

written and implemented in R [R Development Core Team, 2013], and were based on

Poisson processes for growth and mutation. In each simulation a single individual

was allowed to replicate and accumulate mutations until the population reached a

target size. Growth was modeled stochastically: the number of secondary particles n

produced at time t by a single template i was sampled from a Poisson distribution

with mean g = er. The number of mutations mi(t) accumulated by an individual i at

replication t was sampled from a Poisson distribution with mean U .

For simulations with non-lethal deleterious mutations, the fitness effect w of each

mutation was sampled from a previously published distribution of fitness effects of

random point mutations in Vesicular Stomatitis Virus VSV [Sanjuan et al., 2004,

Sanjuan, 2012]. Compensatory or back mutations were not allowed and fitness effects

were combined additively to get total fitness effect E of all mutations accumulated

by individual i at replication t (Ei(t) =
∑mi(t)

j=1 wj). To account for errors that are

passed on to all offspring produced in a single round of replication when templates

themselves are mutated, an additional template error step was incorporated into the

stochastic algorithm. I assumed that there is no selection on viral particles during

the initial rounds of intracellular replication, but that selection is imposed on the
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viruses by the intercellular environment [Drake and Holland, 1999]. The number of

mutations accumulated by each individual and the additive fitness effects of each

mutation were recorded for each individual in the growing population and at the end

of the replication. All simulations were repeated 1000 times each unique combination

of parameters.

2.3 Results

Overall, I found large variation in the probability of extinction explained by differences

in the mode of replication, number of templates and mean fecundity of the virus. This

variation is entirely unaccounted for in the simple extinction condition described in

Equation 2.1.

2.3.1 Variation in P (E1) under extinction conditions

The probability of extinction in a single cell infection cycle varied with the value of

mean fecundity at mutations rates that satisfity the extinction condition for lethal

mutagenesis (Figure 2.1a). This variation in extinction probabilities was even more

drastic with an increase in the number of initial templates for replication. The proba-

bility of extinction in a single cell infection cycle at critcal mutation rates that satisfy
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Figure 2.1: Variation in the probability of exctinction at critical mutation rates that
satisfy the zero class extinction condition described in Equation 2.1. a) Preventing
replacement for a high-fecundity virus is associated with a greater probability of
extinction than preventing replacement in a low-fecundity virus; b) The probability of
extinction in a single generation varies radically with the number of initial templates.
With many templates, viral populations may easily survive critically high mutation
rates.

the zero class extinction condition described in Equation 2.1 drops rapidly with an

increase in the number of initial templates (Figure 2.1b).

2.3.2 Variation in P (E1) with replication parameters

Under conditions of linear replication, I found that the probability of extinction in a

single cell infection cycle increases with mutation rate per generation. There doesn’t

appear to be much of an effect of fecundity on extinction curves, as the probability of

exctintion given a particular mutation rate does not vary significantly for any value

of mean fecundity on the order of 100 or higher (Figure 2.2a).
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Figure 2.2: Variation in the probabily of extinction under linear replication. a) Effect
of fecundity: The value of mean fecundity has only a marginal effect on the probability
of extinction, given some mutation rate; b) Effect of template: The number of initial
opposite templates utilized in the replication process has a large and significant impact
on the probability of extinction.

Consistent with the results depicted in Figure 2.1b, the number of templates involved

in replication greatly affects the probability of extinction in a single generation.

Under conditions of non-linear replication, if an increase in the number of rounds of

intercellular replication is associated with an overall increase in the mutation rate

per cell (U mutations/replication is kept constant), then the probability of extinction

also increases (Figure 2.3a). This is expected as an increase in the number of rounds

of replication leads to an increase in the mutation rate per generation. On the other

hand, increasing the number of rounds of replication while keeping the mutation rate

per generation constant also leads to an increase in the probability of extinction, albeit

to a lesser extent than the former case. Given a fixed mutation rate per cell, there
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Figure 2.3: Variation in the probabily of extinction under non-linear replication. a)
Variation in the probability of extinction with increasing mutation rate per gener-
ation; b) variation in the probability of extinction with constant mutation rate per
generation. Some non-linear mode of replication minimizes the risk of extinction.

is some non-linear mode of replication that minimizes the probability of extinction

(Figure 2.3b).

2.3.3 Extinction in a complex fitness landscape

The results of my simulations, assuming additive fitness effects of individual deleteri-

ous mutations, suggest that the mean fitness of viable viral populations is low at mu-

tation rates well below any critical mutational threshold. Drawing from the original

source of my empirically derived distribution of fitness effects [Sanjuan et al., 2004],

fitness here is defined as the ability of an individual virus to successfully infect an-

other cell. The true rate of extinction of viral populations is therefore likely higher
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Figure 2.4: Effects of a complex fitness landscape. The presence of non-lethal delete-
rious mutation affects bother the a) mean fitness and b) size of the zero class.

than what my projections, which only account for lethal mutations, would suggest

for a given mutation rate.

2.4 Discussion

2.4.1 A case for P (E1)

If the point of any mathematical exploration of the phenomenon of lethal mutagen-

esis is to make it more practical for use as a means of within-host control, then an

understanding of the rate at which populations will go extinct is ultimately neces-

sary for any practical use. A simple result of branching process theory mirrors the

extinction condition described in Equation 2.1 - Populations for which we can assert
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that the mean number of offspring per individual per replication event is less than

1, will go extinct with probability=1. However, this assertion provides us with no

information on how quickly populations go extinct. Among other things, we see from

the results depicted in Figure 2.1b, the probability of extinction of a viral population

in a single generation at critical mutation rates that satisfy the extinction condition

described in Equation 2.1 varies radically with the number of initial templates used

in the replication process. This suggests that failing to account for variation in the

intercellular replication process of viruses can explain some of the deviations from

expectations of extinction in in-vitro tests of lethal mutagenesis [Bull et al., 2013].

The significance of mutations accumulated on the opposite sense templates cannot be

overstated. In a sense, templates can act as mutation accumulation bottlenecks, with

all subsequent progeny inheriting any lethal mutations, barring the rare reversion or

back mutation. In the results depicted in Figure 2.3b, we can see, at least initially, that

an increase in the number of rounds of replication (while keeping the mutation rate

per generation constant by proportionally reducing the mutation rate per replication)

causes a decrease in the probability of extinction. This is because, given a non-lethal

initial template, the probability of exinction of a lineage decreases with increasing

rounds of replication. However, at some non-linear mode of replication, the effect

of accumulated probability of a lethally mutated template superscedes the effect of

increase rounds replication in the branching process, beyond which the probability of
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extinction rises again. This adds to the narrative that what really drives extinction in

viral populations is mutation on a template, rather than a mutation rate high enough

to prevent lineage replacement.

The linear special case of Equation 2.3 depicted below makes it especially apparent

that the probability of extinction is driven by the probability of accumulating some

non-zero number of lethal mutations on a template:

P (E1) = (e−U.XL) · q) + (1− e−U.XL) · 1)/x (2.4)

As we can see, the probability of extinction given a non-lethal template is expressed

in the linear case as q, which is the probability that a template produces no direct

decendants, which is very small when the mean number of offspring per individual g

is high.

2.4.2 The importance of the intracellular replication process

Given that a formulation for demographic extinction based solely on the expected

size of the zero class cannot, by virtue of its structure, account either for variation

in the process of intracellular replication or for the effects of mutated templates, we
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must look to the effects of these processes in order to try and understand deviations

from extisting theory in the context of practical applications of lethal mutagenesis.

Based on our understanding of the replication process, it is likely that given some

measured mutation rate per generation, viruses with highly non-linear replication are

subject to higher rates of extinction than viruses with linear or near-linear modes

of replication. We also know that there is some non-linear mode of replication that

minimizes the risk of extinction given some measured mutations rate per generation.

The exact number of rounds of replication that constitute this replicative optimum,

of sorts, is inversely proportional the template mutation rate.

Finally, we see that the estimated mean fecundity of the virus in the absence of

mutation has only a limited effect on extinction probabilities, to the extent that

highly fecund viruses likely replicate with some non-linear mode of replication or

utilize a large number of initial opposite sense templates.

2.4.3 Implications for lethal mutagenesis in practice

Estimating or predicting the effects of a complex fitness landscape with multiple,

interacting non-lethal deleterious mutations requires information about the nature

of interacting mutations. The total fitness effect of multiple mutations depends on

whether the fitness effects of individual mutations are additive, or subject to some
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epistatic interaction. In my simulations, I assumed that fitness effects are purely

additive. Apart from the rare cases, having multiple deleterious mutations is worse

that having just one. Therefore, it it is likely that demographic extinction of popula-

tions could occur at a higher rate than what my projections, which only take lethal

mutations into account, might suggest.

Indeed, the results of my simulations of viral intracellular replication with a complex

fitness landcape that include non-lethal deleterious mutations also suggest that in

addition to affecting the effective fecundity of viral population, high mutation rates

could also reduce the mean relative fitness of subsequent viable, non-lethal progeny, in

the sense that multiple accumulated deleterious mutations could affect the ability of

viral progeny with any lethal mutations to successfully reinfect other susceptible cells

in the host, thereby increasing the proability of extinction of viral infection chains.

2.5 Conclusions

We can now begin to put together a better picture of viral evolution, and ways in

which the intracellular replication process of viruses can serve to uncouple the rate

at which variation is generated from rate at which new variation is observed.

An corollary to the assertion that most mutations are deleterious, is that not all are.



27

Mutation is a double edged sword, making survival a delicate balancing act for ss-

RNA viruses given the inherently higher error rate and lack of proofreading function

of most RNA-dependant RNA polymerase enzymes. Survival requires balancing the

need for variation to respond to ever-changing environment with the risk of extinction.

If my mathematical projection are at all accurate, RNA viruses have several methods

of mitigating the risk of extinction given their high mutation rates. In particular,

the apparent survival of viruses at mutation rates that, according to formulations of

extinction criteria based on the expected size of the zero class, should cause rapid

extinction, suggests that such formulations are overly simplistic, and a deeper un-

derstanding of the viral replication process and empirical estimates of replicative

parameters like those used in my projections are necessary in order to refine methods

of viral control by lethal mutagenesis.
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Chapter 3

Genome Architechture & Adaptive

Evolution.

Anand Bhardwaj, David J. Culter & Leslie A. Real

Here, I examine the impact of genome architecture on ability of RNA viruses to

increase the amount of available genetic variation on certain parts of the genome

on which selection can act, while maintaining essential, conserved regions in other

parts of the genome. I use a large dataset of RNA sequences to assess the impact

of segmented genomes and reassortment on the ability of viruses to support highly

variable genomic regions. I find that this ability is likely limited to segmented viruses

or viruses that have high rates of recombination.
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3.1 Introduction

RNA viruses evolve rapidly because of their high mutation rates and short generation

times [Holland et al., 1982, Elena and Sanjuan, 2005]. However, various ecological

and biological factors can serve to uncouple the rates of mutation and evolution,

and this study is an attempt at infering whether genome architecture can affect the

relationship between mutation rate and the rate of adaptive evolution.

In general, the rate of evolution, measured as substitutions per unit of time, is propor-

tional to the rate of generation of new variation, or mutation rate, and some measure

of the probability that these new mutations spread and fix in the population. In

the case of selectively neutral mutations, the probability of fixation is the reciprocal

of the population size [Kimura, 1962], while in the case of selectively advantageous

mutations, the probability of fixation depends on the selective advantage confered by

that mutation [Kimura, 1962, Kimura, 1964, Fisher, 1930].

Assuming that mutations are generated at roughly the same rate across the RNA

virus genome, any large differences in the rates of adaptive and neutral substitution

between genomic regions could therefore be due to differences in the biological factors

that affect their spread and fixation, as well as differences in availability of adaptive

and netural mutations.
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3.1.1 Adaptive evolution in non-recombining asexuals

The presence of linked deleterious mutations slows down the rate of fixation of adap-

tive mutations and therefore the adaptive substitution rate in non-recombining asex-

uals [Orr, 2000]. This is due to the fact that for information-dense genomes like in

the case of RNA viruses, deleterious mutations are both more common and on av-

erage, of larger effect than beneficial mutations [Sanjuan, 2010]. Adaptive evolution,

therefore, is largely limited to beneficial mutations that occur on genomes that have

not already accumulated any deleterious mutations [Fisher, 1930, Barton, 1995].

In general, the rate of adaptive evolution KA (substitutions/genome/generation) is

proportional to the number of new adaptive mutations generated by the population

per generation, the probability that the new adaptive mutation occurs on a deleterious

mutation-free genome, and the probability of fixation of the new mutation.

KA ∝ Uc ·XA · e−Uc·XD/sH · π (3.1)

Here, Uc is the mean number of mutations per genome per generation, XA is the

fraction of these mutations that are adaptive, XD is the fraction of mutations that

are deleterious, sH is the harmonic mean of the of fitness effects of new mutations, and
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π is the probabilty of fixation of new adaptive mutations. e−Uc·XD/sH is the expected

fraction of genomes free of deleterious mutations at equilibrium, assuming a Poisson

distribution.

The above equation is equivalent to Equation 5 of Orr’s publication on the rate of

adaptation in asexuals [Orr, 2000]. From the general form of the expression, we can

see that there is a non-linear relationship between the rate of mutation and the rate of

adaptive evolution. The rate of adaptive evolution increases with increasing mutation

rate, until an “optimal” mutation rate Uc,opt is reached. The rate of adaptive evolu-

tion drops rapidly with any further increase in mutation rate, since any increase in

adaptive mutations is negated by the lack of availability of genomes free of deleterious

mutations on which adaptive evolution can occur.

Here, Uc,opt = sH/XD. We can see that the optimal mutation rate for a population

depends on the fraction of mutations that are deleterious.

Orr’s expression for adaptive evolution makes some simplifying assumptions, in the in-

terests of generalizability, about the evolving asexual population in question, sidestep-

ping the issue of evolution measured at a particular locus versus evolution measured

over the entire genome. In the case of real evolving asexuals like RNA viruses, the rate

of substitution is usually measured by gene, and substitution rate can vary among

genes on the same genome [Jenkins et al., 2001].
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Prior work on the effects of reassortment on the rate of evolution in RNA viruses

suggests that segmented genomes can be advantageous as they could increase the

amount of variation in viral genetic information on which natural selection can act

[Pressing and Reanney, 1984]. Theoretically, in unsegmented RNA viruses, we can

imagine that the presence of a highly conserved gene slows the fixation of adaptive

mutations on genes elsewhere on the genome. In contrast, in RNA viruses with seg-

mented genomes, the deleterious mutation rate of a particular segment of the genome

could slow down the adaptive substitution rate of that segment, with deleterious

mutations occuring on other segments having a limited effect.

In this context, since KA is measured by gene, and XA refers to the available beneficial

mutations for that particular gene, is the rate of adaptive evolution of any given gene

limited by the rate of deleterious mutation Uc · XD on that gene, or by the rate of

deleterious mutation over the entire genome? Does the presence of genes on a genome

that code for essential functions, like the highly conserved RNA polymerase gene

[Poch et al., 1990] - where we can assume that the value of XD is high - slow down

the rate of adaptation in other, distant parts of the genome that are not themselves

under comparable evolutionary constraint?

In this study, I use a large dataset of genetic sequences from four genes each from

Dengue and H3N2 Influenza viruse Type A to try and answer the questions alluded

to in the preceding sections: Does genome architecture play a role in whether the
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rate of adaptive evolution of a gene is limited by the deleterious mutations on that

gene, or on the entire genome?

3.2 Methods

100 population-level estimates of gene-specific substitution were made from popula-

tions of Dengue Virus 1, 2 and 3 and Seasonal H3N2 Influenza type A, from a total

of 10,662 genetic sequences obtained from Genbank (see SI for accession numbers)

[Benson et al., 2013]. Whole genome sequences from each population of virsuses were

aligned using Geneious and the sequences of the genes of interest were extracted for

substitution rate estimation [Drummond et al., 2011] so that the individual estimates

of gene-specific substitution rate all came from the same set of individuals for each

population of each viral species. Estimates of substitutions/nucleotide/year were

made using BEAST, a Bayesian MCMC program that uses phylogenies with dated

tips to estimate parameters [Drummond et al., 2012].

Codon-Position Substitution Rates: Substitution rate estimates were further di-

vided into substitution rate on the 1st, 2nd and 3rd codon positions for each gene. The

substitution rate on the 3rd codon position was used as a proxy for neutral substitution

rate, since the degeneracy of the genetic code means that only a small fraction of these

substitutions are expressed as amino acid changes [Lagerkvist, 1978]. While evidence
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suggests that synonymous substitutions are not always selectively neutral, at the very

least, substitutions on the 3rd codon position are more neutral than substitutions on

the 1st and 2nd codon position [Schoniger et al., 1994]. Substitutions that occur on

the 1st and 2nd codon positions, by virtue of very often being non-synonymous sub-

stitutions, were used as proxies of adaptive substitution rate [Xia, 1998], under the

assumption that mutations that coded for amino acid changes would be unlikely to

show up in representative samples of the viral genome if the associated amino acid

change was selectively deleterious.

All subsequent analyses of the general and codon position-specific estimates of sub-

stitution rate were done using the STATS package in the R programming language

[R Development Core Team, 2013].

3.2.1 Data

RNA sequences from four genes each from Dengue and Influenza were selected for use

in this study. For each viral system, I selected two genes that were described in the

literature as coding for essential functional enzymes under evolutionary constraint and

two genes that code for structural proteins or genes under relatively less constraint.

Dengue and Influenza were selected as exemplars of unsegmented and segmented

ssRNA viruses, in particular because of the relative abundance of freely available
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sequence data annotated with temporal and geographic information from these two

viral systems. Sequences associated with lab strains, or any other non-representative

sequences were not used in this study.

In Dengue type 1, 2 and 3, an unsegmented positive sense ssRNA virus and member

of the viral family Flaviviridae, the Env gene, which codes for an structural surface

protein, and NS1, a membrane associated glycoprotein with a role in combating host

immune response were selected as less constrained genes [Schlesinger et al., 1990].

The genes NS3 - a protease-helicase, and NS5 - a methyl transferase-polymerase, were

selected as genes that were potentially under relatively high evolutionary constraint

because of their vital function [Perera and Kuhn, 2008].

In H3N2 seasonal Influenza type A, a segmented negative sense ssRNA viruses amd

member of the viral family Orthomyxoviridae, the HA haemagglutinin and NA neu-

raminidase genes, both surface structural proteins, were selected as less constrained

genes. The NP gene, which codes for a multifunctional nucleoprotein with a role in

genome packaging and transport, and the PA gene, which codes for a polymerase,

were selected as genes that are under high constraint [McCauley and Mahy, 1983,

Portela and Digard, 2002]. Each of the four genes selected for Influenza occur on

separate genome segments.
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3.3 Results

3.3.1 Variation in k between species

I found significant differences in estimates of substitutions/nucleotide/year k between

influenza and dengue (ANOVA, F(1,98)=191.46, p << 0.05), independent of gene.

I also found significant differences in the substitution rate on the 3rd codon position

- kCP3 between influenza and dengue. (ANOVA, F(1,98)=167.86, p << 0.05).

Despite influenza being more variable in overall substitution rate, no significant effects

of population on substitution rate were found for influenza (ANOVA, F(12,19)=2.14,

p = 0.06). In contrast, population-level estimates of dengue substitution rate varied

significantly in substitution rate (ANOVA, F(13,46)=8,298, p << 0.05). In addi-

tion no significant differences in substitution rate were found between estimates of

substitution rate from dengue types 1, 2 and 3 (ANOVA, F(2,57)=0.896, p = 0.414).

3.3.2 Variation in k by gene

I found siginficant differences between estimates of substitution rate k by gene in the

case of segmented influenza (ANOVA, F(3,28)=2.897, p = 0.03257), but no significant
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Figure 3.1: Variation in substitution rate by gene in Dengue and H3N2 Influenza.
a) No significant pairwise difference between any two pairs of gene in Dengue; b)
Significant pairwise differences for across-group pairs of genes in Influenza.

effect of gene in the case of unsegmented dengue (ANOVA, F(3,56)=0.8664, p =

0.464). A subsequent post-hoc comparison of influenza gene substitution rates using

the Tukey HSD test showed that only substitution rate k of the influenza genes PA

and HA differed significantly at the p < 0.05 level.

Substitution at CP1: When estimates of substitution rate were partitioned by

codon position, I found significant effects of gene on substitution rates of the 1st

codon position - kCP1 in Dengue (ANOVA, F(3,56)=3.1334, p=0.03946), and in-

fluenza (ANOVA, F(3,28)=8.1476, p << 0.05).

A post-hoc Tukey HSD test to compare influenza gene-specific substituion rates sug-

gests significant differences between the value of kCP1 for genes NP and HA, NP and

NA, PA and HA, and PA and NA at the p < 0.05 level. No significant differences
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in kCP1 were found between the NA and HA genes and the PA and NP genes. In

contrast, the same test suggests no significant pairwise differences between Dengue

gene-specific estimates kCP1 at the p < 0.05 level.

Substitution at CP2: No significant effect of gene was found on kCP2 for dengue

(ANOVA, F(3,56)=2.2494, p = 0.092). A strong effect of gene on kCP2 was found for

influenza (ANOVA, F(3,28)=17.736, p << 0.05).

Post-hoc tests revealed, as in the case of kCP1, highly significant differences in esti-

mates of kCP2 for all pairwise combinations of influenza genes except for between the

NA and HA, and PA and NP genes at the p < 0.05 level. As before, no siginifcant

pairwise difference in kCP2 were found between any pair of genes in dengue.

Substitution at CP3: Analyses of estimates of substitution at the 3rd codon

position, kCP3 suggests no significant differences based on gene either in influenza

(ANOVA, F(3,28)=0.6363, p = 0.5979) or dengue (ANOVA, F(3,56)=0.6636, p =

0.5779). A subsequent Tukey HSD post-hoc analysis also suggested no significant

differences in estimates of kCP3 for any pair of genes either in dengue or influenza at

the p < 0.05 level.
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Figure 3.2: Substitution rate on the 1st codon position kCP1 for genes from a) Dengue
and b) Influenza; Substitution rate on the 2nd codon position kCP2 for c) Dengue and
d) Influenza; and Substitution rate on the 3rd codon position kCP3 for e) Dengue and
f) Influenza. Boxplots in red indicate genes that were described in the literature as
conserved and under evolutionary constraint.
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3.4 Discussion

3.4.1 The effect of deleterious mutations on adaptive substi-

tution

Substitution rate k varies weakly by gene both in the case of influenza and dengue.

However, my results show that estimates of substitution rate k are only significantly

different across a single pair of genes in the case of influenza, and are not significantly

different across any pair of genes in dengue. This stands in contrast to the highly sig-

nificant pairwise differences in estimates of substitution rate on the 1st and 2nd codon

position between several genes, and the complete lack of any significant differences in

kCP3 across genes in influenza.

Assuming that kCP1 and kCP2 are proxies for adaptive substitution rate, and kCP3

stands in for neutral substitution rate, my results suggest that in the case of segmented

viruses, the rate of adaptive substitution varies by gene (or genome segment), but the

rate of neutral substitution is unaffected by gene. In the case of unsegmented viruses,

neither adaptive nor neutral substitution rate varies by gene.

The relatively large amount of variation in substitution rate k between genes of in-

fluenza, when compared to dengue, is easily visualized (Figure 3.1). In addition,
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the a priori classification, based on the literature, of genes into two categories - the

highly conserved functional genes (depicted in Figure 3.1 in red) which are likely

under purifying selection, and the relatively less conserved genes (either structural

or with functions that require genetic variation) is partially validated. In the case of

the segmented influenza virus, all significant pairwise differences in estimates of k,

kCP2 and kCP2 were found across these two categories, with no significant pairwise

differences found among pairs within each category.

The lack of effect of gene on overall substitution rate, as well as on substitution rates

on the 1st and 2nd codon positions in the unsegmented dengue virus suggests that

the rate of evolution of genes that we do not typically think of as being under heavy

selective constraint, like the Env gene, could in fact be limited by the presense of

highly conserved genes like the NS5 polymerase elsewhere on the genome. This is

particularly apparent when compared to the high rate of substitution of the influenza

structural genes HA and NA, which evolve almost an order of magnitude faster than

functional genes NP and PA.

Overall, my results suggest that the presence of highly conserved regions in a genome

can slow down the fixation of adaptive mutations on other parts of the genome.

However, this effect of linked deleterious mutations likely depends on the strength

of linkage between the region of concern and other highly conserved regions of the

genome, and is much weaker when the deleterious mutation occurs on a separate gene
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segment and can be lost by reassortment.

Assuming that most expressed amino acid substitutions are adaptive, we can surmise

that the adaptive substitution rate varies by gene in the case of segmented viruses,

and either does not vary or varies to a much smaller extent by gene in unsegmented

viruses. It is admittedly harder to distinguish, using only phylogenetic data, between

high adaptive subsitution rates due to high avalability of adaptive mutations in the

fitness landscape around the genome and high adaptive substitution rates due to a

relative lack of linked deleterious mutations [Burch and Chao, 2000].

3.4.2 Adaptive optima and mutation rates in nature

The results of this study have implications for the concept and estimation of adaptive

optima and our understanding of viral mutation rates in nature. As expressed in the

introduction, the expected rate of substitution for a particular gene is an increasing

function of the beneficial mutation rate in the context of that gene, and a decreasing

function of the deleterious mutation rate over the linked part of the genome. The mu-

tation rate that maximizes the rate of adaptive substitution, or the adaptive optimum

Uopt is a function of the fraction of all mutations that are deleterious, XD.

However, as the result of this study suggest, the value of XD used to calculate adap-

tive optima depends on the organization of the genome in question. The muta-
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tion rate that optimizes the rate of adaptive evolution for a particular gene is likely

limited by deleterious mutation rate of genes on the same segment in the case of

segmented genomes, and by the deleterious mutation rate of the entire genome for

non-recombining unsegmented genomes.

Higher mutation rates mean more variation on which natural selection can act. For

segmented viruses, in an ecological context where a high level of variability can be

evolutionarily advantageous for a gene on a genome segment, viral populations could

exist at a theoretical mutation rate above the optimal mutation rate calculated with

respect to a highly conserved functional gene occuring on another gene segment. This

would not be possible in non-recombing unsegmented viruses. Given recent data that

suggest that viral populations in nature could have mutation rates at or around this

theoretical optimum [Sanjuan, 2012], this may explain the relatively larger between-

gene variation in substitution rates of the unsegmented influenza virus.

3.4.3 The effect of deleterious mutations on neutral substi-

tution

As mentioned in the results section, there is no comparable effect of linked deleterious

mutation rates on the rate of neutral substitution. This is supported by long-standing

theoretical conclusions that the rate of neutral evolution is unaffected by linked dele-
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terious mutations [Birky and Walsh, 1988]. This also serves as an effective rebuttal

to recent claims that neutral mutation rates are affected by deleterious mutations,

leading to a misperception that there is such a thing as a neutral optimum, or a neu-

tral mutation error threshold in nature. Such claims are unsound, and I will elaborate

on this in the next chapter of this dissertation.

3.5 Conclusions

My results suggest that adaptive substitution is largely limited to new adaptive mu-

tations that occur on deleterious mutation-free genomes. However, in the case of

segmented genomes, adaptive substition on a gene on a genome segment is relatively

unaffected by deleterious mutations occuring on other genome segments. The effect of

linked deleterious mutations on adaptive substitution is therefore largely dependant

on the strength of the linkage.

This can allow a virus with a segmented genome to have some rapidly evolving genes,

while retaining highly conserved functional genes in other distant parts of the genome,

something that would not be possible in the case of unsegmented genomes with low

or no recombination. This is particularly relevant when it comes to segmented viruses

like influenza which routinely evolve to escape the immune respose and control meth-

ods of their hosts.
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These findings should inform our models of adaptive evolution for viruses. In partic-

ular the manner in which we paramerterize our models should depend on the genome

architecture of the virus in question, since segmented and unsegmented virsues dis-

play different patterns of between-gene variation in substitution rate, which affect

where we think the viral populations exist in parameter space. Our data also suggest

that, in the case of segmented viruses, estimates of subsitution rate made based on

single genes may not be represtative of the rate of evolution of the entire genome.

Indeed, the very idea of a single value for the rate of evolution of a segmented RNA

virus genome is inconsistent with our findings.
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Chapter 4

The Fallacy of Neutral Optima

Anand Bhardwaj & David J. Cutler

In this comment, I criticize a recent peer-reviewed publication in which the author

uses a flawed mathematical formulation for neutral evolution in order to make a case

for so-called “neutral optima” and the idea of an error threshold in nature based on

the alleged relationship between mutation rate and the rate of neutral evolution.

47
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4.1 Neutral Optima: A scientifically inconsistent

theory

Recent theoretical work on variation in the rate of neutral evolution suggests that the

presence of deleterious mutations can also slow down the rate of fixation of neutral

muations [Sanjuan, 2012]. This theoretical result is extrapolated from Orr’s conclu-

sions on adaptive evolution described in the previous section and extended to neutral

evolution. This study also presents data that suggests that some viral populations in

nature exist at or near the mutation rate that maximizes the neutral mutation rate,

which happens to be mathematically identical, according to this theory, to Orr’s

formulation of the adaptive optimum Uopt.

KN ∝ Uc ·XN · e−Uc·XD/sH (4.1)

.

However, the idea of neutral mutation rates being affected by linked deleterious

mutations runs in contrast to a long-standing theoretical result that neutral sub-

stitution rates are directly proportional to the rate of generation of neutral vari-
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ation and are unaffected by the rate and strength of linked deleterous mutations

[Birky and Walsh, 1988]. Since Sanjuan’s neutral optimum is mathematically identi-

cal to Orr’s adaptive optimum, it begs the question of whether Sanjuan’s data support

his own theory, or Orr’s.

4.2 Rebuttal and Discussion

If, as Sanjuan’s work suggests, the relationship between neutral substitution rate

and mutation rate is similar to the relationship betwen adaptive substitution rate

and mutation rate, we would expect to see similar results for variation in adaptive

substitution and neutral substitution. However, this is not the case, as the data

pertaining to kCP3 is quite different from kCP1 and kCP2, as shown in the previous

chapter.

Sanjuan’s formulation of a neutral mutational optimum, beyond which the rate of

neutral substitution rapidly drops off with any increase in mutation rate, hinges on

an inconsistent treatment of individuals that have accumulated deleterious mutations.

Assuming mutation-selection equilibrium, P0 = e−Uc.XD/sH is the expected fraction of

individuals in the population that have not accumulated any deleterious mutations.

We expect these individuals to be rapidly lost. Sanjuan includes this fraction when

estimating the number of new neutral mutations arising in the population per unit
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of time, but fails to correct for this loss of individuals in the term for the probability

of fixation of new mutations, in effect, erroneously assuming that the probability of

fixation of neutral mutations with linked deleterious mutation is 1/N and not nearly

zero, as we assume in this famework, like the deleterious mutations to which they are

linked.

The rate of neutral substitution is proportional to the rate of generation of new neu-

tral variation, the probability that these new neutral mutations occur on deleterious

mutation-free genomes, and the probability of fixation of these new mutations, as

follows:

KN = (N.UC .XN).(P0).(1/N.P0) (4.2)

Or

KN = Uc.XN (4.3)

Here, KN is the neutral substitution rate and XN is the fraction of all mutations that

are neutral.

The above, in combination with the data presented in the previous chapter of this

dissertation, suggest that neutral substitution rates increase monotonically with mu-
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tation rate, are not affected by the presence of linked deleterious mutations, and do

not have optima with respect to mutation rates. This is consistent with the long-

standing theoretical interpretation [Birky and Walsh, 1988].



52



Chapter 5

Intracellular Dynamics & Adaptive

Evolution

Anand Bhardwaj, David J. Cutler & Leslie A. Real

In this chapter I examine the effects of variation in the intracellular replication process

and viral demographics on the rate of adaptive evolution ssRNA viruses. I highlight

demographic conditions under which rapid fixation of small-effect adaptive mutations

is possible.

53
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5.1 Introduction

Viral diseases are ubiquitous and are the cause of significant health and economic

burdens. Among viruses, those with RNA genomes are of particular interest because

the lack of a proofreading mechanism in RNA polymerase leads to error rates several

orders of magnitude higher than in DNA viruses and other DNA based organisms

[Holland et al., 1982]. This, in combination with their rapid replication rate allows

for a relatively fast rate of evolution [Holmes, 2009], making it more likely that the

control of RNA viral diseases will be balanced by the emergence of new viral diseases in

comparable time scales [Lederberg, 1998]. It is in this context that I must investigate

some of the factors that affect this high rate of evolution in RNA viruses.

The rate of evolution, measured as substitutions per unit of time, is proportional to

the rate of generation of new variation, or mutation rate, and some measure of the

the probability that these new mutations spread and fix in the population.

We know that the rate of fixation of neutral mutation is inversely proportional to pop-

ulation size, while the number of new neutral mutations entering the population per

unit of time is directly proportional to population size [Kimura, 1962, Kimura, 1964].

These terms cancel each other out to make neutral evolution a function of the muta-

tion rate, and only weakly dependant on population size.
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KN ∝ Uc ·XN

Here, KN is the number neutral substitutions per generation, Uc is the number of

mutations per generation and XN is the fraction of these mutations that are neutral.

The question of adaptive substitution and evolution is far more complex, and deserves

further exploration.

Our historic understanding of adaptive evolution in asexuals with low rates of recom-

bination suggests that genomes free of deleterious mutations are required in order

for adaptive evolution to proceed [Fisher, 1930]. This rests on the assumption that

deleterious mutations are, on average, more numerous and of typically larger effect

than adaptive mutations.

For genomes of unsegmented ssRNA viruses and genome segments of segmented

ssRNA viruses, these are reasonable assumptions. We know from recent studies on

the distribution of fitness effects of mutations in RNA viruses that some significant

fraction of mutations are selectively neutral, a larger fraction are either deleterious

or lethal, while a very small fraction are adaptive or beneficial and are typically of

small effect [Sanjuan et al., 2010, Sanjuan, 2010].

[Orr, 2000] proposes a mathematical expression for the expected adaptive substitution

rate that reveals the main factors that drive the rate of adaptive evolution: In simple

terms, the rate of adaptive evolution is proportional to the number of new adaptive
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mutations arising in the population per generation, the probability that this new

adaptive mutation does not co-occur with a deleterious mutation, and the probability

of fixation of this new mutation.

KA ∝ N · Uc ·XA · e−Uc·XD/sH · π (5.1)

Here, KA is the rate of adaptive substitution per generation, N is a measure of pop-

ulation size, XA is the fraction of mutations that are adaptive or beneficial, XD is

the fraction of mutations that are deleterious, sH is the harmonic mean of selection

coefficients of all mutations, and π = 2 · sA is some measure of the probability of fixa-

tion of new adaptive mutations where sA is the mean selective advantage of adaptive

mutations.

Both neutral and adaptive evolution depend heavily on the fitness landscape of the

virus in question, on the availablity of adaptive and neutral mutations, and (in the

case of adaptive evolution) on the probability of these mutations not being linked to

deleterious mutations.

We can see now from the general structure of the mathematical framework used to

describe the rate of adaptive evolution that there are two major classes of factors that
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affect the rate of adaptive evolution:

Characteristics of Deleterious Mutations:

Since the primary requirement for adaptive evolution is the presence of genomes free

of deleterious mutations on which adaptive evolution can occur, the rate and nature

of linkage of deleterious mutations is important to examine. As we explored in the

two previous chapters, while the rate of adaptive evolution is measured empirically by

gene, the availability of genomes without deleterious mutations depends on the rate

of deleterious mutation over the entire genome in the case of unsegmented viruses, or

over the entire genome segment in the case of segmented mutation. Therefore, the

presence of highly conserved regions on a genome can potentially limit the rate of

adaptive evolution elsewhere on the genome, depending on the genome architecture

of the virus under examination. In the context of mathematical frameworks like the

one described above, terms like XA and XD take on a special significance. In a sense,

the rate of deleterious mutations per generation can give us an idea of the effective

adaptable population size of a virus, by allowing us to estimate the expected fraction

of genomes in the population that are free of deleterious mutations.

Characteristics of Adaptive Mutations:

While the empirically derived distributions of fitness effects of point mutations men-

tioned earlier do suggest that some fraction of mutations are selectively advantageous,
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this empirical distribution was derived from stable laboratory populations of viruses,

and does not account for the effects of environmental disruption, host immunity, and

the co-evolutionary history between virus and host. In addition, the mathematical

framework described above makes certain simplifying assumptions about the proba-

bility of fixation of new mutations, and the initial frequency of new mutations that,

while effective as a general way of thinking about adaptive evolution, might be inac-

curate in the context of true viral evolution.

The aim of this study is to build a mathematical framework for exploring the effects

of variation in the mode of viral intracellular replication and demographic parameters

like viral fecundity on the probabiliy of fixation and therefore the rate of adaptive

substitution.

5.2 Limitations of Orr’s framework

:

The rate of adaptive evolution is proportional to two component characteristics of

adaptive mutations - the number of new adaptive mutations arising in the population

on genomes free of deleterious mutations, and the probability of fixation of these new

mutations.
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The mathematical framework descibed in the previous section cannot accurately ac-

count for either of these two components in the case of viral populations for the

following reasons:

The Tiered Nature of Viral Populations:

Viral populations can be conceptually subdivided into intracellular and extracellular

populations. The general scientific consensus is that viral genomes are not under se-

lection during the intracellular replication process [Drake and Holland, 1999]. They

are only subject to selection when packaged in proteins and released into the extracel-

lular environment. A typical viral cell infection cycle involves a single or very small

number of viral particles entering a cell and replicating a large number of daugher

progeny that can either be released all at once by lysing the cell or gradually, by

budding off the cell membrane. The tiered nature of viral populations is critical to

adaptive evolution because of the potential effect of simultaneously releasing multiple

copies of new adaptive mutants into the environment. This violates some common

simplifying assumptions about the initial frequency and the probability of fixation of

new mutations made in the general mathematical framework for adaptive evolution

mentioned in the previous section.

Variation in Viral Intracellular Replication: There is considerable variation

in the process of ssRNA viral intracellular replication. In general, after the initial
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infection of a cell, all subsequent daughter progeny are direct decendants of one

or more initial opposite sense templates. Some of these daughter progeny can be

the basis for further opposite sense templates and secondary and tertiary daughter

progeny [Drake, 1993]. The mode of viral replication can therefore vary all the way

from completely linear - where all daughter progeny are produced in a single round of

replication, to binary - where the size of the intracellular viral population doubles in

each round of replication until some target fecundity is reached [Duffy et al., 2002].

This has implications for the the initial frequency and probability of fixation of new

mutations as well. In some ways, the initial frequency ρ0 of a new mutation is a

function of how early along the viral replication process the mutation occurs, i.e., a

mutation occuring during the production of an initial opposite sense template gets

copied on to all progeny of that template, and potentially, the entire product of a

cell infection cycle [Loverdo et al., 2012]. This assumes that any replication event

within the cell is equally likely to incur a mutation. This is a reasonable assumption

for single stranded RNA viruses where the template and progeny replications are

performed by RNA-dependant RNA polymerase, and less reasonable in the context

of DNA viruses or retroviruses, where there are DNA replication steps that involve

other, less error-prone polymerase enzymes [Holmes, 2009].

Viral Fecundity:

If the per-cell fecundity of the virus is large, this could have a significant effect on
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initial frequency. If we’re interested in an isolated population of an organism (where

N can reasonably be assumed to be much smaller than the true “global” N), in the

context of evolution of a viral population within a single host or an emerging pathogen

where global N itself is small, changes in initial frequency of new mutations could

have a significant effect on the probability of fixation and on the rate of adaptive

evolution.

What remains to be sees is whether any of the above will matter. Developing this

mathematical framework will allow us to explore the areas of parameter space where

mode of replication and demographics play a large role in accelerating or decelarating

the rate of adaptive evolution. Ultimately, the mutational fitness landscape, i.e. -

Uc · XA and Uc · XD, could play the dominant role in the biologically realistic parts

of parameter space, in which case none of the above would matter. The aim of this

study is to develop the tools to find out.

5.3 The Number of New Adaptive Mutations per

Generation

As mentioned in the previous section, the tiered nature of viral populations means

that viruses are not subject to selection when they are within a cell. The allows
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new genomes to be introduced into the populations in batches, with multiple copies

of new mutations. Assuming equilibrium dynamics and constant population size,

the population term in Equation 5.1 can then be unpacked into the mean size of an

intracellular viral population, or viral fecundity Nc, and some measure of the number

of infected cells N to give us an estimate of the total viral populations size N ·Nc.

The number of viral particles released per cell infection cycle or generation without

any deleterious mutations is a product of viral fecundity and the expected fraction of

deleterious mutation-free genomes (i.e., the probability of zero mutations), assuming

that mutations/genome/generation are Poisson distributed with mean Uc ·XD is Nc ·

e−Uc·XD .

N · Nc · e−Uc·XD then gives us the expected number of genomes free of deleterious

mutations, or the effective adaptable population size. Uc · XA is the number of new

adaptive mutations per genome per generation. Accounting for multiple adaptive

mutations on the same genome, and retaining the assumption of Poisson distribution,

(1−e−Uc·XA) gives us the expected fraction of each “generation” or cell infection cycle

that have some non-zero number of adaptive mutations. If the value of Uc ·XA is very

low, it is a good approximation of (1 − e−Uc·XA). Therefore, the expected number

of new adaptive mutant genomes introduced into the population on genomes free of
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deleterious mutations per generation is:

E[A] = N ·Nc · (1− e−Uc·XA) · e−Uc·XD (5.2)

5.4 The Probability of Fixation

One of the major assumptions of the mathematical expression for adaptive evolution

described in Equation 5.2 is that the probability of fixation π for new adaptive mu-

tations is approximately 2 · sA. This approximation is derived from Kimura’s famous

result for the probability of fixation of new small-effect adaptive mutations in large,

constant-size populations [Kimura, 1962]:

π =
1− e−2·N ·ρ0·sA
1− e−2·N ·sA

(5.3)

Under the implicit assumption that population size N is large, mean selective advan-

tage sA is small and initial frequency of new mutations ρ0 = 1/N , the approximation

π ≈ 2 · sA is a reasonable one. However, as suggested in the previous section, the
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tiered nature of viral populations means that new adaptive mutations are not always

singly introduced into the generation population.

To look at the effect of treating initial frequency as a random variable, equation 5.3

must be modified to reflect the tiered nature of viral populations. We now have:

π =
1− e−2·N ·Nc·ρ0·sA

1− e−2·N ·Nc·sA
(5.4)

The above expression accounts for the lack of selection during the viral intracellular

replication process. Within this framework, the initial frequency of new mutations

ρ0 can range from 1/N ·Nc, when a single copy of a new mutation is introduced into

the population, to 1/N , where all viral progeny of a single cell infection cycle have a

copy of the new adaptive mutation.

However, as mentioned earlier in this chapter, and repeatedly throughout this disser-

tation, adaptive evolution can only occur on genomes free of deleterious mutations.

To account for this, the expected fraction of genomes in the population with some

non-zero number of deleterious mutations can be incorporated into the expression

for the probability of fixation of new adaptive mutations described in equation 5.4;

yielding:
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π =
1− e−2·N ·Nc·e−Uc·XD ·ρ0·sA

1− e−2·N ·Nc·e−Uc·XD ·sA
(5.5)

Modeling ρ0 as a random variable:

For ρ0 = 1/N · Nc, often used in the literature to describe the initial frequency

of new mutations, the mutation has to occur at the very last replication event.

Mutations occuring at any earlier replication event would yield a higher initial fre-

quency. This concept is reflected in prior studies suggesting that non-linear replica-

tion can enhance the rate of spread and fixation of mutations [Sardanyes et al., 2009,

French and Stenger, 2003, Thebaud et al., 2010] and can even lead to a dampening

of standing variation.

For any viral population with some fecundity Nc, the total number of replication

events R that occur within the cell is related to the mode of replication, and the

number of rounds of replication within the cell tc as follows:

For tc = 1: Under the simplest conditions, with purely linear replication, and assum-

ing a single initial opposite sense template, 1 replication event produces the initial

opposite sense template and Nc replication events to produce the progeny.

Here, R = 1 +Nc replication events occur within the cell.



66

For all tc > 1: Under conditions of nonlinear replication, the number of replication

events can be generalized as follows:

Here, R = 1 + 2[N
1/tc
c +N2/tc ...+N

(tc−1)/tc
c ] +Nc replication events occur within the

cell.

If the initial frequency of new mutations ρ0 can be rewritten as x/(N · Nc) where x

refers to the expected number of copies of a new mutation released per generation or

cell infection cycle, we can think of x as some function of how early in the replication

process the mutation occurs. For example, a mutation occuring on the very last

round of replication, or the replication event that produces a progeny genome that is

released into the extracellular environment, x = 1 and the associated initial frequency

of that new mutations ρ0 = 1/N ·Nc. Let a be a measure of when in the replication

process the mutation occurs. The value of a therefore ranges from 0, representing a

mutation occuring during the production of the initial opposite-sense template, to tc,

representing a mutation occuring duing the very last replication event that produces

a daughter progeny that is released into the extracellular environment.

We know that x ∈ [1 : Nc]. This can be re-written as x = (Nc)
t−a/t with a ∈ [0 : t]

such that x = 1 when a = t and x = Nc when a = 0. Smaller values of a are

associated with larger values of x.

In general:
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When a = 0 and Pr[x = N
(tc−a)/tc
c ] = Pr[x = Nc] = 1

R

When a = tc and Pr[x = N
(tc−a)/tc
c ] = Pr[x = 1] = Nc

R

when 0 > a > tc; Pr[x = N
(tc−a)/tc
c ] = 2.N

a/tc
c

R

Under conditions of linear replication linear (tc = 1):

Pr[x = Nc] = Pr[x = N
(tc−0)/tc
c ] = 1

R
= 1

1+Nc

Pr[x = 1] = Pr[x = N
(t−t)/t
c ] = Nc

R
= Nc

1+Nc

Under conditions of nonlinear replication (tc > 1):

Pr[x = Nc] = Pr[x = N
(t−0)/t
c ] = Pr[x = Nc] = 1

R
= 1

1+2[N
1/t
c +N2/t...N

(t−1)/t
c ]+Nc

Pr[x = N
(t−a)/t
c ] = 2.N

a/t
c

R
= 2.N

a/t
c

1+2[N
1/t
c +N2/t...N

(t−1)/t
c ]+Nc

Pr[x = 1] = Pr[x = N
(t−t)/t
c ] = Pr[x = 1] = Nc

R
= Nc

1+2[N
1/t
c +N2/t...N

(t−1)/t
c ]+Nc

The above calculations do not account for the effect of linked deleterious mutations.

5.4.1 The Linear case

Here I explore how π (where the initial frequency is a random variable) compares

with π′ from the literature (where the initial frequency is constant), under conditions
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of linear replication.

Under the assumption of purely linear replication with one initial opposite sense tem-

plate, where a total of R = 1 +Nc replication events occurs, a mutation can occur on

the template with probability 1
1+Nc

leading to a high initial frequency Nc·eUc·XD

N ·Nc·e−Uc·XD
= 1

N

or that mutation can occur on a progeny with probability Nc

1+Nc
leading to the initial

frequency of 1
N ·Nc·e−Uc·XD

.

π =
1

1 +Nc

· 1− e
−2·N ·Nc·e−Uc·XD 1

N
·sa

1− e−2·N ·Nc·e−Uc·XD ·sa
+

Nc

1 +Nc

· 1− e
−2·N ·Nc·e−Uc·XD 1

N·Nc·eUc·XD
·sa

1− e−2·N ·Nc·e−Uc·XD sa
(5.6)

This can be rewritten as follows:

π =
1− e2·Nc·e−Uc·XD ·sA +Nc · (1− e−2·sA)

(1 +Nc)(1− e−2·N ·Nc·e−Uc·XD ·sA)

The structure of the above expressions suggest that the probability of fixation π where

initial frequency ρ0 is a random variable is not quite equivalent to the probability of

fixation π‘ where the initial frequency is constant. This is explored in Figure 5.1

where we can see that we underestimate the probabiity of fixation if we treat ρ0 as a

constanct. The extent to which we underestimate π depends on the ratio of fecundity
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Figure 5.1: The effect of mean selective advantage sA on the extent to which we
underestimate the probability of fixation when we do not account for variation in the
initial frequency of new adaptive mutations.

to global population size Nc/N as well as the magnitude of sA. We can see that for

adaptive mutations of large effect, the number of copies of new mutations released

into the population has a relatively small effect on the probability of fixation.

Figure 5.1 might be a bit misleading, however, since higher values of sA always lead

to higher π (Figure 5.2). In general, 2 ·sA is always a good approximation of π′, while

it is a good approximation of π only for some values of sA, depending on Nc.

Deviations due to multiple templates: Assume that m initial opposite sense

templates are used to produce the entire progeny of a cell:
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Figure 5.2: Change in the probability of fixation with selective advantage sA.

Prior to this, I assume that viral replication utilizes only one initial opposite sense

templated. Here, tc = 1, a can either be 0, where the mutation occurs on the template

step or 1, where the mutation occurs on the progeny step.

π = Pr[a = 0] · (1− e−2·N
(1−0)/1
c ·sA) + Pr[a = 1] · (1− e−2·N

(1−1)/1
c ·sA)

π = 1
1+Nc

· (1− e−2·Nc·sA) + Nc

1+Nc
· (1− e−2·sA)

Given reasonably high values of Nc, the above can be approximated as follows:

π = 1+Nc·2·sA
1+Nc

≈ 2 · sA

The probability of fixation is generally approximated as 2 · sA (it is typically slightly
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Figure 5.3: The effect of number of templates m on the relative increase in the prob-
ability of fixation with random ρ0 when compared to the probability of fixation wih
constant ρ0. Relatively small effect of template for large values of selective advantage
sA.
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lower than 2·sA) but we see that this is a good approximation only under very specific

circumstances; i.e.,

• When the mode of replication is purely linear, and

• When only a single initial opposite sense template is used to produce the entire

progeny of a single viral cell infection cycle.

Assuming multiple templates: Nc is replaced with Nc/m with m being the total

number of template strands used to produce the viral progeny.

π = m
m+Nc

· 1− e−2·N ·Nc·
(Nc/m)
N ·Nc

·sA

1− e−2·N ·Nc·sA
+ Nc

m+Nc
· 1− e−2·N ·Nc·

1
N ·Nc

·sA

1− e−2·N ·Nc·sa

Again, given reasonably high values of Nc, the above can be approximated as follows:

π =
m

m+Nc

· (1− e−2·(Nc/m)·sA) +
Nc

m+Nc

· (1− e−2·sA) (5.7)

In this case, if m is high enough for the assumption that 1 − e−2·(Nc/m)·sA ≈ 1 to no

longer be true, we see deviations from the expectation that π ≈ 2 · sA. In particular,

π > 2 · sA when 1 < Nc/m < 10.
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5.4.2 The Non-linear Case

Under conditions of non-linear replication, the number of replication events and initial

frequency of new mutations is dependant on the mode of replication and the number of

rounds of replication tc. With non-linear replication, the initial opposite sense strand

copied from the infecting strand is not the direct template for the viral progeny that

are released from the infected cell. Instead, the viral progeny released from the cell

are the product of opposite sense templates that are themselves copied from progeny

of earlier opposite sense templates, and have as such undergone several rounds of

potentially error-accumulating replication within the cell.

The frequency of a new mutation can range from 1
N ·Nc

to Nc

N ·Nc
depending on how early

in the replication process the mutation occurs. If a is a measure of how early along

in the process the mutation has occured, a = 0 signifies a mutation that occured

during the production of the initial opposite template (leading to an initial frequency

of Nc

N ·Nc
) and a = tc signifying a mutation that occured during the production of the

final progeny (leading to an initial frequency of 1
N.Nc

).

In general, the initial frequency of the new mutation is a function of a such that:

ρ0 = N
(a−tc)/tc
c

N ·Nc
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Assuming a branching process model with non-overlapping generations for viral in-

tracellular replication:

Let R = 1+Nc+2(N
1/tc
c +N

2/tc
c ...N

(tc−1)/tc
c ) be the total number of replication events

in the cell. The closer to purely linear replication, the more the values of R and Nc

converge.

At each round of replication, a single template produces N
1/tc
c progeny. A mutation

that occurs at time a gets passed on to N
(tc−a)/tc
c progeny.

• a = 0 for 1
R

of all events. ρ0 = N
(tc−a)/tc
c

N ·Nc
= Nc

N ·Nc
.

• 0 > a > tc for 2·[N1/tC
c +N

2/tc
c ...N

(tc−1)/tc
c ]

R
of all events. ρ0 = N

(tc−a)/tc
c

N ·Nc

(There are 2(N
a/tc
c ) events for each value of 0 > a > tc)

• a = tc for Nc

R
of all events. ρ0 = N

(tc−a)/tc
c

N ·Nc
= 1

N ·Nc

Clearly, with increasing tc, the probability of acquiring a mutation with ρ0 >
1

N ·Nc

increases. As suggested in the linear case above, this will cause deviations from the

π′ with constant ρ0 from the literature.

The distribution of a gives us the distribution of initial frequencies of new mutations.

Note that linear replication is a special case of this where tc = 1 and a is either 0 or

1.
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Figure 5.4: Explicitly modeling ρ0. a) Distribution of possible “ages” of mutations,
with lower values of a being associated with larger initial frequencies. b)Distribution
of initial frequencies of new mutations.
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In figure 5.4b, Nc = 10, 000 and tc = 10. Clearly, the initial frequency of new muta-

tions varies depending on when along the replication process the mutation occured.

As in the linear case, we expect to see an effect of mode of replication on the initial

frequency, and by consequence, the probability of fixation of new beneficial muta-

tions. For any given mutation rate and fitness landscape, the probability of fixation

of new adaptive mutations, and therefore the rate of adaptive evolution increases as

replication gets more binary. The effect of mode of replication on the rate of adaptive

evolution is mitigated at high mutation rates (whether these are biologically relevant

mutations rates requires investigation). The same measured mutation rate per gen-

eration can lead to different rates of adaptive substitution. These differences can be

explained by mode of replication.

All the above depend on the associated rate of linked deleterious mutations. This can

change substantially with recombination, and between segmented and unsegmented

viruses, as has been explored in previous chapters of this dissertation.
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5.5 A New Formulation for Adaptive Evolution in

ssRNA viruses

We can now incorporate information about variation in ssRNA intracellular replica-

tion dynamics for a new mathematical framework of adaptive evolution. We can see

that the summed probability of fixation of new adaptive mutations is a function of

the distribution of initial frequencies of new mutations.

KA = N ·Nc·(1−e−Uc·XA)·e−Uc·XD ·
1/N∑

p=1/N ·Nc·e−Uc·XD

Pr(ρ0 = p)·1− e
−2·N ·Nc·e−Uc·XD ·ρ0·sA

1− e−2·N ·Nc·e−Uc·XD ·sA

(5.8)

5.6 Results and Discussion

5.6.1 Probability of Fixation

Under our model, the expected probability of fixation of new adaptive mutations

increases with increasing rounds of replication. For any mutation rate, the value of
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Figure 5.5: Variation in the expected probabilty of fixation due to the mode of repli-
cation. Non-linear and binary replication maximizes the probability of fixation given
mutation rate and fitness landscape. On the X-axis, the number of rounds of repli-
cation goes from 1 to Log2(Nc).

π increases as the mode of replication becomes more linear, with the probability of

fixation maximized when the mode of replication is purely binary.

If we assume that the initial frequency of new mutations is constant, we almost

always underestimate the probability of fixation of new mutations. An interesting

corollary to this result is that the difference bewteen the probability of fixation of new

adaptive mutations under linear replication and under binary replication is inversely

proportional to the mutation rate. This is consistent with the established scientific

consensus (French and Stenger 2003; Sardanyes et al. 2009; Thebaud et al. 2010).
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This result is likely due to the fact that at extremely high mutation rates, the expected

fraction of genomes free of any deleterious mutations produced per generation is quite

low. Under these conditions, the difference between having a single copy of a new

adaptive mutation and having all viable viral progeny contain a copy of the new

adaptive mutation is not very large.

The above result suggests that the probability of fixation of new adaptive mutations

is some function of the mean selective advantage of new mutations, the mode of

replication, and the linked deleterious mutation rate of the viral genome. Again,

as suggested in previous chapters of this dissertation, the genome architecture of the

virus and its effects on the strength of linkage between regions of the genome must

be considered in order to accurately assess the effect of linked deleterious mutation

on both the probability of fixation of new mutations, as well as the rate of adaptive

substitution.

5.6.2 Rate of Adaptive Evolution

Our results suggest that viral intracellular replication dynamics can have a large effect

on the rate of adaptive evolution in ways that cannot be captured in simple models of

evolution. Complex replication strategies allow viruses to uncouple the rate at which

variation is generated from the rate at which variation is observed.
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Figure 5.6: Variation in the expected rate of adaptive evolution in ssRNA viruses.
Black lines are our projections and red lines are projections based on simpler models of
evolution, like Orr’s. a) The effect of mode of replication while keeping the biological
mutation rate per replication constant, b) The effect of the mode of replication while
keeping the mutation rate per generation constant, c) The effect of mutation rate per
generation on the rate of adaptive evolution.

In Figure 5.6.2b, we can clearly see the effects of variation in the mode of replication

on the rate of adaptive evolution. The same measured mutation rate per generation

can be associated with radically different rates of adaptive evolution, the difference

explained entirely by variation in the mode of replication. In general, for any mutation

rate per generation, non-linear replication can amplify the rate of adaptive evolution.

In Figure 5.6.2c, we can see that the concept of the adaptive optimum [Orr, 2000]

is recreated. We almost always underestimate the rate of adaptive evolution given

a mutation rate if we treat the initial frequency of new adaptive mutations as a

constant. Importantly, the extent to which we underestimate this rate is the greatest

near this adaptive optimum.
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5.7 Conclusions

My results suggests that simplifying assumptions ignoring the complexity of viral

intracellular replication can lead to misleading conclusions about the rate of evolu-

tion and evolvability of viral populations. My models suggest that under the right

replicative and demographic conditions, viruses could be capable of extremely rapid

evolution, suggesting future empirical studies to verify this phenomenon.

We can see that many standard models of evolution apply to viruses only under

particular conditions that do not reflect current understanding of viral replication,

i.e., under conditions of purely linear replication with a single initial opposite sense

template. For viruses with large values of fecundity, these assumptions are unrealistic.

We expect to see an effect of mode of replication on the initial frequency, and by

consequence, the probability of fixation of new beneficial mutations. For any given

mutation rate and fitness landscape, the probability of fixation of new adaptive mu-

tations, and therefore the rate of adaptive evolution increases as replication becomes

more binary. The effect of mode of replication on the rate of adaptive evolution is

mitigated at high mutation rates (whether these are biologically relevant mutations

rates is up for question). The same measured mutation rate per generation can lead

to different rates of adaptive subsitution. All the above depend on the associated rate
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of linked deleterious mutations. This can change substantially with recombination,

and between segmented and unsegmented viruses.

The next step would be to design empirical studies to verify the major claims of this

theoretical work, i.e., whether the non-linear replication amplifies the rate of adaptive

evolution, and whether certain demographic conditions can lead to rapid evolution,

particularly conditions that reflect the early stages of viral infection of a new and

naive host. The models presented in this study should also be modified to reflect

the replication dynamics of double-stranded viruses and retroviruses, and refined to

reflect new and current understanding of viral replication processes.
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Chapter 6

Conclusions: Portrait of a Virus

We can now begin to put together a picture of the conditions under which viruses

can survive in nature despite their high mutation rates, and under which conditions

they can be pushed to extinction.

Summary

In Chapter 2, I examined the impact of typical simplyfying assumptions in existing

models of lethal mutagenesis. My findings suggest that under a very limited subsets

of conditions (linear replication, single initial opposite sense templates, and very

high values of mean fecundity), simple models can provide accurate predictions of

mutation rates sufficient to drive a viral population to demographic extinction. For

83
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viruses with non-linear replication and multiple templates, however, improvements are

needed. I draw a distinction between mathematical conditions that suggest extinction

conditions, and mathematical models that describe the rate at which populations will

go extinct, and why the latter provide more focused reference to in-vitro tests of lethal

mutagenesis, and hence, the drug development pipelines. I develop an explicit model

of viral intracellular replication based on a Walton-Gaston branching process to derive

an expression for the rate of extinction of viral populations under artificially elevated

mutation rates. My models suggest that the presence of multiple initial opposite sense

templates greatly mitigates the risk of extinction. I also show that there is some non-

linear mode of replication that minimizes the risk of extinction, given a particular

mutation rate per generation. An important caveat is that my models only account

for lethal mutations, and so for a viral population that exists in a real, complex fitness

landscape, the critical mutation rates required to cause demographic extinction are

likely lower than those predicted by my models.

Chapters 3 and 4 explore the effects of genome architecture and the effective adapt-

able populations of viruses. Under the assumption that adaptive mutations are on

average rarer and of small effect than deleterious mutations, adaptive evolution likely

only occurs in regions of the genome that are free of linked deleterious mutations. In

most single stranded RNA viruses, recombination rates are very low, and therefore

this effect manifests itself differently in segmented and unsegmented viruses. Most
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viral genomes include highly conserved regions, i.e., genes that code for critical func-

tional enzymes like RNA polymerase. Within these conserved regions, most expressed

substitutions are likely deleterious. In unsegmented viruses, the presence of these con-

served regions limits the rate of adaptive evolution everywhere else on the genome.

In contrast, in segmented viruses, the rate of adaptive evolution of any segment is

uncoupled from the deleterious effects of mutations on other segments. In effect,

viruses with segmented genomes can support highly variable genes while maintain-

ing critical functional genes on other genome segments. Segmented viruse, therefore,

are better suited to surviving in environments that impose directional and disruptive

selection on parts of the genome, in addition to the inevitable purifying selection on

other parts of the genome. While this effect is clearly manifested in gene-specific

estimates of adaptive substitution rates from segmented and unsegmented viruses, no

comparable effect is seen on neutral subsitution rates. My results call into question

recent results suggesting that neutral evolution is also subject to the limiting effects

of linked deleterious mutations. My models clarify assumptions and provide a link to

a long-standing theoretical result [Birky and Walsh, 1988] suggesting that the rate of

neutral evolution is unaffected by linked deleterious mutations.

I develop a novel mathematical framework for describing the expected rate of adaptive

evolution in Chapter 5. Existing models of adaptive evolution in non-recombining

asexuals make certain simplifying assumptions that are unrealistic in the case of sin-



86

gle stranded RNA viruses. My models explicitly account for the tiered nature of viral

populations - the current scientific consensus is that viral genomes are not under

selection while they are still within a host cell, with selection only being imposed

when viral particles are released into the extracellular environment. Mutation accu-

mulation during the intracellular replication means that many adaptive mutations are

released into the environment in multiple copies, which can affect the rate at which

these adaptive mutations spread through the population. My model illustrates the

effect of mode of replication and mutation-accumulation bottlenecks during template

replication both on the number of new adaptive mutant genomes produced per gener-

ation, and the mean probability of fixation of these new adaptive mutations. I show

that the same mutation rate per generation can lead to radically different rates of

adaptive evolution, with the differences explained by the mode of replication of the

virus. Non-linear modes of replication serve to amplify the rate of adaptive evolution.

Under certain demographic conditions, when the mean fecundity of an infected cell

is on the same order as the number of infected cells, extremely rapid evolution is

possible. These conditions are best approximated when looking at evolution at the

scale of a single host.

Over the course of this body of work, we can get an idea of a “best practice” of

sorts for a single stranded RNA virus. Some non-linear mode of replication can serve
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both to minimize the risk of extinction due to deleterious and lethal mutations, and

amplify the rate of adaptive evolution. The all-or-nothing nature of demographic

extinction suggests that viruses that utilize multiple initial opposite sense templates

during the intracellular replication can tolerate much higher rates of deleterious mu-

tation, and could serve to explain the failure of existing predictive models of lethal

mutagenesis, even with viruses with little or no replication. In addition, viruses that

have segmented genomes can support highly variable regions of the genome in a way

that viruses with unsegmented viruses cannot.

In all, we get the picture of a multidimensional fitness peak that extends far beyond

the traditional “mutational” fitness landscape. Whether viruses in the wild are near

this peak remains to be seen, as we lack estimates of replicative parameters like

template number, mean fecundity, and replication mode (as well as better spatially

and temporally annotated sequence data) needed to do so. I hope that this body of

work serves as a call for more data, and serves to show the enormous impact of these

parameters on virus evolution and extinction.

After all, knowledge about where these viral populations are in relation to this hypo-

thetical peak will tell us just how much we need to push in order to toss them over

the cliff.
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Substitution Rate Estmates for Chapter 3

# Pop Gene Seq k kCP1 kCP2 kCP3

1 Nicaragua Env 45 0.00079 4.0e− 04 1.4e− 04 0.00181

2 Nicaragua Ns1 45 0.00116 3.2e− 04 2.6e− 04 0.00290

3 Nicaragua Ns3 45 0.00113 3.9e− 04 2.8e− 04 0.00272

4 Nicaragua* Ns5 45 0.00070 3.4e− 04 3.6e− 04 0.00140

5 Mexico* Env 70 0.00087 4.9e− 04 2.2e− 04 0.00190

6 Mexico* Ns1 70 0.00059 1.3e− 04 2.2e− 04 0.00143

7 Mexico* Ns3 70 0.00035 9.9e− 05 1.1e− 04 0.00086

8 Mexico Ns5 70 0.00069 2.7e− 04 3.5e− 04 0.00143

9 Cambodia Env 63 0.00076 4.0e− 04 9.5e− 05 0.00178

10 Cambodia Ns1 63 0.00087 3.8e− 04 2.0e− 04 0.00203

11 Cambodia Ns3 63 0.00059 1.7e− 04 5.4e− 05 0.00154

12 Cambodia Ns5 63 0.00068 2.1e− 04 1.9e− 04 0.00162

13 Venezuela Env 60 0.00016 5.1e− 05 3.7e− 05 0.00040

14 Venezuela Ns1 60 0.00016 6.2e− 05 5.2e− 05 0.00035

15 Venezuela Ns3 60 0.00020 4.5e− 05 2.2e− 05 0.00053

16 Venezuela Ns5 60 0.00015 5.7e− 05 3.3e− 05 0.00035

17 Vietnam Env 80 0.00103 5.2e− 04 1.7e− 04 0.00240
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18 Vietnam Ns1 80 0.00108 4.4e− 04 3.2e− 04 0.00250

19 Vietnam* Ns3 80 0.00080 2.4e− 04 6.4e− 05 0.00209

20 Vietnam* Ns5 80 0.00076 2.3e− 04 1.5e− 04 0.00189

21 Thailand Env 60 0.00021 7.2e− 05 1.9e− 05 0.00055

22 Thailand Ns1 60 0.00028 8.3e− 05 2.4e− 05 0.00072

23 Thailand* Ns3 60 0.00025 1.1e− 04 1.8e− 05 0.00062

24 Thailand Ns5 60 0.00015 6.2e− 05 1.9e− 05 0.00037

25 Nicaragua Env 190 0.00079 3.6e− 04 2.1e− 04 0.00181

26 Nicaragua Ns1 190 0.00110 6.3e− 04 4.2e− 04 0.00225

27 Nicaragua Ns3 190 0.00088 2.8e− 04 1.3e− 04 0.00224

28 Nicaragua Ns5 190 0.00078 4.4e− 04 2.6e− 04 0.00162

29 US Env 148 0.00082 3.8e− 04 1.9e− 04 0.00188

30 US Ns1 148 0.00078 2.9e− 04 1.5e− 04 0.00190

31 US Ns3 148 0.00070 1.7e− 04 8.9e− 05 0.00185

32 US Ns5 148 0.00087 3.6e− 04 1.6e− 04 0.00208

33 Vietnam* Env 140 0.00112 4.5e− 04 1.2e− 04 0.00278

34 Vietnam Ns1 140 0.00128 5.1e− 04 2.7e− 04 0.00308

35 Vietnam* Ns3 140 0.00095 3.4e− 04 1.5e− 04 0.00235

36 Vietnam Ns5 140 0.00094 3.5e− 04 1.9e− 04 0.00226

37 Cambodia* Env 44 0.00115 4.1e− 04 1.5e− 04 0.00288
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38 Cambodia Ns1 44 0.00124 4.8e− 04 1.9e− 04 0.00305

39 Cambodia Ns3 44 0.00090 2.1e− 04 4.5e− 04 0.00241

40 Cambodia Ns5 44 0.00111 4.5e− 04 2.0e− 04 0.00267

41 Brazil Env 56 0.00074 3.4e− 04 1.9e− 04 0.00169

42 Brazil Ns1 56 0.00057 3.7e− 04 1.2e− 04 0.00123

43 Brazil Ns3 56 0.00057 1.9e− 04 8.7e− 05 0.00145

44 Brazil Ns5 56 0.00051 1.4e− 04 1.0e− 04 0.00127

45 Nicaragua Env 71 0.00115 5.7e− 04 2.4e− 04 0.00345

46 Nicaragua Ns1 71 0.00094 3.4e− 04 2.4e− 04 0.00224

47 Nicaragua Ns3 71 0.00088 2.8e− 04 1.3e− 04 0.00224

48 Nicaragua Ns5 71 0.00071 2.2e− 04 1.8e− 04 0.00173

49 Venezuela Env 89 0.00077 2.9e− 04 1.5e− 04 0.00188

50 Venezuela Ns1 89 0.00084 3.7e− 04 2.3e− 04 0.00193

51 Venezuela Ns3 89 0.00073 2.5e− 04 6.8e− 05 0.00186

52 Venezuela Ns5 89 0.00079 2.3e− 04 1.6e− 04 0.00199

53 US* Env 94 0.00027 9.4e− 05 7.4e− 05 0.00065

54 US* Ns1 94 0.00036 2.3e− 04 1.3e− 04 0.00070

55 US* Ns3 94 0.00023 7.9e− 05 3.8e− 05 0.00057

56 US* Ns5 94 0.00016 5.8e− 05 4.3e− 05 0.00038

57 Cambodia Env 58 0.00115 5.3e− 04 2.4e− 04 0.00268
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58 Cambodia Ns1 58 0.00121 6.8e− 04 3.4e− 04 0.00262

59 Cambodia Ns3 58 0.00111 4.3e− 04 1.4e− 04 0.00277

60 Cambodia Ns5 58 0.00102 4.4e− 04 2.9e− 04 0.00232

61 Aus-West Ha 61 0.00460 4.1e− 03 2.4e− 03 0.00731

62 Aus-West Mp 61 0.00384 2.4e− 03 1.1e− 03 0.00808

63 Aus-West Na 61 0.00403 3.0e− 03 1.9e− 03 0.00713

64 Aus-West Np 61 0.00260 1.1e− 03 5.1e− 04 0.00614

65 Aus-West Pa 61 0.00257 1.3e− 03 5.2e− 04 0.00587

66 HongKong* Ha 160 0.00504 3.2e− 03 2.9e− 03 0.00908

67 HongKong Mp 160 0.00178 1.6e− 03 6.5e− 04 0.00313

68 HongKong* Na 160 0.00328 2.2e− 03 1.5e− 03 0.00615

69 HongKong* Np 160 0.00282 1.5e− 03 3.9e− 04 0.00657

70 HongKong Pa 160 0.00234 9.0e− 04 3.3e− 04 0.00580

71 Nicaragua* Ha 102 0.00031 2.5e− 04 1.3e− 04 0.00055

72 Nicaragua* Mp 102 0.00185 1.3e− 03 7.3e− 04 0.00349

73 Nicaragua* Na 102 0.00226 1.8e− 03 1.7e− 03 0.00327

74 Nicaragua* Np 102 0.00126 5.4e− 04 3.4e− 04 0.00289

75 Nicaragua* Pa 102 0.00181 8.5e− 04 5.0e− 04 0.00407

76 USA-BOS Ha 103 0.00291 1.7e− 03 1.3e− 03 0.00576

77 USA-BOS Mp 103 0.00210 1.6e− 03 8.6e− 04 0.00385
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78 USA-BOS Na 103 0.00317 1.5e− 03 1.7e− 03 0.00626

79 USA-BOS* Np 103 0.00284 8.6e− 04 7.4e− 04 0.00692

80 USA-BOS Pa 103 0.00253 9.8e− 04 7.6e− 04 0.00585

81 USA-CA Ha 177 0.00386 2.9e− 03 1.9e− 03 0.00681

82 USA-CA* Mp 177 0.00194 1.7e− 03 5.0e− 04 0.00361

83 USA-CA Na 177 0.00296 1.9e− 03 1.8e− 03 0.00523

84 USA-CA Np 177 0.00252 9.2e− 04 4.7e− 04 0.00616

85 USA-CA* Pa 177 0.00227 1.2e− 03 3.8e− 04 0.00520

86 USA-NY* Ha 301 0.00243 1.7e− 03 1.3e− 03 0.00425

87 USA-NY Mp 301 0.00188 1.4e− 03 7.2e− 04 0.00350

88 USA-NY Na 301 0.00251 1.7e− 03 1.0e− 03 0.00481

89 USA-NY* Np 301 0.00194 8.8e− 04 4.0e− 04 0.00455

90 USA-NY* Pa 301 0.00105 6.3e− 04 2.7e− 04 0.00223

91 USA-TX Ha 71 0.00391 3.0e− 03 1.5e− 03 0.00722

92 USA-TX Mp 71 0.00159 1.1e− 03 5.4e− 04 0.00311

93 USA-TX Na 71 0.00336 2.2e− 03 2.1e− 03 0.00584

94 USA-TX Np 71 0.00297 1.3e− 03 5.6e− 04 0.00707

95 USA-TX Pa 71 0.00214 1.1e− 03 4.2e− 04 0.00492

96 Viet Nam* Ha 143 0.00281 1.6e− 03 1.5e− 03 0.00527

97 Viet Nam Mp 143 0.00182 1.1e− 03 7.5e− 04 0.00363
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98 Viet Nam* Na 143 0.00240 2.0e− 03 1.4e− 03 0.00383

99 Viet Nam Np 143 0.00259 1.2e− 03 5.9e− 04 0.00600

100 Viet Nam Pa 143 0.00177 7.4e− 04 4.0e− 04 0.00416
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GENBANK Accession Numbers for Data in Chapter 3

AY679147 CY000001 CY000009 CY000017 CY000025

CY000033 CY000041 CY000049 CY000057 CY000065

CY000073 CY000081 CY000089 CY000097 CY000105

CY000113 CY000129 CY000137 CY000153 CY000161

CY000169 CY000177 CY000185 CY000193 CY000201

CY000209 CY000217 CY000225 CY000233 CY000241

CY000249 CY000257 CY000265 CY000281 CY000289

CY000313 CY000321 CY000329 CY000337 CY000345

CY000353 CY000361 CY000369 CY000377 CY000385

CY000417 CY000425 CY000433 CY000441 CY000473

CY000481 CY000489 CY000497 CY000505 CY000513

CY000521 CY000529 CY000537 CY000545 CY000553

CY000561 CY000569 CY000584 CY000585 CY000625

CY000753 CY000761 CY000777 CY000785 CY000793

CY000865 CY000901 CY000909 CY000933 CY000941

CY000957 CY000965 CY000973 CY001013 CY001021

CY001029 CY001037 CY001045 CY001061 CY001064
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CY001080 CY001088 CY001096 CY001104 CY001112

CY001128 CY001144 CY001152 CY001160 CY001168

CY001197 CY001205 CY001213 CY001221 CY001229

CY001261 CY001285 CY001293 CY001301 CY001309

CY001317 CY001333 CY001405 CY001421 CY001512

CY001552 CY001632 CY001648 CY001720 CY001728

CY001736 CY002000 CY002008 CY002016 CY002040

CY002048 CY002056 CY002064 CY002072 CY002128

CY002176 CY002184 CY002192 CY002208 CY002216

CY002224 CY002232 CY002248 CY002256 CY002328

CY002344 CY002424 CY002432 CY002440 CY002448

CY002456 CY002464 CY002488 CY002520 CY002592

CY002712 CY002720 CY002728 CY002736 CY002784

CY002816 CY003032 CY003056 CY003072 CY003080

CY003088 CY003096 CY003104 CY003120 CY003123

CY003136 CY003144 CY003152 CY003160 CY003168

CY003176 CY003184 CY003192 CY003200 CY003208

CY003408 CY003416 CY003424 CY003640 CY003648

CY003656 CY003664 CY003680 CY003777 CY006076

CY006084 CY006092 CY006291 CY006371 CY006379
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CY008164 CY008884 CY009260 CY012792 CY013216

CY013224 CY013232 CY013805 CY014159 CY015676

CY015684 CY015692 CY015700 CY015708 CY015716

CY015724 CY015732 CY015740 CY015748 CY015756

CY015764 CY015772 CY015780 CY015788 CY015796

CY015804 CY015812 CY015820 CY015828 CY015836

CY015844 CY015852 CY015860 CY015868 CY015876

CY015884 CY015892 CY015900 CY015908 CY015916

CY015924 CY015932 CY015940 CY015948 CY015956

CY015964 CY015972 CY015980 CY015988 CY015996

CY016004 CY016012 CY016020 CY016028 CY016036

CY016044 CY016220 CY016979 CY016987 CY016995

CY017083 CY017091 CY017099 CY017107 CY017355

CY017797 CY018925 CY019141 CY019149 CY019157

CY019165 CY019173 CY019181 CY019189 CY019245

CY019253 CY019261 CY019269 CY019285 CY019293

CY019301 CY019309 CY019317 CY019325 CY019333

CY019811 CY019819 CY019827 CY019835 CY019843

CY019851 CY019859 CY019931 CY019939 CY020005

CY020053 CY020061 CY020069 CY020077 CY020085
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CY020093 CY020101 CY020109 CY020117 CY020125

CY020133 CY020357 CY020365 CY020533 CY021989

CY025421 CY025485 CY025643 CY025715 CY025731

CY025739 CY025747 CY025835 CY025843 CY025851

CY026195 CY026275 CY026555 CY026787 CY027563

CY027579 CY028475 CY031563 CY032429 CY032437

CY032445 CY032453 CY032461 CY032469 CY032477

CY032485 CY032493 CY032501 CY032517 CY032525

CY032533 CY032541 CY032549 CY033638 CY034084

CY034092 CY034414 CY035086 CY035094 CY035102

CY036967 CY037359 CY037543 CY037607 CY037631

CY037711 CY037743 CY038511 CY038519 CY038527

CY038543 CY038559 CY038567 CY038583 CY038591

CY038607 CY038615 CY038623 CY038631 CY038639

CY038647 CY038663 CY038671 CY038679 CY038695

CY038703 CY038711 CY038727 CY038735 CY038743

CY038751 CY038791 CY038815 CY038911 CY038935

CY038943 CY038951 CY038959 CY038975 CY038983

CY038991 CY039007 CY039015 CY039023 CY039031

CY039039 CY039047 CY039055 CY039063 CY039159
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CY039167 CY039175 CY039183 CY039207 CY039215

CY039223 CY039231 CY039239 CY039247 CY039439

CY039487 CY039495 CY039503 CY040298 CY040306

CY040314 CY040322 CY040338 CY040346 CY040354

CY043744 CY043752 CY043760 CY043768 CY044333

CY044381 CY044397 CY044429 CY044445 CY044453

CY044461 CY044469 CY044476 CY044492 CY044500

CY044508 CY044540 CY044548 CY044572 CY044580

CY044588 CY044596 CY044604 CY044612 CY044620

CY044628 CY044636 CY044644 CY044652 CY044668

CY044676 CY044692 CY044708 CY044716 CY044724

CY044732 CY044740 CY044748 CY044756 CY044772

CY044780 CY044788 CY044796 CY044804 CY044812

CY044820 CY044828 CY044844 CY044852 CY050452

CY050460 CY050468 CY050492 CY050500 CY050508

CY050532 CY050540 CY050556 CY050564 CY050572

CY050580 CY050588 CY050596 CY050604 CY050620

CY050628 CY050636 CY050652 CY050668 CY050676

CY050684 CY050708 CY050716 CY050724 CY050732

CY050788 CY050796 CY050820 CY050828 CY050836
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CY055091 CY055099 CY058756 CY058764 CY058772

CY058780 CY058796 CY058804 CY064815 CY064823

CY064847 CY064855 CY064863 CY064879 CY064887

CY066519 CY067197 CY067205 CY067213 CY067221

CY067229 CY067237 CY067245 CY067253 CY067921

CY067929 CY067937 CY067945 CY067953 CY067961

CY067969 CY067977 CY067985 CY067993 CY068001

CY068009 CY068017 CY068025 CY068033 CY068041

CY068049 CY068057 CY068065 CY068073 CY068081

CY068089 CY068097 CY068105 CY068113 CY068121

CY068129 CY068137 CY068145 CY068153 CY068161

CY068169 CY068177 CY068185 CY068193 CY068201

CY068209 CY068217 CY068225 CY068233 CY068241

CY068249 CY068257 CY068265 CY068273 CY068281

CY068289 CY068297 CY068305 CY068313 CY068321

CY068329 CY068337 CY068353 CY068361 CY068377

CY068385 CY068393 CY068401 CY068409 CY068417

CY068425 CY068433 CY068441 CY068449 CY068457

CY068465 CY068473 CY068481 CY068489 CY068497

CY068505 CY068513 CY068521 CY068529 CY068537
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CY068545 CY068553 CY068561 CY068569 CY068577

CY068585 CY068593 CY068601 CY068609 CY068617

CY068625 CY068633 CY068678 CY068686 CY068694

CY068702 CY068710 CY068718 CY068726 CY068734

CY068742 CY068750 CY068758 CY068766 CY068774

CY068782 CY068790 CY068798 CY068806 CY068814

CY068822 CY068830 CY068838 CY068846 CY068854

CY068862 CY068870 CY068878 CY070919 CY070927

CY070935 CY070943 CY070951 CY070959 CY070967

CY072190 CY072198 CY072206 CY072214 CY073757

CY073869 CY074675 CY074683 CY074691 CY074699

CY074707 CY074715 CY074723 CY074731 CY074739

CY074747 CY074755 CY074763 CY074771 CY074779

CY074787 CY074795 CY074803 CY074811 CY074819

CY074827 CY074835 CY074843 CY074851 CY074859

CY074867 CY074875 CY074883 CY074891 CY074899

CY074907 CY074915 CY074923 CY074931 CY077425

CY080459 CY080467 CY080475 CY080483 CY080491

CY081025 CY084334 CY084385 CY084393 CY084401

CY084409 CY084417 CY088774 CY088782 CY088790
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CY088843 CY088851 CY088859 CY088867 CY088875

CY088883 CY088891 CY088899 CY088907 CY088915

CY088923 CY088931 CY088939 CY088947 CY088955

CY088963 CY088971 CY088979 CY088987 CY088995
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