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Abstract

Relationships between areas in a triangulation of a square
By Phillip Andreae

For a triangulation of the unit square—that is, a tiling of the square by triangles—

we consider the general problem of studying the relationships between the areas of

these triangles. For a particular combinatorial arrangement of vertices and edges, by

a dimension count we expect there to exist a relation that must be satisfied by the

triangles, regardless of where the vertices are placed. By generalizing the notion of

triangulating a square and applying some facts from algebraic geometry, we can prove

that this relation is in fact a homogeneous polynomial equation that is an invariant

of the combinatorial triangulation. Our focus is on calculating the degree of this

polynomial for any arbitrary triangulation. We develop and implement an algorithm

to compute this degree by inductively relating a triangulation to simpler “factor”

triangulations and studying the relationship between the associated polynomials.
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1 Introduction

Fundamentally, this paper deals with the division of a square into triangles. We

call such a division a triangulation and require that it obey some simple, intuitive

rules. The basic problem is to study the areas of these triangles and the relationships

between them.

1.1 A simple illustrative problem

To motivate this work and capture the attention of the cynical reader, we begin with

a simple problem that illustrates the general question we want to ask. Consider the

triangulation of a square represented in Figure 1—in that picture, a single point is

placed inside the unit square and connected to each of the four corners to form four

triangles that tile the square, labeled A, B, C, and D. If we wanted to, presumably

we could calculate the area of each triangle in terms of the coordinates (x, y) of the

point in the middle. The question we want to ask—and this is the question we want

to ask for more complicated triangulations throughout this paper—is whether there

is some relationship between A, B, C, and D that must always hold, no matter where

(x, y) lies. Certainly we could not choose any four areas at random and expect some

choice of (x, y) to make the four triangles have those areas. There must be some

restriction on the four areas—can you see what it is?

Well, there are actually two restrictions, one of which may be more apparent than

the other. The first is that since the triangles tile the unit square, the sum of the

four areas must be equal to the area of the square. We obtain the following simple

equation:

A+B + C +D = 1.

The second restriction is somewhat less obvious but still easy to understand, and if

we actually write down each area in terms of x and y, it becomes quite apparent.
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Figure 1: A simple triangulation of the unit square with one interior vertex and four
triangles.

It is that each of the opposite pairs A and D, and B and C, must sum to half the

area of the square. We can condense this information into another simple equation:

A+D = B + C = 1
2
, or

A+D −B − C = 0.

Thus there are two equations that the four areas must always satisfy. For more

complicated triangulations of the square with more triangles, we might expect some-

thing similar to happen. An analogue of the first equation, which states that the

sum of the triangles’ areas is equal to the area of the square, must always hold, of

course. The second equation, though, which is specific to the triangulation in Figure

1, is more interesting, and it is not immediately obvious whether there is always an

analogous equation, although we might expect there to be. It turns out that we can

in fact prove the existence of such an analogous equation for any triangulation of the

square, but in general, this equation is much more difficult to find than for our simple

example. The focus of this paper is precisely this equation.
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1.2 Introduction to the remainder of the paper

We will now provide a summary of the content of this paper. First we consider

a triangulation in an abstract, combinatorial sense as a set of rules for connecting

a number of points or vertices by edges; these connections define triples of points

that form triangles, which when put together, make up an abstract square. We then

want essentially to place the triangulation in the plane by giving coordinates to the

vertices, turning the edges into line segments, and turning the abstract triangles into

real triangles, each of which has an area determined by the coordinates of its vertices.

Together the triangles tile an actual square in the plane, with four “boundary” vertices

making up the corners of the square. From an abstract combinatorial structure, we

now have a geometric picture of a triangulation of a square, just like the picture

in Figure 1. In fact, though, we can create an infinite number of pictures for any

triangulation depending on where exactly the vertices are placed. The key step is

in recognizing that no matter how we draw the picture, the areas of the resulting

triangles must maintain certain relationships to each other in ways that are dependent

only on the combinatorial triangulation. Our goal, put simply, is to study these

relationships. In particular, we study a certain polynomial relation that is always

satisfied by the areas.

To do this rigorously, we must generalize things a bit, allowing the picture of a

triangulation to exist not just in the Euclidean plane R2, but in the bigger space

C2. Basic principles of algebraic geometry, which is in part the study of polynomial

equations, are quite useful in studying our polynomial relation. Unfortunately, in re-

turn for more powerful mathematical tools, some of our intuition must be sacrificed.

Much intuition still remains, though, and we can still generally imagine simple pic-

tures of triangles inside a square in the plane, although the underlying mathematics is

somewhat more complicated. We will attempt to emphasize the use of this intuition

throughout this paper.
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As mentioned, our primary interest is in a polynomial whose “variables” are the

areas of triangles associated to a triangulation. This polynomial, though, is often

quite complicated and can contain a large number of terms, which are hard to pin

down in general. Specifically, then, we will attempt to study the degree of the polyno-

mial, which is just a single integer that is a well-defined function of the combinatorial

triangulation alone. To study the polynomial and its degree for a general complex

triangulation, we apply an inductive algorithm to reduce it to a related but simpler

triangulation. The essential step in the algorithm is asking the following question:

given a triangulation, what would happen if a particular triangle weren’t there (mean-

ing, really, if that triangle had area zero)? We refer to the process of setting the areas

of certain triangles equal to zero as “killing” triangles. Killing a triangle to produce a

new triangulation has implications both for the possible pictures of the triangulation

and for the associated algebra, but those implications are linked. Furthermore, the

polynomial associated to the new triangulation is related to the one associated to the

original triangulation in a predictable way. The algorithm proceeds inductively by

killing series of triangles until triangulations whose polynomials have known degree

are reached.

This algorithm provides a theoretical method for computing the degree of the

polynomial for a triangulation, and we think we are close to proving that it works for

any triangulation. Proving the existence of such a foolproof technique is an end in

itself, but we are also interested in classifying triangulations and making general state-

ments about the degrees of the polynomials associated to different triangulations. All

triangulations with linear (degree one) polynomials have been classified, for example,

but little is known about what kinds of triangulations give quadratic polynomials. We

hope that this algorithm will serve as a computational tool in answering questions

like these.

It is worth noting that the algorithm is actually quite simple and can theoretically
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be implemented by hand. For reasonably complicated triangulations, however, it can

become quite long and tedious, and implementation is much easier with the help of a

computer. We have used Java to program an application to implement the algorithm,

although its development is an ongoing process. In the future we hope to use this

program to help us classify triangulations and their polynomials.

This paper begins with an introduction to the theoretical framework we use in

studying triangulations. In the context of this framework, we then proceed to prove

the existence of the polynomial in question and discuss the theory behind our algo-

rithm for computing this polynomial’s degree, which first requires an introduction to

some principles of algebraic geometry. Finally, we discuss the implementation of this

algorithm and some of the associated practical issues.

2 Preliminaries

2.1 Honest triangulations

The basic object of study for us is a triangulation. We always want to keep in mind

a tangible picture of a triangulation as a tiling of a square in the Euclidean plane

by triangles, but more fundamental in a sense is the abstract connectedness of the

vertices. Here we introduce triangulations in a general combinatorial sense.

A triangulation is a simple enough topological and combinatorial object; it can

be thought of as a planar graph containing a number of vertices, a number of edges

consisting of two distinct vertices, and a number of faces, which for a triangulation

are subject to certain restrictions. We are specifically interested in triangulations of

a disk with exactly four vertices and four edges on the boundary; these are to become

the boundary of the square. In order to be considered a triangulation, each face inside

the disk must in fact be a triangle, meaning it is bounded by exactly three edges and

three vertices, which are connected pairwise by the three edges. Furthermore, every
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edge is shared by exactly two triangles, with the exception of the four boundary

edges, which each appear in only exactly one triangle. For every triangulation, this

definition will allow us to draw a unique class of pictures in the plane representing

an actual division of a square into triangles.

Let T be a triangulation satisfying these requirements with k interior vertices. De-

note the four boundary vertices by 0, 1, 2, and 3 and the interior vertices by v1, . . . , vk.

The set of all vertices {0, 1, 2, 3, v1, . . . , vk} is denoted by V (T ) and contains k + 4

elements. The triangulation is specified by V (T ) along with a set of m edges, where

each edge is an unordered pair of two vertices {w1, w2}, with w1, w2 ∈ V (T ), and by

a set of n triangles, where each triangle is an ordered triple of vertices (w1, w2, w3),

or, equivalently, an ordered triple of edges (e1, e2, e3), where e1 = {w1, w2}, and so

on.

By ordering the vertices of each triangle, we are giving an orientation to the

triangulation. We specify that only the relative order of the vertices matters, so that

are only two distinct ways to order a triangle; that is, for the triangle with vertices

w1, w2, and w3, the order (w1, w2, w3) is equivalent to (w3, w1, w2) and (w2, w3, w1),

but all of these are distinct from (w1, w3, w2), (w2, w1, w3), and (w3, w2, w1). We

require that the orientation of the triangulation be consistent in the following sense: if

triangles T and T ′ share the vertices w1 and w2, with their third vertices being u and v,

respectively, then the orientations can be written T = (w1, w2, u) and T ′ = (w2, w1, v).

We can think of the edge {w1, w2} as having a different direction in T and T ′.

Note that this consistency requirement still allows for exactly two distinct ways in

which to orient the triangulation. To remove this ambiguity, we specify by convention

that the triangle containing the edge {0, 1} (this triangle exists and is unique) have a

certain orientation: if u is the third vertex, the triangle has an orientation equivalent

to (0, 1, u). Specifying the orientation of this triangle then completely determines the

orientation of every other triangle according to the consistency rule.
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The boundary vertices are numbered 0, 1, 2, and 3 for a reason: this is in a

sense their order around the boundary of the disk, or around the boundary of the

square. This means that we require that the four boundary edges be {0, 1}, {1, 2},

{2, 3}, and {3, 0}. If we like, in a picture of a triangulation, we can think of the

numbers 0-3 as numbering the corners of the square going counterclockwise. As a

convention, we start the numbering at 0 to represent that 0 is the “origin” in the

plane, but this doesn’t have to be the case. Following this convention, we will often

refer colloquially to {0, 1}, {1, 2}, {2, 3}, and {3, 0} as the bottom, right, top, and left

edges, respectively.

Now we can interpret the orientation of a triangle in another way: it essentially

specifies the direction of a small clockwise- or counterclockwise-oriented circle inside

that triangle in a picture of the triangulation. By specifying the orientation (0, 1, u),

we are really requiring that every one of these circles is oriented counterclockwise, if

we think of the boundary vertices as numbering the corners of the square in coun-

terclockwise order. This will give us a consistent definition of the area of a triangle

later.

We call a triangulation defined in this way an honest triangulation. The next step

will be to add to this definition to create a more general idea of a triangulation, but

an honest triangulation, for which a simple picture exists, will always be the starting

point.

2.2 General triangulations

For our purposes, a triangulation will really be specified by an honest triangulation

T as described above along with a set of “conditions” C and an equivalence relation

∼ such that:

1. C is a collection of conditions where each condition is a union of triangles that

forms a connected subgraph of the dual graph of T on a torus
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Figure 2: A simple “honest” triangulation with two interior vertices and six triangles.

2. ∼ is an equivalence relation on the boundary vertices of T (0, 1, 2, and 3)

satisfying the following:

(a) 0 ∼ 1⇔ 2 ∼ 3

(b) 0 ∼ 3⇔ 1 ∼ 2

(c) 0 ∼ 2 or 1 ∼ 3⇒ 0 ∼ 1 ∼ 2 ∼ 3

These definitions are quite abstract, so let’s explain what they mean. The set of

conditions C is just a collection of sets of triangles. Each set of triangles must be

“connected;” this can be defined rigorously in terms of the dual graph as above, but

it really just means that in a picture of the honest triangulation, each set consists

of a number of triangles whose union is a connected subset of the plane, where two

triangles are defined to be connected if they share an edge (sharing a single vertex

doesn’t count). The added condition that the dual graph is placed on a torus means

that we identify the opposite boundary edges; that is, two triangles are also “con-

nected” if one contains the boundary edge {0, 1} and the other contains {2, 3}, or if

one contains {1, 2} and the other {0, 3}.
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For each condition, we can also keep track of all the vertices that are contained

in one of the triangles in that condition. This list of vertices, in fact, is more useful,

and we will usually represent each condition by this list of vertices rather than by the

original list of triangles. Later, we will see that the conditions actually represent sets

of triangles that have zero area (have been “killed”) and that the corresponding set

of vertices represent vertices that must be collinear. For now, we leave the conditions

as an abstract list of sets of triangles.

The equivalence relation ∼ is just a way to keep track of which boundary vertices

must be “equal.” Being equivalent with respect to ∼ will later correspond to having

the same coordinates in a picture, and, as with the conditions, ∼ will be related to

triangles having zero area. This will be explained in more detail.

The triple (T , C,∼) is a new object containing more information than the honest

triangulation T alone, but for convenience, we will call such a triple a “triangulation”

and usually refer to it simply as T . We must remember that this is an abuse of

notation and a “triangulation” generally consists of not just an honest triangulation

but also a set of conditions and an equivalence relation.

2.3 Euler’s formula

We now derive an important relationship between the number of interior vertices k

and the number of triangles n of a triangulation T using Euler’s formula. One simple

statement of Euler’s formula is the following: for a planar graph containing V vertices,

E edges, and F faces, it is always true that

V − E + F = 2.

T already represents a planar graph, but it is more convenient to construct another

planar graph P from T by adding a vertex “outside the disk” that is connected to each
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of the four boundary vertices by an edge. Figure 3 illustrates this construction. Note

that P contains one extra vertex, four extra edges, and three extra faces relative to T

(if we count the outer face in both graphs). This construction is convenient because

the outer face of P is a triangle, whereas the outer face of T was a square. Thus

every face of P contains exactly three edges and every edge is shared by exactly two

faces, with no exceptions. This implies that for P ,

E =
3

2
F.

Euler’s formula then states

V − 1

2
F = 2,

or, equivalently,

F = 2V − 4.

Since P was constructed from T by adding four faces and one vertex, we can count

the number of faces and vertices of P in terms of the number of faces n and the

number of interior vertices k of T in the following way: F = n + 4 and V = k + 5.

Substituting these expressions, we obtain the following result:

n = 2k + 2.

The importance of this result will be seen shortly.

2.4 A naive discussion of relationships between areas

Up to this point we have discussed triangulations primarily as combinatorial objects;

that is, as a set of vertices and a set of simple combinatorial relationships between

them (the edges, triangles, conditions, and equivalence relation). Along the way,

we have briefly mentioned the idea of a triangulation as a picture of a square and
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Figure 3: From a triangulation of the disk T , we can construct a new planar graph
P whose faces are all triangles by adding an extra vertex outside the disk.

triangles in the plane. Turning an abstract triangulation into this sort of concrete

geometric object is quite natural, and this will be our next step. The discussion that

follows treats this “concretization” in a naive but intuitively satisfying way.

Let T be an honest triangulation (meaning C is empty) with k interior vertices.

We wish to “realize” T , which is a triangulation of an abstract disk, as a triangulation

of a real square in the plane. To do this, we assign to each of the vertices of T coor-

dinates in R2, specifying that 0 7→ (0, 0), 1 7→ (0, 1), 2 7→ (1, 1), 3 7→ (0, 1), and vi 7→

(xi, yi) for an interior vertex vi, with (xi, yi) ∈ [0, 1]× [0, 1]. Thus the four boundary

vertices represent the corners, and the four boundary edges the sides, of the unit

square, and the k interior vertices represents points inside the square. The abstract

combinatorial triangles are now real geometric triangles, 2k + 2 in number, and the

edges are the edges of these triangles; together the triangles tile the unit square.

Figure 4 illustrates this assignment of coordinates in the plane to the vertices of an

abstract triangulation

We may now speak of the areas of these triangles, which are easy to compute.

The area of an oriented triangle Tabc defined by the ordered vertices (wa, wb, wc)
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whose coordinates are (xa, ya), (xb, yb), and (xc, yc), respectively, is calculated via a

determinant of a matrix containing the coordinates:

Aabc =
1

2

∣∣∣∣∣∣∣∣∣∣
1 1 1

xa xb xc

ya yb yc

∣∣∣∣∣∣∣∣∣∣
.

Note that the columns of this matrix are arranged in the same order as the vertices

of the triangle. Here is where the consistency of the orientation of the triangulation

comes in: in order to make the areas well-defined, we must essentially specify in what

order to place the columns. If we had changed the orientation of the triangle, this

would correspond to interchanging two of the columns of the matrix, producing the

negative of the original determinant and the negative of the original area. The above

choice of order corresponds to a counterclockwise orientation of the vertices of the

triangle, which is consistent with our convention.

Having defined the area of a triangle given its coordinates, we can define a map

from the set of coordinates of the interior vertices to the areas of the triangles. These

coordinates are 2k in number (two for each of k vertices), and the triangles are 2k+2

in number, so we have a map f : R2k → R2k+2, where each coordinate function of f is

a polynomial of degree at most two. Continuing somewhat naively, if we assume that

f is locally one-to-one (a reasonable assumption), a theorem of algebraic geometry

gives that the image of f is isomorphic to R2k. This image, then, has codimension two

in the codomain, so we might intuitively expect that the areas A1, . . . , A2k+2 satisfy

two relations, each of which corresponds to a difference in dimension of 1 between the

codomain and the image of f. Another theorem of algebraic geometry, in fact, assures

us of this.

It turns out that one of these relations is obvious: since the triangles tile the unit
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square, the sum of the areas is equal to the total area of the square, which is just 1:

2k∑
i=1

Ai = 1.

The other relation is not so obvious, but its existence seems clear by the naive argu-

ment above. This relation will be the focus of the remainder of this paper; it turns out

that it is in fact a polynomial relation, and by generalizing the idea of a realization

and doing some technical work, we will show that it is a homogeneous polynomial.

Our eventual goal will be to calculate the degree of this polynomial, which is uniquely

determined by the combinatorics of the original triangulation T .

To do all this, though, we will need some basic facts from algebraic geometry, and

in particular we must become familiar with projective space. To this end, we now

take a short detour to introduce projective space and some other relevant ideas about

polynomials and projective varieties.

Figure 4: Turning an abstract triangulation of a disk into a tiling of the unit square
by assigning coordinates to the vertices.
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3 A brief introduction to algebraic geometry

Algebraic geometry is essentially the study of zero sets of polynomials. Since we are

interested in a particular polynomial associated to a triangulation, we might expect

that we will find some principles of algebraic geometry to be relevant. This section

introduces some of these principles and is organized into three subsections, each of

which treats a particular object or concept in algebraic geometry. The material on

projective space and projective varieties is primarily adapted from [5], which provides

a good introduction to the subject. [2] was also consulted and is another good resource

on algebraic geometry. For a further introduction to polynomial rings and related

topics in algebra, the curious reader is advised to consult [3].

3.1 Polynomials

First, a brief review of polynomials is in order. We must begin with a field F, which is

essentially just a set of “numbers” on which the operations of addition, subtraction,

multiplication, and division make sense. The set of all polynomials in x1, . . . , xn with

coefficients in F is denoted F[x1, . . . , xn]; this set forms a ring, meaning we can add,

subtract, and multiply (but not always divide) polynomials to obtain new polynomials

in a natural way.

To every polynomial, we can associate a nonnegative integer called its degree.

The degree of a monomial (a polynomial with only one term) is just the sum of its

exponents, and the degree of a general polynomial is defined as the maximum degree

of its monomials or terms.

An especially important type of polynomial for us is a homogeneous polynomial.

A polynomial is defined to be homogeneous if every monomial has the same degree.

For example, x5 − 3x3y2 + 2xy4 is a homogeneous polynomial in two variables of

degree 5 because the sum of the exponents in every term is 5. The polynomial in
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three variables xz+yz3, on the other hand, is not homogeneous because xz has degree

2 and yz3 has degree 4. Homogeneous polynomials are interesting in part because

they are “quasilinear” in the following sense: for a homogeneous polynomial p of

degree d ≥ 1, p(λx1, . . . , λxn) = λdp(x1, . . . , xn) for any scalar λ ∈ F. In particular,

if λ 6= 0, p(λx1, . . . , λxn) = 0 if and only if p(x1, . . . , xn) = 0, a fact which will be

important later.

The notion of irreducibility of polynomials is another significant one. A polynomial

p ∈ F[x1, . . . , xn] is defined to be reducible if it can be expressed as the product of

two nonconstant polynomials: p = q1q2, where q1, q2 ∈ F[x1, . . . , xn] with deg q1 ≥ 1

and deg q2 ≥ 1. If p cannot be expressed in this way, it is said to be irreducible; this

means that whenever p is written as p = q1q2, either q1 ∈ F or q2 ∈ F. It is a fact that

every polynomial p can be factored into a product of irreducible factor polynomials:

p = q1 . . . qr, where each qi is irreducible. This factorization, furthermore, is unique

up to multiplication of each factor by elements of F.

It is worth noting that in C[x], the ring of polynomials in one variable with complex

coefficients, the fundamental theorem of algebra gives that every polynomial can be

factored into linear factors; that is, every polynomial has a “root” or solution. For

this reason, we say that the complex numbers C are algebraically closed. This makes

them a particularly convenient field to work with; for this reason, we will soon focus

our attention only on polynomials with complex coefficients.

3.2 Projective space

Now we move on to discuss some basic principles of algebraic geometry. First, we will

introduce the concept of projective space. Again, we will be particularly interested in

complex projective space, but for now we will keep things more general: for any field

F, Fk is defined as the set of of n-tuples of elements of F. Fk is said to be a vector

space over F, meaning we can add two elements of Fk and multiply elements of Fk by
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a scalar in F linearly. Its dimension over F is k.

Fn is an example of an affine space—that is, a space that is in a sense analogous to

Euclidean space Rn. To define projective space, which is a new type of space obtained

from an affine space, define an equivalence relation ' on Fk \ {(0, . . . , 0)} by

u ' v ⇔ u = λv for some λ ∈ F \ {0}.

The projective space FPn is defined simply as the set of equivalence classes of Fn+1 \

{(0, . . . , 0)} with respect to ':

FPn =
(
Fn+1 \ {(0, . . . , 0)}

)
� ' .

This space can be thought of as the set of all lines through the origin in Fn+1 since '

effectively equates all points that lie on the same line through the origin (all points

that are a scalar multiple of each other). FPn can be thought of as a compactification

of Fn, meaning it is an extension of Fn to include extra points at infinity.

Whereas a point in Fn+1 is usually represented by an (n+ 1)-tuple (x1, . . . , xn+1),

a point in FPn is usually represented by an expression of the form [x1 : · · · : xn+1].

The colons, perhaps, emphasize that only the ratios of the coordinates are significant

in projective space. Since projective space consists of a set of equivalence classes of

Fn+1, a point in projective space can generally be written in many different ways

depending on which representative of the equivalence class is chosen.

We will usually be interested in complex projective space, denoted by CPn. As

an instructive example to gain some intuition about projective space, though, it is

worthwhile to study RP2, also called the real projective plane. RP2 consists of all

lines through the origin in R3; thus the points (1, 1, 1), (2, 2, 2), and (−π,−π,−π) in

R3 all represent the same point in RP2 since they all lie on the line through the origin

and (1, 1, 1) (note they can also be written as scalar multiples of each other). For any
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point [x : y : z] in RP2 with z 6= 0, we can scale so that z = 1 and rename the point as

[x′ : y′ : 1], where x′ = x
z

and y′ = y
z
. In doing so we are effectively taking the radial

projection of the point onto the plane z = 1 and defining it by just two coordinates

representing the x- and y-coordinates of that projection.

This can be done for all the points in R3 except those for which z = 0; that is,

the points in the xy-plane. These points have no projection onto the plane z = 1

because the lines through the origin in the xy-plane never intersect the plane z = 1.

They correspond to the set of directions or lines through the origin in the xy-plane,

which is actually just RP1. RP2, then, can be thought of as the ordinary real plane

with a copy of RP1, the projective line, added: RP2 = R2 ∪ RP1.

This is actually a general fact that is true for a projective space over any field:

FPn = Fn ∪ FPn−1. We can see, then, that the idea of the construction of projective

space is to take the points in an affine space of dimension n+ 1 and “project” them

onto a hyperplane of dimension n to obtain a copy of Fn. For some special points,

though, this is not possible, and we must remember to adjoin those points, which

together look like projective space of dimension n − 1. These extra points can be

thought of as points at infinity in Fn.

3.3 Projective varieties

From this point on, we will focus our attention on the field C and complex projective

space. We want somehow to apply polynomials to projective space, and in particular

we want to look at zero sets of polynomials in projective space. But because projec-

tive space is only defined up to scalar multiples, the zero set of a general polynomial

is not well-defined. What is well-defined, though, is the zero set of a homogeneous

polynomial, since p(λx1, . . . , λxk) = 0 if and only if p(x1, . . . , xk) = 0 for a homoge-

neous p and λ 6= 0. For a homogeneous p ∈ C[x1, . . . , xn+1], we denote by Z(p) the
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zero set of p in CPn:

Z(p) = {[x1 : · · · : xn+1] ∈ CPn : p(x1, . . . , xn+1) = 0}.

A projective variety V , which is a fundamental object of study in algebraic geometry,

is a subset of projective space that can be written as the common zero set of a

collection of polynomials pi:

V =
⋂
i∈I

Z(pi)

= {[x1 : · · · : xn+1] ∈ CPn : pi(x1, . . . , xn+1) = 0 ∀i ∈ I}

Note that the index set I can generally be infinite and even uncountable; for our

purposes, though, it will always be finite. In this case, we usually denote a variety by

V = Z(p1, . . . , ps) to indicate that it is the common zero set of the finite collection of

polynomials p1, . . . , ps. In particular, we will be especially interested in varieties that

are defined by a single polynomial; that is, varieties of the simple form

V = Z(p),

where p is a homogeneous polynomial (of positive degree). These kinds of varieties

are called hypersurfaces and are analogous to what we typically think of as surfaces in

the affine space R3. Hypersurfaces have codimension one in the ambient space CPn,

meaning they have dimension n − 1. An example of a hypersurface is a set of the

form {[x1 : · · · : xn+1] ∈ CPn : a1x1 + · · ·+an+1xn+1 = 0}, which is just the zero set of

a linear polynomial. A hypersurface like this is called a hyperplane and is analogous

to a plane in R3.

A reasonable question to ask of the set of projective varieties is whether it is

closed under unions and intersections. Although arbitrary intersections (but only
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finite unions) are allowable in general, we are interested only in finite unions and

intersections. In particular, we need to study finite unions and intersections of hy-

persurfaces, which are especially easy to understand intuitively: if V1 = Z(p1) and

V2 = Z(p2), their union is given by

V1 ∪ V2 = Z(p1p2).

This makes sense because the product p1p2 is zero if and only if either p1 is zero or

p2 is zero (the “or” operator corresponds to taking a union). Their intersection, on

the other hand, is given by

V1 ∩ V2 = Z(p1, p2).

This follows from our definition of a variety, of course, but again, this makes sense

because in the intersection, we need both p1 and p2 to be zero (the “and” operator

corresponds to taking an intersection).

The intersection of two hypersurfaces, then, is no longer a hypersurface in gen-

eral because it is defined by two polynomials. For intuition’s sake, we can think of

intersecting two planes in R3 to obtain a line, which is no longer a two-dimensional

surface but rather a one-dimensional object with codimension two in R3. Usually, the

analogy in projective space holds true: the intersection of two hypersurfaces in CPn

has codimension two in CPn, and, extending this, the intersection of s hypersurfaces

in CPn has codimension s in CPn (we say “usually” because, as one might imagine,

there are exceptions to this rule in which some kind of degenerative behavior occurs).

The union of two hypersurfaces, though, is still a hypersurface, but it is in a

sense different from either of the original hypersurfaces because it is the union of

two distinct “components.” We may think of the union of two planes in R3, which

certainly looks much different than a single plane in that it has two parts, each of

which is a plane.
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This leads us naturally into the concept of irreducibility for varieties. A variety V

is defined to be reducible if it can be written as the nontrivial union V = V1 ∪ V2 of

two distinct varieties V1 and V2; if V cannot be written as such a union, it is defined

to be irreducible. From our discussion of the union of hypersurfaces, it follows that a

hypersurface V = Z(p) is irreducible if and only if its defining polynomial p has only

one irreducible factor, meaning p = qm for some irreducible q. For a reducible hyper-

surface, we can always write it as a finite union of “factor” irreducible hypersurfaces,

where each factor is an irreducible factor of the original defining polynomial p. (add

note about analogy between reducibility of polyn and hypersurface)

Our final point in this section is the following fundamental theorem of algebraic

geometry: if V is a projective variety of codimension one in CPn, then V can be

written as V = Z(p) for some homogeneous p ∈ C[x1, . . . , xn+1]. Thus not only

do all hypersurfaces have codimension one, but all varieties of codimension one are

hypersurfaces. This may seem intuitive, but it is not as trivial as it sounds. This fact

will be crucial for us in proving the existence of the polynomial we’re looking for.

4 The mystery polynomial

4.1 Realizations of a triangulation

Having introduced some concepts from algebraic geometry, we now resume our dis-

cussion of triangulations and our search for this mystery polynomial. The first step

will be to generalize the notion of a realization of a triangulation. It is most natural

to consider such a realization as a tiling of the unit square in the real plane, as has

been discussed, but it is more convenient to extend the idea as follows. The first

generalization is to allow the corners of the square to move arbitrarily, with the con-

dition that they still define a parallelogram. The second generalization, which is a bit

harder to visualize, is to allow the coordinates of all the vertices to take on complex
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values. Note that this does not mean we map the vertices to points in the complex

plane—rather, we assign each vertex two coordinates, each of which is complex. The

unit square in R2 is thereby generalized to an arbitrary parallelogram in C2. The

areas of the triangles are still well-defined in terms of determinants in the same way,

but they are now complex in general. This is made rigorous below.

Define an acceptable realization of a triangulation T to be a map g : V (T )→ C2

satisfying the following requirements:

1. g(1)− g(0) = g(2)− g(3)

2. For all vertices v, w ∈ V (T ), if v ∼ w, then g(v) = g(w)

3. For all conditions Ci ∈ C, there exists a line `Ci
such that g(v) ∈ `Ci

for all

v ∈ Ci

4. There exists at least one triangle in T with nonzero area

Requirement 1 ensures that the four boundary vertices form a parallelogram in C2.

Requirements 2 and 3 give concrete meaning to the abstract notions of the equivalence

relation ∼ and the conditions C, respectively: ∼ specifies that certain boundary

vertices must have the same coordinates, and C specifies sets of collinear vertices.

Requirement 4 simply ensures that the realization is in a sense nontrivial and that

some triangles have nonzero area; this requirement is helpful because, as we have seen,

zero is a problematic entity in projective space. Note that beyond these requirements,

we do not put any restrictions on the coordinates of the interior vertices. We do

not even require, for example, that they lie within the parallelogram defined by the

boundary vertices. The interior vertices, then, are truly free to lie anywhere in C2,

except that the appropriate sets must be collinear as specified by C.

We define X(T ) simply as the set of all acceptable realizations of T . X(T ) can be

thought of as the space of all the ways in which to give the vertices of a triangulation

coordinates in C2 such that the coordinates satisfy the four simple requirements above.
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Let us calculate the dimension of X(T ). For now, we will only consider an honest

triangulation T so that requirements 2 and 3 above are irrelevant. A function g ∈

X(T ) assigns two complex coordinates to each member of V (T ), which has k + 4

elements when T has k interior vertices. These coordinates are independent except

that three of the boundary vertices’ coordinates determine the fourth since they must

form a parallelogram. Really, then, g can freely assign two complex coordinates to

k+3 vertices, at which point the (k+4)th vertex’s coordinates are determined. Thus

X(T ) has complex dimension 2(k + 3) = 2k + 6, and in fact we can think of it as

isomorphic to C2k+6.

Each map g ∈ X(T ) specifies the coordinates of the k + 4 vertices of T , which in

turn specify the 2k+ 2 areas of the triangles in T . Thus there is a natural map from

X(T ) to C2k+2 that, given an assignment of coordinates, gives the areas. Our next

goal is to study this map.

Figure 5: A generalized acceptable realization g of an abstract triangulation. Com-
pare to Figure 4; now, the unit square can be any parallelogram, and the coordinates
are complex.
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4.2 The area map

As discussed above, there is a natural map from X(T ) to C2k+2 that gives the triangle

areas given a particular realization of the triangulation. It will be more convenient,

though, to map into projective space because the theorems of algebraic geometry

are easier to apply there; this is why we have just spent so much time discussing

projective varieties. Thus we compose this map giving the areas in affine space with

the “projective” map from affine space into projective space. We call the resulting

map f :

f : X(T )→ CP2k+1.

For triangle Ti containing vertices va, vb, and vc that are mapped by g ∈ X(T ) to

(xa, ya), (xb, yb), and (xc, yc), respectively, Equation (2.4) gives the area of Ti. Because

all the vertices, including the boundary vertices, are now allowed to vary, every area

is indeed a polynomial of degree two (unless it’s identically zero). The area map f

specifies the relative areas of the 2k + 2 triangles in T . A point in the codomain can

be expressed as [A1 : · · · : A2k+2], where each Ai represents the area of a particular

triangle Ti.

Let’s consider the dimension of the image of X(T ) under f . f certainly can’t be

one-to-one since the domain X(T ) has dimension 2k + 6 and the codomain CP2k+1

has dimension 2k + 1. The “loss” in dimension is easy to explain when we recognize

that f is not affected by invertible affine transformations, that is, maps formed by

composing an invertible linear transformation and a translation. Formally, we may

say that for any g ∈ X(T ), if M is an invertible 2 × 2 matrix and b ∈ C2, then

f(Mg + b) = f(g). Here Mg + b is the element of X(T ) which takes the coordinates

in C2 of each vertex as defined by g and multiplies them by M and adds b (the image

of the coordinates of the triangulation under an affine transformation). Note that

we must require M to be invertible (M ∈ GL(2,C)) to ensure that all areas aren’t
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mapped to zero, which is not allowed in X(T ).

The set of invertible affine transformations of C2 (often called the affine group)

has complex dimension 6: 4 from linear transformations and 2 from translations. It

follows that dim (f(X (T ))) ≤ 2k + 6 − 6 = 2k. It takes some work to prove that

this is in fact an equality; for a proof, see [1]. In any case, the conclusion is that

dim (f(X (T ))) = 2k and f(X(T )) has codimension one in CP2k+1, a very important

fact. By the theorem stated at the end of Section 3.3, this means that f(X(T )) must

be the solution set of some polynomial—this is our mystery polynomial.

Before discussing this further, we must generalize a bit. We conspicuously chose

to consider only honest triangulations in the above discussion, ignoring conditions

and the equivalence relation. Treating general triangulations will be the next step,

but first it will be enlightening to discuss the areas of triangles, and specifically, how

to make the area of a triangle zero.

4.3 Triangles with area zero

We are in the process of introducing an algorithm to compute the degree of the

polynomial associated with a triangulation inductively. This algorithm works by

relating a complicated triangulation to simpler ones, and the central action in this

process is successively specifying that certain triangles have area zero. We now ask

the question: when does a triangle have area zero?

The answer to our question is simple: a triangle has zero area if and only if its

three vertices are collinear—that is, if and only if the three vertices lie on a single

line. This makes sense intuitively, but we shall prove it formally.

Consider three points (x1, y1), (x2, y2), and (x3, y3) in C2. Recall that the area of

the triangle specified by these points is given by half of the following determinant

(we can ignore the order of the vertices since we are only concerned with when the
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determinant is zero):

D =

∣∣∣∣∣∣∣∣∣∣
1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣∣∣
.

We want to show that the points are collinear if and only if D = 0. First we will

assume they are collinear and prove that D = 0. There are two cases depending on

whether the points are distinct.

If two of the points are the same, collinearity is trivial since two points always lie

on a line. In this case, D = 0 automatically since two of the columns in the matrix

are the same, meaning the matrix is singular and its determinant is zero.

So we may assume the three points (x1, y1), (x2, y2), and (x3, y3) are distinct. In

this case, they are by definition collinear if and only if the following condition holds:

x3 − x1 = c(x2 − x1) and y3 − y1 = c(y2 − y1) for some c ∈ C. Expand D to obtain

D = x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1

= x3(y1 − y2) + y3(x2 − x1) + x1y2 − x2y1

Now substitute expressions for x3 and y3 as given by the collinearity condition:

D = [x1 + c(x2 − x1)](y1 − y2) + [y1 + c(y2 − y1)](x2 − x1) + x1y2 − x2y1

= 0,

as desired.

Now suppose D = 0; we want the three points to be collinear. The columns of
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the matrix are linearly dependent, meaning we can write

a1


1

x1

y1

+ a2


1

x2

y2

+ a3


1

x3

y3

 =


0

0

0

 ,

for some coefficients a1, a2, and a3, not all zero. This is equivalent to the linear system

a1 + a2 + a3 = 0

a1x1 + a2x2 + a3x3 = 0

a1y1 + a2y2 + a3y3 = 0

If any of the points are the same, they are automatically collinear, so assume the

points are distinct (in this case we may use the condition stated above). This implies

that in fact none of the coefficients are zero, and we can rescale them to rewrite the

above system of equations as

b1 + b2 + 1 = 0

b1x1 + b2x2 + x3 = 0

b1y1 + b2y2 + y3 = 0

The first equation allows us to write 1 + b1 = −b2; substituting this into the second

and third equations and rearranging, we obtain that

x3 − x1 = −b2(x2 − x1) and

y3 − y1 = −b2(y2 − y1),

which is precisely the collinearity condition with c = −b2. This completes the proof.
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We have just seen that there are two ways to force the area of a triangle to be

zero: we can specify that the three vertices are collinear, without saying anything

about whether they’re distinct; or we can specify that two of the vertices are equal

to each other. The second condition is in a sense a special case of the first, but the

two conditions are certainly conceptually distinct, and we will need to think of them

as distinct in the context of the algorithm.

In defining X(T ), the set of realizations of a triangulation, it was stated briefly

that the conditions C are “realized” as sets of points that must be collinear; that is,

the coordinates of all the vertices in each condition must lie on a line in C2. The

significance of the conditions is therefore the following: if a triangle appears in a

condition, that means its three vertices are collinear for every possible realization in

X(T ), so the area of the triangle as defined by f is always zero. Essentially, then,

the conditions specify which triangles have zero area; modification of the conditions,

which is associated with specifying that certain triangles have zero area, will play a

key role in our eventual degree-computing algorithm.

Note that although each condition in C is really a set of triangles, there is also a set

of vertices associated to it (all the vertices that are contained in one of the triangles),

and the effect of the conditions on the realization of a triangulation is defined in terms

of those vertices. We specify that all the vertices in each particular condition must be

collinear. In fact, then, the conditions may affect more triangles than expected: if the

three vertices of a triangle appear in a single condition (expressed as a set of vertices),

that triangle must have area zero, regardless of whether the triangle itself appears in

the condition (expressed as the original set of triangles). If a triangle is not intended

to be “killed” but its area is forced to be zero in this way, we call the phenomenon

“collateral damage.” Figure 6 illustrates how this might happen; basically, a triangle

is surrounded in some way by killed triangles, forcing its area to be zero. This is

something we want to avoid in executing the algorithm.
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Figure 6: An illustration of collateral damage; if we kill the three outer triangles, the
inner triangle must also have area zero.

The equivalence relation ∼ is also related to the areas of triangles. ∼ was defined

in an abstract way, but essentially it affords a way to keep track of which boundary

vertices are “equal.” We specify that, for boundary vertices v and w in V (T ), if v ∼ w,

then for all realization maps g in X(T ), g(v) = g(w). Because the boundary always

maps to a parallelogram, ∼ has the ability to specify that [g(0) = g(1) and g(2) =

g(3)] and/or [g(1) = g(2) and g(0) = g(3)]; that is, that one or both of the opposite

boundary edge pairs “collapses” into a a pair of points, meaning the boundary of the

parallelogram consists of a single edge or a single point. If 0 ∼ 1 and 2 ∼ 3 (we can’t

have one without the other), then the edges {0, 1} and {2, 3} each degenerate to a

single point. Thus the two triangles containing one of those two edges (there can only

be exactly two) must have area zero. Similarly, if 1 ∼ 2 and 0 ∼ 3, then the triangle

containing the edge {1, 2} and the triangle containing the edge {0, 3} must have area

zero.

4.4 The area map, generalized

We now continue the discussion of the area map in the more general setting in which

we consider an honest triangulation T along with conditions C and equivalence re-
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lation ∼. As before, we define the map f from X(T ) to CP2k+1 that specifies the

relative areas of each triangle given a realization of T . We saw that for an honest

triangulation, the dimension of the image of X(T ) under f has dimension 2k. If the

conditions and equivalence relation are nontrivial, though, this is no longer the case.

The situation is not much more complicated, but it requires treatment.

The effect of C and ∼ is to require that certain triangles have zero area; this clearly

effects the image of X(T ). Formally, if the set of triangles that C and ∼ require to

have area zero is {Ti1 , . . . , Tir} and the area of triangle Tj is Aj, then f(X(T )) is

contained in the variety in CP2k+1 where Ail = 0, 1 ≤ l ≤ r. We denote this variety

by Y (T ):

Y (T ) = {[A1 : · · · : A2k+2] ∈ CP2k+1|Ail = 0, 1 ≤ l ≤ r}.

For a general triangulation, then, f is really a map from X(T ) to Y (T ):

f : X(T )→ Y (T ) ⊂ CP2k+1.

By its definition, Y (T ) is a variety in CP2k+1 of dimension 2k+1−r, where r triangles

must have area zero; a dimension is lost for each “killed” triangle. Furthermore, Y (T )

is just a linear subspace of CP2k+1 consisting of the intersection of r hyperplanes, so

in fact Y (T ) is isomorphic to CP2k+1−r.

Killing triangles (and thereby adding conditions) also must have an effect on

X(T ). Whereas we saw that X(T ) has dimension 2k+ 6 for an honest triangulation,

this is not the case for a general triangulation. Essentially, though, we want X(T )

to be affected in the same way that Y (T ) is, meaning a single dimension is lost

for each killed triangle. But the effect on X(T ) of killing a triangle is not quite as

simple as that on Y (T ), which is simply a linear subspace of CP2k+1. Requirement

3 in the definition of X(T ) (Section 4.1) specifies that the vertices contained in each

condition must lie on a line, which, we have seen, is equivalent to requiring that a
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degree-2 polynomial representing a certain determinant be zero. This, unfortunately,

is not a linear condition, meaning we cannot just intersect a linear hyperplane with

X(T ) each time we add a condition to kill a triangle. It is, however, a quadratic

condition, meaning the situation is not much more complicated. Every time we kill

a triangle, we impose a new quadratic condition on X(T ), meaning X(T ) is just the

intersection of r quadratic hypersurfaces. We should expect, then, that X(T ) loses a

single dimension for each of the r killed triangles.

We can also construct a more intuitive argument to imagine why we should lose

a single dimension for each killed triangle. Consider a triangulation T containing

the triangle Tabc = {va, vb, vc}. With no conditions, the three vertices in Tabc are

free to move indepently in realizations of T , and together they possess six complex

degrees of freedom, since each vertex is assigned two complex coordinates. When we

impose the condition that va, vb, and vc are collinear, which is equivalent to killing

Tabc, we restrict these degrees of freedom. Essentially we can place two of the vertices

anywhere we like, accounting for four degrees of freedom, but the third is no longer

free. It must lie on the line joining the first two, which is essentially a one-dimensional

object; we can only specify where along this line it lies. Thus the three vertices now

have five degrees of freedom, one less than before, and the coordinate space X(T ′)

for the triangulation T ′ created from T by killing Tabc has dimension one less than

the dimension of X(T ).

It takes some significant work to prove that this extends to any number r of killed

triangles, and furthermore, to prove that this loss in dimension is preserved by f ,

which is really what we need. The proof of this is beyond our scope here, but the

result [1] is the following: the closure of f(X(T )) is a codimension-1 subvariety of

Y (T ), which is just a copy of CP2k+1−r. As a result, f(X(T )) can be thought of

as a codimension-1 variety in CP2k+1−r, and by the theorem stated in Section 3.3,

f(X(T )) again must be the zero set Z(p) ⊂ Y (T ) of some homogeneous polynomial
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p. Note that p is a polynomial in 2k+ 2− r variables (the areas of the triangles that

haven’t been killed), but we can also think of it as a polynomial in the 2k+2 variables

A1, . . . , A2k+2 representing the areas of all 2k + 2 original triangles. We should just

remember that r of those variables (representing the killed triangles) never appear in

any term.

This is an important moment, and it is worth recapping what we have done so far.

We have shown that for every combinatorial triangulation triple (T , C,∼), there is a

unique homogeneous polynomial equation p = 0 that the areas of the triangles always

satisfy in any realization of the triangulation in C2. We will call this polynomial p(T ),

or sometimes just p. Having shown the existence of p(T ), the remainder of this paper

will focus on studying it.

4.5 A general discussion of p(T )

Little, in fact, is known about p(T ) for a general T . Depending on T , p(T ) could

be quite simple or quite complex. We have already seen an example of a very simple

polynomial associated to a very simple triangulation. For a more complicated tri-

angulation containing many triangles, though, the polynomial could be much more

complicated. In theory, if T contains n triangles and p(T ) has degree d, p(T ) could

contain up to
(
n+d−1

d

)
terms (the number of monomials of total degree d in n vari-

ables). Of course, there could also be fewer terms, but the problem of computing just

a fraction of this number of terms seems a daunting one.

All is not lost, though—there is, in fact, a way to compute the polynomial p(T )

associated to a general T . We actually have all the necessary information: if we assign

coordinates (xi, yi) ∈ C2 to each vertex wi ∈ V (T ), we can write explicit formulas for

the area Aj of each triangle Tj in T in terms of the xi’s and yi’s, thereby obtaining

a system of degree two polynomial equations giving each Aj. All that remains is to

eliminate the xi’s and yi’s from this system to obtain a polynomial equation relating
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the Aj’s—this equation must be equivalent to p(T ) = 0, where p(T ) is, of course, the

unique polynomial we’re looking for. In theory, this elimination can be done by hand,

although computer algebra software can do it much more quickly. As the number of

vertices and triangles increases, though, this task of elimination tends to become

quite computationally expensive. Suffice it to say that for reasonably complicated

triangulations, the task is realistically impossible even for our fastest computers.

We now focus, then, on a somewhat simpler task: computing only the degree of

p(T ) for a general T and classifying triangulations according to the degree of their

polynomials. We denote the degree of p(T ) by d(T ); often we may also refer to d(T )

as the degree of the triangulation T itself. This degree, being just a single integer,

is a much simpler object of study than the whole polynomial itself. The remainder

of the paper is devoted to developing an algorithm to compute d(T ) by relating it to

the degrees of polynomials of simpler triangulations.

It is worth noting that Joshua Kantor and Maksim Maydanskiy [4] have completely

classified all the triangulations for which d(T ) = 1; that is, they have identified

necessary and sufficient conditions on T for p(T ) to be linear. These conditions will

be discussed in Section 5.4. In the meantime, we begin to develop the algorithm.

5 The algorithm

5.1 Reducibility

We now wish to introduce the concept of reducibility for a triangulation. It is a

similar notion to that of reducibility for a polynomial: we want to know whether

a triangulation, with conditions, can be split into simpler component triangulations

that make up the whole when taken together—“multiplied” together, in a sense. If

it can be split in this way, we say it is “reducible;” whether it’s reducible depends

essentially on overlaps between conditions, which, remember, are related to collinear
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vertices and to areas. Below we define reducibility formally, and then we elaborate

on the central intuition connecting reducibility and collinearity.

To define reducibility, we must unfortunately add one small piece of information

to the definition of a triangulation, confusing the already too abstract definition even

further. A general triangulation will now consist of an honest triangulation T , a set

of conditions C, and an equivalence relation ∼ (we have already introduced these),

along with two “flags”—one called the “vertical flag” and one the “horizontal flag.”

Each flag is just a boolean variable that can take on two values: true or false, 1 or 0,

or on or off. Rather than using “true” or “false,” etc., we will specify whether each

flag is “raised” or not, in a rather colloquial notational convention. The two flags will

be related to collinearities (conditions) involving the top and bottom edges and the

left and right edges, respectively. This may seem odd and abstract, but we hope it

will become clear soon enough.

Now, on to the definition: let T be a triangulation accompanied by conditions

C, equivalence relation ∼, and specified horizontal and vertical flags. T is defined to

be reducible if there exist distinct conditions C1, C2 ∈ C (where the conditions are

expressed as sets of vertices) for which any of the following requirements hold:

1. |C1 ∩ C2| ≥ 2; that is, for distinct vertices u and v, we have u, v ∈ C1 and

u, v ∈ C2

2. 0, 1 ∈ C1 and 2, 3 ∈ C2 and the horizontal flag is not raised and 0 � 1

3. 1, 2 ∈ C1 and 0, 3 ∈ C2 and the vertical flag is not raised and 0 � 3

T is defined to be irreducible if it satisfies none of these.

Each of the three requirements essentially involves some kind of overlap between

conditions in C. Requirement 1 is the “primary” way in which a triangulation can

be reducible; if a triangulation satisfies 1, it simply means that two of its conditions

overlap in at least two vertices. Requirements 2 and 3 are an extension of this idea
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to the boundary vertices; we essentially want to identify the opposite edge pairs as if

the triangulation lives on a torus. Triangles can then in a sense “overlap” along the

boundary edges.

Reducibility, then, has to do with overlap in conditions. Let us relate this to

the connection between conditions and collinearity. Suppose C1 = {x, u, v} and

C2 = {y, u, v} are two conditions that both contain the vertices u and v. In a

realization of these conditions, we must have that x, u, and v are collinear, and that

y, u, and v are collinear. This is equivalent to requiring that x lie on the line joining

u and v and that y lie on the line joining u and v, but there is only one such line!

Thus both x and y lie on the line joining u and v, and in fact all four of x, y, u, and

v must be collinear—that is, unless the u and v are the same point in the realization

(g(u) = g(v)). If this is the case, then actually x and y are completely free. This is a

subtle but important second case.

We identify opposite edge pairs and count them as “overlapping” as well because,

again, there are two different ways in which a set of conditions like this can be

achieved. For example, if C1 = {x, 0, 1} is a condition containing the “bottom” edge

{0, 1} and C2 = {y, 2, 3} is a condition containing the “top” edge {2, 3}, one way to

achieve the collinearities required by C1 and C2 is to set 0 ∼ 1 and 2 ∼ 3, meaning

that in all realizations, the bottom edge and top edge “degenerate” to a single point.

Of course, the other way to achieve these collinearities is to proceed as usual and

require that x lie on the bottom edge and y on the top edge. In this case we want to

raise the horizontal flag to indicate that this has already been reduced and should not

be counted as reducible later (we use the word “horizontal” since the top and bottom

edges can be thought of horizontal, at least when the triangulation is thought of as

living in a square in the plane). The situation is analogous for conditions involving the

“left” edge {0, 3} and the “right” edge {1, 2}; in that case the vertical flag is involved.

The flags, then, exist simply to identify whether overlap involving boundary edges
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counts toward being reducible or not; a flag being raised means that the triangulation

is irreducible, at least with respect to the corresponding boundary edges.

In any case, the overlap of two conditions in more than one vertex can be reduced

in the sense that satisfying the conditions in a realization can happen in either of

two combinatorially distinct ways. These two ways can each be represented by a

different triangulation, each of which can be thought of as a component or “factor”

of the original (see Figure 7). Since irreducible triangulations are more convenient,

it will be useful to develop a method for factoring general reducible triangulations

into a number of irreducible factors. We call this process “reducing;” the section that

follows describes the process.

5.2 Reduction algorithm

We now develop an algorithm for “factoring” a triangulation into irreducible compo-

nent triangulations. Let T be a triangulation with conditions C = {Ck}Nk=1, equiv-

alence relation ∼, and specified flags. Assume T is reducible, meaning there exist

a pair of conditions Ci and Cj in C that satisfy one of the requirements above. If

there are multiple such pairs of conditions, we can just choose one pair arbitrarily,

but in practice this is not usually a problem because the algorithm works by adding a

single condition (by killing a triangle) to an irreducible triangulation. Thus the ways

in which a triangulation we encounter is reducible are usually quite simple. We have

three cases determined by which of the three requirements Ci and Cj satisfy. In each

case, we create two “factor” triangulations as described by the following:

1. If Ci and Cj satisfy requirement 1, let u and v be the vertices contained in both

Ci and Cj. The factors are given by

(a) Let C ′ = C −C1−C2 + (C1 ∪C2) (combine C1 and C2 into one condition).

The new factor is given by the original T , ∼, and flags, with conditions
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(a) An edge {u, v} is shared by two killed triangles. There are two ways to
achieve this: we can make all four points collinear, or we can specify that u
and v have the same coordinates.

(b) When we have the “overlap” of op-
posite boundary edges in the conditions,
we can either proceed as normal with
the flag raised or we can collapse those
boundary edges into a pair of points.

Figure 7: When two killed triangles overlap on an edge, we get two distinct “factors.”
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C ′.

(b) Let T ′ be T and let C ′ be C with the stipulation that all occurrences of v

are replaced by u, all triangles in T containing both u and v are deleted,

and all conditions in C containing fewer than three vertices are deleted,

since the collinearity of two points is trivial. The new factor is given by

T ′ and C ′ with the original ∼ and flags.

2. If Ci and Cj satisfy requirement 2, assume without loss of generality that 0, 1 ∈

Ci and 2, 3 ∈ Cj. The factors are given by

(a) Leave T , C , ∼, and the vertical flag unchanged, but “raise” the horizontal

flag.

(b) Leave T , C , and the flags unchanged, but set 0 ∼ 1 and 2 ∼ 3.

3. If Ci and Cj satisfy requirement 3, assume without loss of generality that 0, 3 ∈

Ci and 1, 2 ∈ Cj. The factors are given by

(a) Leave T , C , ∼, and the horizontal flag unchanged, but “raise” the vertical

flag.

(b) Leave T , C , and the flags unchanged, but set 0 ∼ 3 and 1 ∼ 2.

For a reducible T , these rules give two factor triangulations. Figure 7 gives an idea

of what these factors look like for each of cases 1 and 2 above. Case 3 is analogous

to case 2.

In general, the two factors may not themselves be irreducible; if this is the case, we

simply do it all again, factoring each of the factors into “subfactors.” These subfactors

are themselves factors of the root triangulation T . Eventually, of course, we want

this process to terminate. To see that it must terminate, define the integer quantity

N(T ) = c + v − f , where c is the number of conditions, v the number of distinct

vertices, and f the number of flags set (by definition no greater than two) in a
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triangulation T . Note that every time we factor a triangulation T0 into two factors T1

and T2, we have that N(T1) and N(T2) are each strictly less than N(T0). The number

of vertices v is finite, so if we are able to keep factoring a triangulation, eventually the

number of conditions c in each factor must go down. Eventually, then, every factor

must become irreducible at the point when there are no conditions left, if not before.

At this point we will have compiled a list consisting only of irreducible factors of our

original reducible triangulation.

5.3 The irreducibility theorem and the foundations of the

algorithm

Irreducibility of triangulations is such a nice property because of the following fact:

the polynomial p associated to a triangulation T is irreducible if and only if T is

combinatorially irreducible as we have just defined [1]. Furthermore, the polynomials

associated to the combinatorial factors of T correspond to the factors of p. This can

be proven, but the proof is beyond the scope of this paper.

This is very important because we are interested in the degree of the polynomial

p associated to T . If T can be factored into simpler component triangulations, p can

be expressed as the product of the polynomials associated to each of the component

triangulations, with a possible correction for multiplicity, a subtle necessity. Thus,

ignoring multiplicity, d(T ), the degree of T , is simply the sum of the degrees of the

polynomials associated to each of the components.

Our algorithm for computing d(T ) relies heavily on this technique of factoring

reducible triangulations, but this is only useful for studying triangulations that are,

in fact, reducible. To get reducible triangulations from irreducible ones, we employ

another important technique that we call “killing” triangles. The idea is to require

that certain triangles (which we can usually choose in an arbitrary order) must have

area zero in every realization of the triangulation, a requirement that is incorporated
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into the conditions. After killing a triangle, we obtain a triangulation whose condi-

tions stipulate that the triangle has area zero; this new triangulation can be thought

of as a special case of the original, and its polynomial is closely related to the poly-

nomial of the original. By successively killing triangles, we change the polynomial,

but we change it in a predictable way. Because we are changing the conditions, we

also eventually end up with a reducible triangulation, which can be reduced into sim-

pler factors, whose polynomials’ degrees basically sum to the degree of the original

polynomial.

The theoretical basis that allows killing triangles to be useful is contained in the

following: suppose T is a triangulation with conditions C. Let Ti = (u, v, w) be a

triangle in T . We want to kill Ti; this means we specify that Ti has area zero, which

happens if and only if u, v, and w are collinear. Thus killing Ti is equivalent to adding

the condition C = {u, v, w}, meaning, really, that u, v, and w are collinear, to C. Let

C ′ = C ∪ C, and let T ′ denote the triangulation T with conditions C ′. There is some

polynomial p = p(T ) associated to T and another polynomial p′ = p(T ′) associated

to T ′. We are interested in p, and we want to relate it to p′.

p is a homogeneous polynomial in A1, . . . , A2k+2, where T has k interior vertices.

From p, we can construct another polynomial by discarding all terms in which Ai

(representing the area of Ti) appears. In doing so, we are effectively specifying that

Ai = 0. Call the resulting polynomial p|Ai=0. Significantly, since p is homogeneous,

meaning every term in p has the same degree, it follows that p|Ai=0 and p have the

same degree.

Now, we must notice that T ′ is really just a special case of T in which Ai is

always zero. This means that if in some realization of T ′, we have that the areas

A1, . . . , Ai = 0, . . . , A2k+2 satisfy p′ = 0, then they also satisfy p|Ai=0 = 0. Our

intuition might tell us that this means p′ divides p|Ai=0, but this is not quite correct.

In fact p′ may not be irreducible; if not, though, we can factor it as p′ = q1 . . . qr, where
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each qi is an irreducible polynomial. Again we have that qi = 0 implies p|Ai=0 = 0,

so since the qi’s are irreducible, we can conclude that every qi divides p|Ai=0. In fact,

the qi’s are the only factors of p|Ai=0, and so

p|Ai=0 = qm1
1 . . . qmr

r

for nonnegative integers mi’s, which are the multiplicity of the respective qi’s. Let

us assume for now that each multiplicity is one (which is usually the case), because

in this case a quite useful conclusion can be drawn. It is that in fact p′ = p|Ai=0,

and furthermore, that the degree of p′ must be equal to the degree of p. By killing

a triangle to obtain a new triangulation, we have not changed the degree of the

associated polynomial!

5.4 Linear triangulations

As promised, we now discuss conditions on T that give a linear polynomial; that is,

a polynomial of the form p(T ) =
∑2k+2

i=1 aiAi, where ai ∈ C. Kantor and Maydanskiy

[4] have proven that p(T ) is linear if and only if T is of one of the following forms or

a subtriangulation of one of the following forms:

1. “‘X’ case:” There exists a vertex w such that w is connected by an edge to each

of the four boundary vertices. In this case the triangulation resembles the letter

‘X’ when drawn in the plane.

2. “Zigzag case:” A “zigzag” pattern of edges is formed between two distinct

boundary vertices, where the intermediate vertices are each required by a con-

dition to lie on a boundary edge. A special case of this is the “diagonal case,”

in which a single diagonal edge joins two opposite boundary vertices (0 and 2

or 1 and 3).
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These are best illustrated by a diagram; Figure 8 provides examples of each case. Note

that a subtriangulation of a triangulation of T is defined as any triangulation T ′ that

can be obtained from T essentially by adding vertices and edges; T ′ basically contains

T plus some extra information. This effectively means that the “edges” in each of the

two cases can consist of either actual edges of triangles or of sets of mutually collinear

vertices (conditions). Figure 8 also provides example of subtriangulations of the two

linear cases.

(a) ‘X’ case.

(b) Zigzag case.

Figure 8: Examples of linear triangulations, including examples of subtriangulations
of the basic cases.

Given an irreducible triangulation, it is easy to check whether or not the associated

polynomial is linear. Our goal in the algorithm will be to produce linear factors of

an original triangulation; by counting these factors, we can count the degree of the
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polynomial associated to that triangulation.

The following is worth noting, if only briefly: there is a particular type of linear

triangulation whose polynomial is especially interesting. Define H as the subset of

CP2k+1 in which
∑2k+2

i=1 Ai = 0 (a hyperplane). We say that a triangulation T is in

H if f(X(T )) ⊂ H; this means that all the areas of the triangles in T always sum

to zero, and in fact p
∑2k+2

i=1 Ai is the polynomial associated to T . This p is certainly

linear, and indeed all triangulations in H are special cases of either the ‘X’ case of

the zigzag case. In our algorithm, the only way we will ever encounter triangulations

in H is by setting 0 ∼ 1 and 2 ∼ 3 or 0 ∼ 3 and 1 ∼ 2, meaning that the boundary

parallelogram collapses into a single line segment. The area of the parallelogram is

then required to be zero, so the areas of the triangles must sum to zero. Triangulations

in H are curious, but for our purposes, we will just count them as linear and be done

with them.

5.5 The algorithm

All the framework is in place; now we explicitly describe the execution of the algorithm

to compute d(T ).

Let T be a triangulation with conditions C, equivalence relation ∼, and flags. If

T is reducible, the first step is to find all the irreducible factors of T according to

the reduction algorithm. Then we test each of these factors to determine if their

polynomials are linear; we set aside the linear factors and keep track of how many

of them there are with a variable d, a “degree counter.” Every time a linear factor

is found, d is incremented. All the remaining nonlinear factors are put into a list L.

At this point, we have that d(T ) is equal to d plus the sum of the degrees of the

irreducible factors in L; this relationship should hold at every step in the algorithm.

The goal is to make the factors in L successively simpler by killing triangles, all the

while factoring out linear factors and incrementing d, until L is empty and all the
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factors are linear.

The basic step of the algorithm is to choose an irreducible factor triangulation T0

from the list L and kill a triangle T in T0 to obtain a new triangulation T ′0 . Note

that d(T0) = d(T ′0 ). If T ′0 is still irreducible, repeat this step, killing more triangles

one at a time, until a reducible triangulation is obtained, whose degree will still be

equal to the degree of T0. Then reduce this triangulation into irreducible factors, the

sum of whose degrees will add to the degree of T0. Test each factor for linearity, and

for every linear factor, increment d. Then put the remaining nonlinear factors into

L to be processed later. Now L does not consist of triangulations that are factors of

the original triangulation T , but it does consist of “factors” in a loose sense, and the

sum of those factors plus d is still always equal to d(T ).

This step is repeated with a new factor triangulation T0 taken from the updated

L, and the process continues to loop. We would like this process to terminate, and

in fact we can prove that it does. A sketch of the proof is the following: note that

every time we kill a triangle in a factor T to obtain T ′, we have that dim(Y (T ′)) <

dim(Y (T )). If we always choose the factor T0 in L with dim(Y (T0)) greatest, the

maximum dimension of dim(Y (T )) over all triangulations T in L will go down at

every step (or after some finite number of steps). Thus after a finite number of steps,

the algorithm will terminate: L will be empty, and we’ll have d = d(T )—we’re done!

5.6 Issues with the algorithm

We have described an algorithm for computing d(T ) for a general T ; this algorithm

works by counting the degrees of a number of factors of T . The algorithm does its job

reasonably well in the sense that all the factors it counts are related to the original

triangulation, and there are no factors that it “misses.” Where it could go wrong,

however, is in counting the multiplicity of a factor, and this could affect whether the

resulting total degree counted is correct.
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By the multiplicity of a factor, we essentially mean the “power” of a factor trian-

gulation’s polynomial that appears in the parent triangulation’s polynomial (the mi’s

in the equation at the end of Section 5.3). This is the same as the number of times

that a factor triangulation should be counted toward the degree of a parent reducible

triangulation. The algorithm as we have described so far operates under the assump-

tion that all the multiplicities are one, meaning, really, that every factor we encounter

in the algorithm should be counted exactly once toward the total degree. This is why

we increment the degree counter d by exactly one each time a linear factor is found.

In theory, though, this may be an incorrect assumption: some multiplicities may be

zero, in which case certain factors should not be counted (we shouldn’t increment

the counter at all); or some multiplicities may be greater than one, meaning certain

factors must be counted multiple times (we should increment the counter by some

integer m ≥ 2).

One way the first case can arise is when a factor triangulation contains “collateral

damage,” a concept that was briefly introduced earlier. We say that collateral damage

occurs when a triangle is forced to have zero area in all realizations, but that triangle

has not specifically been chosen to be “killed.” This affects the dimension of X(T )

and the relationship between X(T ) and Y (T ). If this happens, the resulting factor

should not be counted because in a sense it has zero multiplicity. Luckily, collateral

damage can easily be detected: for each triangle (u, v, w) that we haven’t killed yet,

we simply check whether any condition contains all of u, v, and w. If so, (u, v, w) must

have area zero and we discard the factor because collateral damage has occurred.

It is also possible that a factor triangulation has multiplicity higher than one,

meaning its degree should be counted two or three times, for example. This is a

more subtle issue than collateral damage because we know of no way to test for

higher multiplicity. We believe, however, that higher multiplicities can be avoided by

choosing the order in which to kill triangles in a smart way. Conspicuously, we have
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chosen not to discuss this order at all; this is because, if we ignore higher multiplicities,

the algorithm we have described works for any arbitrary (even random) choice of order

in which to kill triangles. Unfortunately, we can’t always ignore higher multiplicities,

so we must choose this order in a particular way. The ideal order involves a shelling

of a triangulation; essentially we always want to choose a triangle that shares an edge

with a triangle that has already been killed. If we do this, the triangulation will be

reducible at every step, and it will always be reducible in a very simple way. We think

we can prove that this method results in factors that never have multiplicity greater

than one, but because this method is still in development, we will not present it in

detail here. For a more detailed discussion, see [1].

The conclusion is this: with a smart choice of order in which to kill triangles and

a check for collateral damage, this algorithm computes the correct degree d(T ) of the

polynomial p(T ) associated to a triangulation T .

The preceding development of the algorithm has been an end in itself, and it is

nice to know that we have a method for computing the degree. This method, though,

is somewhat tedious to implement by hand; for this reason, we have developed a

computer program to implement it. The following section gives a summary of the

steps necessary in programming the algorithm.

5.7 Implementation of the algorithm in Java

We have developed a program in Java that implements the algorithm. Rather than

including all the code or even complete pseudocode, we simply describe it generally.

It is important to note that although the algorithm is based upon the geometry of

triangulations, all the steps of the algorithm itself are completely combinatorial and

can be implemented without knowing anything about the geometry. Indeed, the

program described below involves only simple combinatorial operations with sets of

vertices.
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The most important objects in the algorithm are triangulations and conditions,

both of which involve sets of vertices. The basic operations of the algorithm, such

as checking if a triangulation is reducible, reducing it into irreducible factors, and

checking if a factor is linear, themselves involve a number of basic operations on these

sets of vertices. These basic operations include adding and removing vertices from a

set, taking the union and intersection of two sets, and checking if a vertex is contained

in a set. The Java class HashSet provides a “set” environment in which these oper-

ations are simple to perform. To keep track of collections of sets (i.e., triangulations

and conditions) as well as collections of triangulations, the class ArrayList is used,

which provides an ordered list environment.

Vertices are represented by Integer objects, with the boundary vertices rep-

resented by 0 through 3 (as one might expect) and the k interior vertices by 4

through k + 3. An honest triangulation is represented by a list of sets of three

vertices (each set representing a single triangle); specifically, a triangulation is an

ArrayList<HashSet<Integer>> object. A set of conditions is also represented by

an ArrayList<HashSet<Integer>> object where each HashSet contains no fewer

than three Integer objects (unlike a triangulation, it can be more than three); each

HashSet, of course, is just a single condition representing a set of vertices that must

be collinear.

It is convenient to represent a general triangulation with conditions as a single ob-

ject so that they may be easily manipulated together. The class Configuration was

written for this purpose; a Configuration object contains two fields representing the

honest triangulation and conditions, each containing an ArrayList<HashSet<Integer>>

object. An int field degreeCounter keeps track of the number of linear factors;

when the algorithm finishes, this number is the degree. There are also two boolean

fields representing the horizontal and vertical flags. The equivalence relation ∼ need

not be represented because whenever it becomes nontrivial, a triangulation immedi-
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ately becomes linear and can be discarded.

The class Algorithm essentially contains the machinery for running the algo-

rithm. A field named toDoList containing an ArrayList<Configuration> object

corresponds to the list L of irreducible, nonlinear factors. A main() method in an-

other application class actually runs the algorithm by manipulating an Algorithm

object.

The Algorithm class defines several methods that each perform a specific opera-

tion on a Configuration object:

1. isReducible(): Returns a boolean value indicating whether a Configuration

is reducible or not. It works by looping through the rows in conditions and

taking pairwise intersections; if any intersection contains more than two ele-

ments, requirement (1) for reducibility is satisfied. The method performs a

separate check for requirements (2) and (3), checking if a condition contains

both 0 and 1 (0 and 3) and another contains 2 and 3 (1 and 2). If at any point

a requirement for reducibility is satisfied, the loop stops and true is returned,

indicating Configuration is reducible.

2. reduce(): Returns an ArrayList<Configuration> object that lists the irre-

ducible factors of an inputted Configuration. During the reduction process, an

intermediate ArrayList<Configuration> object keeps track of the reducible

factors as they arise. Each reducible factor is split into two factors as described

in Section 5.2, which are each either added to the list to return (if they are

irreducible) or added back to the intermediate list (if they are still reducible).

3. isLinear(): Returns a boolean value indicating whether the polynomial as-

sociated to a Configuration is linear or not. Since there are two ways to be

linear, it performs two separate checks:

(a) isX(): Checks if any vertex is “connected” to all four boundary vertices
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by either an edge of a triangle or by a condition.

(b) isZigzag(): Compiles a list of vertices that lie on opposite edge pairs and

searches for a “zigzag” path between these lists that starts and ends at

two different boundary vertices.

If either of these returns true, isLinear() returns true; otherwise, it returns

false.

4. killTriangle(): Kills a triangle by adding a single extra condition to a

Configuration consisting of the three vertices of that triangle. The trian-

gle must first be chosen in some way; this can happen through user input,

randomly, or by some deterministic algorithm.

Figure 9 provides an illustration of the procedure of the algorithm in a flow chart.

5.8 Applying the algorithm to a simple example triangula-

tion

To illustrate the algorithm at work, consider the honest triangulation represented

by Figure 2. This triangulation contains two interior vertices and six triangles and

is irreducible because there are no conditions. We will run through the algorithm

starting with this triangulation. Figure 10 traces the triangulations obtained at each

step of the algorithm, represented for convenience as triangulations of a square in the

plane. An ‘x’ inside a triangle indicates that that triangle wlll be killed in the next

step.

Our first step is to choose a triangle to kill. Somewhat arbitrarily, we choose

(3, 4, 5). After killing (3, 4, 5), we of course have the single condition {3, 4, 5}, which

is still irreducible.

Next we choose to kill (4, 1, 5). Now we have two conditions: {3, 4, 5} and {4, 1, 5},
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Figure 9: Flow chart illustrating the procedure of the algorithm.

which is reducible because both 4 and 5 appear in two conditions. Reducing this, we

obtain two factors:

1. Set 4 = 5 to obtain a triangulation with a single interior point and four triangles.

This is a linear triangulation because it is an ‘X’ case.

2. Combine the conditions into the single condition {1, 3, 4, 5}, meaning 4 and 5

lie on the diagonal of the “square” joining 1 and 3. This is also linear because

it is a subdivision of the zigzag case.

Both of the factors obtained are linear, so we have no factors left. We conclude that

the original triangulation had degree two.
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Figure 10: The stages of the algorithm for a simple triangulation.

6 Conclusion

We have completed our discussion of the algorithm to compute the degree. Let us

summarize what we have done. First, we consider a triangulation as an abstract

combinatorial object with a number of vertices, edges, and triangles. We want to

imagine this object as living inside a square in the plane, but we must generalize a bit

and actually place it inside a parallelogram in C2, assigning two complex coordinates

to each vertex. For each assignment of coordinates, we can define the complex areas

of the triangles; we then think of these areas as living in complex projective space.

Using some facts from algebraic geometry, we prove that the areas of the triangles

must satisfy a certain homogeneous polynomial equation p = 0 that depends on the

combinatorics of the triangulation.

We then focus our attention on the degree of the polynomial p. We develop an al-
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gorithm to compute this degree by relating it to the degrees of simpler triangulations.

These simpler triangulations are obtained from the original by “killing” triangles, or

specifying that certain triangles have area zero. Killing triangles has predictable im-

plications on the geometry of a triangulation and on the associated polynomial. At

some points, multiple “factor” triangulations are obtained whose degrees sum to the

degree of the root triangulation. By successively applying the algorithm to these fac-

tors, eventually we obtain a number of triangulations with linear polynomials, which

are easy to identify. In the end, we essentially just count the number of such linear

factors to obtain the degree of the original triangulation.

We believe that this algorithm actually gives the correct degree for any general

triangulation, although the complete proof has not been presented here. Much of the

work for this thesis has been in developing this algorithm, the details of which have

evolved with time. The rest of the work has been in programming the algorithm in

Java, a process which we have briefly described in this paper.

Beyond the proof that this algorithm always works, which is an end in itself, we

also have several other general goals in mind. One is simply to classify triangulations

according to the degree of their polynomials. All linear triangulations have been

identified, but little is known about triangulations of higher degree. Our hope is that

calculations done via the algorithm program may lead to conjectures and eventually

proofs about what kind of triangulations have, for example, quadratic polynomials.

There would appear to be a wealth of potential theorems to this general effect out

there, waiting to be discovered.

Unfortunately, time has limited the number of such calculations we have been able

to perform, and we have no such conjectures as of yet. In order to perform a number

of calculations efficiently, though, the computer implementation of the algorithm and

the user interface would probably have to be streamlined. Improving the program to

incorporate features such as automated selection of triangles based on a shelling and
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an easier method for inputting starting triangulations is an immediate goal of this

project.
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