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Abstract 
Characterizing the Genetic Landscape of Inflammatory Bowel Disease Across Populations 

By 
 

Ranjit Pelia 
 

Background: Inflammatory bowel disease (IBD) is a complex, polygenic, and multi-faceted 
disease comprised of two main forms, Crohns disease (CD) and ulcerative colitis (UC). Despite 
the similar prevalence of IBD among Americans, there are stark differences in severity amongst 
individuals with European versus African, admixed, ancestries. Over 300 susceptibility loci have 
been identified in IBD. Detecting statistically significant genetic variants across populations will 
aid clinicians by optimizing for IBD-subset and patient heterogeneity. 
 
Objective: The goal of this proposal is to characterize novel and assess known IBD-risk associated  
loci using one of the most diverse genomic datasets to date. Our combined- blended-Genome- 
Exome (cBGE) approach will elucidate novel IBD related associations, improve genetic risk  
predictions across all populations, and provide mechanistic insights. Our overarching objective is  
to characterize IBD-risk associated loci across diverse populations using combined-Blended  
Genome Exome sequencing (cBGE). 
 
Method: Peripheral blood samples derived from IBD patients and controls was sequenced using  
cBGE and combined with Whole Genome Sequencing to generate a predominantly African  
American population dataset. Variants were identified following best practices using GATK,  
annotated with Bystro, and quality control analyses using PLINK2. Common and rare variant  
association testing, Polygenic Risk Scores and pathway analyses was performed using IBD, CD,  
and UC specific variants across populations. Results were compared with previously discovered  
IBD associated loci and novel findings were reported.  
 
Results: A merged, n=1794 cBGE and n=3608 WGS, dataset was harmonized leading to n=5374  
after harmonization. Over 6.5 million variants were observed in IBD patients comprised of SNPs  
and INDELs. Genomic inflation, l in IBD, CD, and UC was l=1.014, l=1.012, and l=1.014.  
We observed PTGER4, CARD9, and IL23R common and rare variants across disease subtypes. 
Polygenic risk scores were more similar across IBD and CD compared to UC. Pathway analysis  
highlight cell adhesion in IBD, chromatin remodeling in CD, and T-cell regulation in UC. 
 
Conclusion: The duality of cBGE with WGS increased our power from previous investigations 
leading to validation of known IBD-associated loci. No significant novel variants were observed 
showing the limitations of cBGE. Here, we provide the largest known African American 
population genetic dataset in IBD.  
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Introduction 
Inflammatory Bowel Disease: Inflammatory bowel disease (IBD) is a complex, polygenic, and 
multi-faceted disease comprised of two main forms, Crohns disease (CD) and ulcerative colitis  
(UC). IBD is generally described as chronic inflammation of the gastrointestinal tract (GI) with  
alternating patterns of clinical relapse and remission. IBD is a very heterogenous disease which  
symptoms differing based upon type of IBD, disease location, extent of inflammation, and other  
comorbidities. Genesis of IBD can occur at any stage of life, with diagnosis occurring in early  
childhood or between 20 to 40 years. If untreated, IBD can lead to significant weight loss,  
diarrhea, intestinal bleeding, blood clots, and fatigue. In severe cases, patients exhibit abscesses,  
fistulas, obstructions, and perforations across the GI tract. Oncogenesis, specifically  
cholangiocarcinoma, colorectal cancer, intestinal lymphoma, and small bowel cancer has been  
associated with IBD1. The etiology and pathogenesis of IBD is unknown with genetic and  
environmental factors being involved. 

 The cases of IBD have been increasing rapidly across the world, making it a substantial 
global health burden. Developing regions in Asia and Africa have shown to exhibit the greatest 
rise in incidence compared to developed, Western, countries. IBD prevalence was shown to 
affect 5 million individuals, with an incidence of 400,000 new cases according to the 2019 
Global Burden of Disease report. In industrialized regions, EpiCom/Epi-IBD showed 15 cases 
for every 100,000 person-years incidence2. The stark rise in prevalence and incidence of IBD 
amongst developing and industrialized areas suggests environmental factors contributing to the 
rise of IBD. The overarching hypothesis is that genetic and environmental factors lead to 
modifications in the lining of the gut, disruption of microbiota, and creating a state of chronic 
inflammation. There are multiple gaps in our understanding of IBD pathophysiology, role of 
genetics, environmental, and overall heterogeneity. Somineni et al3 highlighted four key hurdles: 
I) missing heritability, II) no known causal variants, III) limited functional understanding of 
known genetic loci associated with IBD, and IV) paucity in our knowledge of IBD in different 
populations, i.e. ancestries. Here, I summarize the biological, clinical, and genetic background of 
IBD and build upon prior works to showcase novel results contributing to the genetic landscape 
of IBD across populations.  

The gut epithelium barrier functions to regulate host-to-environment interactions through 
immune and microbiota regulation. IBD patients exhibit a “leaky gut” where dysbiosis of 
immunological, bacterial, and epithelium occur. Intestinal barrier regulation is quintessential and 
the primary center of focus for cellular dysbiosis in IBD. The main function of the intestinal 
barrier is to serve as a gate for communication amongst food, microbiota, and the GI tract. Core 
components of the intestinal barrier include bile acids, epithelial layer, enterocyte layer, luminal 
enzymes, and water layer. Physically from outermost to inner, the layers of the intestinal barrier 
are the gut lumen, mucus layers (thick, thin), unstirred water layer, epithelium, and the lamina 
propria. The gut lumen houses gastric acid, pancreatic enzymes, and commensal bacteria which 
excrete antimicrobial peptides to deter pathogens. Below this protective layer, the thick-, thin-
mucus, unstirred water layer, and glycocalyx deter adhesion of bacteria via immunoglobulin A 
secretion (IgA) and physical properties. Below the mucus layers, the epithelium comprises of 
tight junctions that function to link epithelial cells and luminal contents. Barrier integrity proteins 
are dispersed throughout tight junctions, consisting of claudin-1, claudin-4, junctional adhesion 
molecules, occluding, and zonula occludens-14. At the bottom, the lamina propria houses innate 
immune cells and aids in communication with the endocrine and enteric nervous system. Poor 
intestinal barrier function leading to foreign, pathogenic, or disruptive macromolecules 
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progressing to the lamina propria activates inflammation and multiple immune pathways. IBD 
patients exhibit poor intestinal gut barrier function which is often reflected by decreased tight 
junctions and increased permeability5. There is a myriad of ways gut epithelium barrier function 
can be dysregulated, which contributes to the heterogeneity of IBD.  

Clinicians use endoscopic evaluations via colonoscopy for diagnosis as the current gold 
standard. Barrier disfunction is often measured through a combination of histological assessment 
of mucosal biopsies, confocal endomicroscopy of duodenum, and oral probes measuring urinary 
excretion of di- and monosaccharides6.  Alongside, histological, laboratory, radiologic, and 
serological markers are also used for validating IBD and subtype7. Less invasive tools such as 
stool samples for increased levels of fecal calprotectin (FCP) is used for determining levels of 
inflammation. FCP is often released because of cellular damage by activated immune cells and is 
found in epithelial, macrophages, and monocytes cells. to serological measurements are also 
used in diagnostics. In which, increased levels of C-reactive protein (CRP) and erythrocyte 
sedimentation rate (ESR) are often indicators of chronic, prolonged, inflammation. Although 
these levels could be due to inflammation from any part of the body thus testing with other 
diagnostic tools is required for accurate determination of IBD.  Differing patterns of serological 
markers such as Antineutrophil cytoplasmic antibody (ANCA), Anti-Saccharomyces cerevisiae 
(ASCA) antibody, and antineutrophil cytoplasmic antibody (pANCA) are used to differentiate 
between UC and CD. Specificity of using pANCA+ and ASCA- to accurately sequester UC from 
CD was shown to be 94.4%8. Follow-up studies of using serological markers as diagnostic tools 
for IBD have shown that not all patients express these antibodies and their levels can be 
impacted by treatments.9 Proper diagnosis, treatment, and patient-specific multi-modal therapies 
are quintessential to maintain, improve, and provide adequate quality of life for IBD patients.  

To limit the role of heterogeneity in IBD when identifying disease subtypes, classification 
systems are used for both CD and UC to promote consensus amongst clinicians and researchers. 
The Montreal system of classification was established in 2005 based upon multiple studies that 
suggest disease location, behavior, and progression can be accurately identified by genetic, 
endoscopic, and serological markers10. For Crohns disease, the system uses three main 
categories: age at diagnosis, location, and behavior. Age is grouped by A1 (below 16 years), A2 
(between 17- and 40 years), and A3 (above 40 years). Location is based on L1 (ileal), L2 
(colonic), L3 (ileocolonic), and L4 (isolated or concomitant upper gastrointestinal disease). 
Behavior categories include B1 (non-stricturing, non-penetrating), B2 (structuring), B3 
(penetrating), and p (perianal) modifier. Ulcerative colitis classification is based upon extent and 
severity of disease. Extent comprises of E1 (ulcerative proctitis where inflammation is distal to 
rectosigmoid junction), E2 (left-sided, involvement of colorectum distal to splenic flexure), and 
E3 (pancolitis, proximal to splenic flexure). Severity of UC involved four groups, S0 (remission 
or asymptomatic), S1 (mild UC, minimal blood in stool with 4 or less passages per day, normal 
erythrocyte sedimentation rate (ESR)), S2 (moderate UC, more than 4 stool passages per day 
with low systematic toxicity), and S3 (severe UC, more than 6 bloody stool passages per day, 
high temperature, or ESR above 30 mm/h)11. Recently, the Pediatric Ulcerative Colitis Activity 
Index (PUCAI) was introduced to provide a numerical, score, based system to assess phenotype 
severity of UC. It considers six main components: abdominal pain, rectal bleeding, stool 
consistency, number of daily stools, nocturnal stools, and activity level. These categories contain 
a range of scores from 0, 5, to 10 and are summed with a range of 0 (least severity) to 85 (most 
severe)12. In summary, these categorical tools used by clinicians allow researchers to ascertain 
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disease subtype, severity, and other phenotype specific conclusions by simplifying the 
complexity or heterogeneity of IBD through classification systems.  

Diverse populations in the gut are essential for proper function. The role of microbiota in 
IBD is hypothesized to effect disease by alterations of mucosal barrier, cellular immune 
communication, and metabolizing dietary and host-derived compounds13. IBD subtypes can also 
be classified based on gut microbiota populations. Pathogenically, bacterial presence of 
Aeromonas, Campylobacter, Clostridium Difficile, E. coli, Salmonella, Shigella, tuberculosis, 
and Yersinia are hypothesized to contribute to etiology. Acute gastroenteritis greatly increases 
risk of IBD which can arise through Campylobacter and Salmonella14.  The two main forms CD 
and UC share clinical characteristics of chronic relapsing abdominal pain and diarrhea.  All 
forms of IBD exhibit some degree of gut epithelium barrier dysregulation. In CD, tight junction 
proteins show upregulated levels of claudin-2 and myosin-light-chain-kinase, MLCK, activation, 
often before clinical onset or relapse. Whereas UC patients show decreases in occludin proteins 
amongst tight junctions and cytoskeleton15. CD is primarily observed in a transmural 
inflammatory pattern amongst any part of the GI tract and has a longer diagnostic delay 
compared to other subtypes.7 Other characteristics associated with CD include: terminal ileal 
involvement, skip-lesions, strictures, fistulas, or perianal disease. UC manifestation in the GI 
tract is limited to the mucosal layer of the colon with patients often exhibiting rectal bleeding, 
diffuse mucosal inflammation, back-wase ileitis, or continuous lesions. In general, CD patients 
have more severe symptoms, require more intensive medical care, and are at higher risk of 
developing complications. Patients that cannot be accurately diagnosed with CD or UC and do 
not have irritable bowel syndrome (IBS) are classified into another subtype of IBD, 
indeterminate colitis. Approximately 5-15% of IBD patients have indeterminate colitis16. CD and 
UC are distinct forms of IBD that require different treatments, therapies, and management. 

Multiple medical interventions are available as initial treatment for IBD such as, 
aminosalicylates (ASA), corticosteroids, immunomodulators, and surgical interventions. The 
main purpose of treatments is to treat symptoms, mitigate disease progression, and provide 
improved quality of life for IBD patients. UC patients have decrease in symptoms using 5-ASA 
compared to CD and continuous oral therapy has shown to reduce colorectal cancer risk by 
75%17. For UC patients that are non-responders for ASA and CD patients with mild-to-moderate 
disease, corticosteroids have shown to decrease inflammation but are not efficacious for 
maintaining remission18. An increased, chronic, inflammation state in the GI tract cascades into 
pro-inflammatory cytokines production, release, and filtrations. The most notable are interleukins 
(IL-12 and IL-23), interferon-gamma (IF-γ), and tumor necrosis factor (TNF)19. Canonical 
medical interventions for IBD also utilize anti-TNF suppressors, Rx Infliximab, Rx Adalimumab, 
Rx Golimumab, and Rx Ustekinumab. Alongside TNF, the cytokine cascade pathway of Janus 
kinase (JAK) signal transducer and activator (STAT) is over-activated in IBD patients. Inhibitors 
of JAK-STAT pathway, Rx Filgotinib, Rx Tofacitinib, and Rx Upadacitinib are also used as 
frontline treatments20. Often, first-line and second-line medical interventions often fail overtime 
to reduce symptoms, maintain remission, and mitigate relapse. Anti-TNF has shown to be non-
effective in 40% of patients and in patients where it is efficacious initially, it leads to non-
responders status after 1-year in 23-46% of IBD patients21. Due to patient specificity, 
heterogeneity, and poly-factorial nature of IBD, multiple therapies in combination with lifestyle, 
nutritional, and dietary considerations are quintessential for effective, long-lasting treatment. 
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Genetics of Inflammatory Bowel Disease: Heritability measurements using concordance rates 
through twin-studies can shed light on the likelihood of a phenotype or disease being genetic, i.e. 
passed from one generation to another. Adding to the complexity, subtypes of IBD share 
different concordance rates implying genetics to play disproportional roles and alluding to other 
factors contributing to disease. Monozygotic and dizygotic rates were shown to be 50% and 10% 
in CD compared to much lower 15% and 4% in UC22, 23. Similarly, having a positive family 
history of IBD was associated with increased risk of CD, 1.5%-28%, compared to UC, 1.5%-
24%24. Although no large-scale studies have examined inheritance of microbiota in IBD, there is 
large evidence suggesting genetic loci to affect gut microbial variation25. Monozygotic siblings 
share greater microbiome than dizygotic, who share a larger proportion than unrelated 
individuals26. Specifically, increased genetic risk for IBD was associated with decreased levels of 
Roseburia, a converter of acetate to butyrate27. There is a need for large-scale, multi-population, 
and incorporation of environmental (diet, microbiota, lifestyle) genetic studies to ascertain 
putative IBD risk, protective, and causal variants.  

With the advent of sequencing, a shift from familial based to population genetics has led 
to novel discoveries. Whole-Genome Sequencing, Whole-Exome Sequencing, Genome-Wide 
Association Studies, Microarrays, and DNA-methylation are the primary forms of genetic tools 
researchers have utilized in studying IBD. Variants detected at specific loci are denoted single 
nucleotide polymorphisms (SNP) and are often represented through their minor allele frequency 
(MAF), odds ratio (OR), or effect size. Over 200 genetic loci have been associated with IBD 
using Genome-Wide Association Studies (GWAS)28, yet there are no generalizable targets across 
populations and disease subtypes. Amongst the known IBD associated loci, NOD2 and ATG16L1 
are some of the most notable genes connected to variants. The first and one of the strongest risk 
variants for IBD is NOD2 (encoding nucleotide-binding oligomerization domain-containing 
protein 2), with an OR=3.1 in CD29. NOD2 is observed in a wide variety of cell types across the 
GI tract amongst Paneth, T-cells, macrophages, and monocytes. NOD2 functions in host-
microbial immune response by cytosolic receptor pattern recognition. An intracellular receptor is 
encoded by NOD2 upon bacterial signaling on bacterial peptidoglycan muramyl dipeptide. Upon 
activation, muramyl dipeptides form an active oligomer to recruit adapter protein which initiate 
either an inflammatory response or ATG16L1 autophagy30. Alongside autophagy, ATG16L1 
counteracts endoplasmic reticulum stress and reduces spontaneous apoptosis in intestinal 
epithelium. Multiple SNPs have been observed in both NOD2 and ATG16L1. Primarily GWAS 
of IBD patients with African American ancestry have yielded NOD2 association with limited 
replication amongst other ancestries: Japanese, Chinese, and Korean31. The involvement of 
different microbiome, alternative variants, or a combination of environmental with genetic 
intricacies may explain IBD pathogenesis across populations.  
Population Genetics and Inflammatory Bowel Disease: Inflammatory Bowel Disease 
progression is more severe with increased intestinal resections with almost twice the rate, OR = 
2.49, amongst admixed African ancestry (AA) compared to European ancestry (EA) patients32. 
GWAS loci only account for ~15% of IBD heritability in EAs but the genetic risk in AA 
populations remains undertermined33. Although rare alleles are more likely to be population 
specific, shared genetic IBD loci may imply generalizable mechanisms of pathogenesis across 
ancestral populations34. Liu et al identified 38 new IBD-associated risk loci using a Bayesian 
trans-ancestry meta-analysis by combining European- and African-ancestry samples into a 
European-only cohort of 75,105 samples34. Only 13 loci were novel as the other 25 overlapped 
with known trait-associated loci. Of these loci, population specific variants such as NOD2 and 
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IL23 demonstrated population-specific genetic heterogeneity. NOD2 was observed with a larger 
effect, OR = 2.13-3.03, in European ancestries, but showed a Risk Allele Frequency (RAF) of 0 
in East Asians34. Liu et al had insufficient power to measure known population-specific IBD risk 
associated variants in African admixed populations.  

Prior IBD genetic studies lacked coverage of variants, inaccurate effect sizes, or 
inadequate statistical power for generalizable interpretations. In comparing common variants 
across studies, datasets can be jointly combined and assessed using regression coefficients and 
standard errors35. Previously, large scale meta-analysis studies of IBD have not comprised of 
sufficient samples of African populations34, 36, 37. Vast majority of meta-analysis in IBD have 
predominantly captured European populations which do not capture all genetic variation. For 
example, Polygenic risk scores derived from predominantly European ancestry GWAS studies 
are poorly transferable on non-Europeans thus failing to provide generalizable clinical 
interpretations38. NOD2 was one of the first CD risk associated gene to be identified with an 
allele frequency of 13% amongst nine low-frequency IBD causal variants in European 
populations39. Interestingly, NOD2 across these same nine variants was only 0.06% in a cohort 
of IBD patients with East Asian ancestry34. These population-specific observations may be 
reflected across other IBD-risk associated variants.  

A delicate balance of sample size, sequencing depth, coverage, and type of samples must 
be considered when performing large-scale population genetic studies. The cost of sequencing is 
affected by coverage, depth, and number of samples. Coverage is defined as the proportion of 
sample sequenced to its entirety. Depth is a measurement of the number of reads observed at a 
given nucleotide40. GWAS, Whole Exome, and Whole Genome technologies are mainly limited 
by their cost. Here, I am proposing to lessen this paucity by using combined-blended genome-
exome sequencing (cBGE), which provides this duality with a fraction of the cost, ~$44 per 
sample. cBGE allows for 33% exome and 67% genome libraries to be sequenced with low- 
whole genome (2-3X) combined with higher-coverage exome (30-40X)41. Despite the benefit of 
increased coverage by performing WES or WGS separately, the cost is ten-fold cheaper by using 
cBGE. Our first WGS3 comprised of AAs with IBD consisted of n=2121 cases and n=4922 
controls. Despite our sample size, we were unable to reach genome-wide significance for 
previously observed IBD associated loci34.  

By adding other population groups, we aim to capture variants in non-European 
ancestries that were in too low frequencies in previous IBD association studies. My overarching 
objective is to characterize IBD associated loci across diverse populations using combined-
Blended Genome Exome sequencing (cBGE) and cross-validate previous discoveries using a 
fixed-effect meta-analysis. I hypothesize that the much of the higher incidence, worse prognosis, 
and higher complication rates of IBD in African American compared to European populations 
are due to previously unrecognized genetic variants. My specific aim I is to identify common and 
rare variants associated with IBD patients with admixed African American ancestry using cBGE. 
I hypothesize that rare variants in IBD effectively differentiate participants with primarily 
European- from primarily African ancestry compared to rare variants. My specific aim II is to 
calculate a polygenic risk score (PRS) of known IBD associated loci by using my cBGE dataset. 
I hypothesize that IBD associated variants contribute ancestry-specific risk amongst populations. 
Together, we aim to elucidate novel discoveries and validate previous findings by assessing IBD 
associated variants across populations.  
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Methods 
Inflammatory Bowel Disease Genetics Consortium (IBDGC): Established in 2002 through 
the NIDDK, IBDGC’s main mission is to increase our current understanding of IBD through 
furthering research into the genetic structure, pathophysiology, and improve patient outcomes42. 
Other underlying objectives encompass I) identification of underlying genetic risk factors of 
IBD, CD, UC, and related clinical phenotypes, II) the relationships of non-genetic risk factors 
with genetic in development of IBD, CD, UC, and related phenotypes, and III) ensuring 
availability, communication, and sharing of data across the international research and scientific 
communities43 IBDGC is a multi-site consortium across the United States. All samples from 
WGS (n=1794) and cBGE (n=3608) datasets were gathered through BDGC and sequenced at 
MIT BROAD Institute. Phenotypic data was captured at each site, compiled through IBDGC 
consortium, and de-identified before becoming available for analytics.  
DNA Sample Collection, Extraction, Clinical Phenotypes, and Sequencing: For all cBGE 
samples, DNA Extraction and Processing for cBGE: DNA (~500 µl saliva) was collected, 
purified with prepIT.L2P reagent and processed with Oragene OGR-500 Kit from DNA 
Genotek. Consequentially, DNA was clarified by centrifugation, ethanol precipitated, pelleted, 
and resuspended in TE buffer. Collected DNA samples were then processed with the Blended 
Genome Exome (BGE) sequencing reagent. Briefly, a whole genome library is generated with an 
aliquot PCR amplified for exome regions. Then for each sample, genome and exome libraries are 
combined for sequencing at 33% exome and 67% genome. This yields low-coverage whole 
genome (2X-3X) combined with higher coverage exome (30X-40X)41. Sequencing was 
performed on the Illumina NovaSeq X Plus platform. Reads were aligned using Illumina Dragen 
aligner and HG38 reference genome which results in a single CRAM file per sample. Due to 
differences in library preparation and aligner used in cBGE, the blended genome- and exome- 
are not directly combinable thus need to be processed separately for WGS and WES analyses. 
Post alignment, variant call format (VCF) files were received and stored locally at Emory 
University Human Genetics Cluster Core (HGCC).  

Previous WGS samples from Somineni et al3 were processed using genomic DNA (350ng 
per 50 µl) of peripheral blood samples from controls and patients with IBD. Fragmentation to 
385 bp was performed using Cavaris Focused-ultra sonification with SPRI size selection. 
Libraries were constructed with KAPA Hyper Prep without amplification and Roche based 
adapters with unique 8-base indexes and palindromic forked-adapters. Afterwards, quantified 
PCR, normalization to 2.2 nM, and pooling into 24-plexes was performed for genomic libraries. 
These pooled samples were treated with HiSeqX Cluster Amp Reagents EPX1, EPX2, and EPX3 
before Illumina cBot cluster generation. Sequencing was conducted with HiSeqX with 151 bp 
paired-end reads. CRAM files were generated from sequencing output using Picard pipeline 
from the BROAD Institute to create aligned and demultiplexed reads for analysis. All files are 
stored locally at HGCC. 

Clinical phenotypes reported for all samples (cBGE and WGS) included diagnosis (CD, 
UC, or control), age, biological sex, family data (.ped), and self-reported ancestry. Due to these 
samples being recruited from multiple sites across the United States, only samples from our 
local, Emory University, site contain disease location for CD (Montreal), disease severity for UC 
(PUCAI), treatment status, and disease complication (surgeries, perianal disease, remission, 
relapse, or comorbidities). For consistency and simplification, only disease status (IBD, CD, UC, 
or control) and admixture (AFR, AMR, SAS, EAS, or EUR) were considered for all (cBGE and 
WGS) samples. An overview of the specific aims and approach is shown in Figure 1.                                                                                                                        
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Harmonization, and First-Pass Quality Control: Harmonization is a quintessential process for 
any multi-dataset analysis where all related datasets are reconciled for maximum compatibility 
and comparability44. Samples from cBGE and Somineni et al3 will be merged for an increase in 
sample-size, i.e. power using PLINK2 and Bystro45 for annotation on Emory University’s 
HGCC.  Using patients and participants from IBDGC, I used the merged, cBGE and WGS from 
Somineni et al3 to ascertain if combining WGS with cBGE is consistent with expected 
observations. Due to the novelty of cBGE, we expect low-coverage and high missingness of 
intergenic regions compared to WGS. Therefore, assessing metrics using a similar platform, 
Bystro45, is quintessential for evaluating whether to merge or keep independent by comparing the 
output summary statistics. To facilitate this, samples were extracted for PLINK246 files (.ped, 
.fam, .bed) for WGS and cBGE and merged using PLINK246 and annotated using Bystro45. 
Using a preliminary run of n=1794 cBGE samples and n=3608 WGS from Somineni et al3. 

The merged, cBGE+WGS dataset was aligned with human reference genome build hg38 
(GRCh38). Using Genome Analysis Toolkit Best Practices for germline variants (GATK)47, 
variants were jointly called and annotated using Bystro45. Summary statistics were used to assess 
if merging preserves the genomic data with minimal effect of sequencing platform, cBGE vs. 
WGS.  Data was harmonized for consistency amongst SNPs or variant identification (ID) 
numbers. Variant IDs were compared based on chromosome, position, reference allele, 
alternative allele, and corresponding odds ratios, effect sizes, p-values, or standard errors for 
disease (IBD, CD, or UC), control, and ancestry classifiers.   

Using PLINK2, per-individual sample quality control was performed to assess metrics of; 
I) missingness of SNPs and individuals, II) discordant biological sex, III) Hardy-Weinberg 
equilibrium (HWE), IV) heterozygosity, V) relatedness, and VI) population stratification. These 
quality controls steps will be performed for WES-VCF and WGS-VCF files separately. SNP 
filtering will be performed before any individual or sample filtering. Specifically, variants 
genotyped in < 95% of samples (missingness > 5%) and those with Hardy-Weinberg equilibrium 
in control individuals (p < 1 x 10-9) were omitted. After removal of samples that did not meet 
quality control thresholds, variants with Minor Allele Frequencies (MAF) of <0.05 were defined 
as common variants and those with MAF <0.01 as rare variants. Variants in repetitive and low-
complexity regions were masked using RepeatMasker48. Principal components of genetic 
variants was calculated by EIGENSTRAT49 for the cBGE-WGS merged dataset.  

After alignment and variant calling using GATK, both the merged dataset VCFs were 
processed through quality control filtering using PLINK2. First, missingness or SNPs that are 
missing in a large proportion of the samples, at 0.20 threshold, were filtered. After removal of 
SNPs with low genotype calls, we excluded individuals with high missingness. Sex discrepancy 
was calculated using X-chromosome heterozygosity/homozygosity rates. Biological females and 
males denoted by X chromosome homozygosity estimate that is <0.20 and >0.80, respectively. 
In terms of genotype filtering threshold, these were defined as samples that deviate +/- 3 standard 
deviations from the mean. Relatedness was determined by calculating identity by state for each 
pair of individuals, followed by shared ancestry for identity by descent using 2, values ranging 
from 0 to 1. Duplications or related samples are those with identity by descent values > 0.5 and if 
detected, one of the two will be discarded based on quality metrics or at-random if both samples 
share high quality characteristics from any other quality control steps. For first-degree relatives 
and second-degree relatives, identity by descent values were set as ~ 0.5 and ~0.25, respectively; 
one individual from each pair was removed with high overall quality being the eliminating 
criteria. 
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Common Variant Association Analysis: Our cBGE dataset, in combination with Somineni et al 
WGS, is the largest IBD dataset of African American individuals to-date. We performed a power 
calculation using the known IBD associated loci and corresponding odds ratio from Liu et al34 to 
infer our ability to detect variants with statistical confidence. Given our sample size of greater 
than 5000, I am confident in our ability to detect many common and some rare variants in IBD. 
After quality control of individuals, the remaining samples from cBGE-WGS merged dataset 
were assessed for common and rare variants. We tested for common variants with MAF >1% and 
<5% for all three IBD phenotypes, CD, UC, and IBD. SNPTEST v2.4.1 was used for common 
variant analysis with both Bayesian and Frequentists tests50. Using Hardy-Weinberg Equilibrium 
(HWE) via PLINK2, we excluded markers for binary traits which were p-value <1e-8 in cases 
and p-value <1e-8 in controls. For quantitative traits, HWE threshold for filtering was p-value 
<1e-8. A logistic regression single-variant association test was used for chromosomes 1-22, 
excluding X and Y. Any duplicate variants, missing variant IDs, or mismatches were filtered to 
generate a master-list of variants with corresponding OR, p, MAF, and test-statistic. The 
genomic inflation factor (l) was calculated using observed chi-squared test statistic values for all 
detected variants amongst IBD-, CD-, and UC vs controls from PLINK2 output using one degree 
of freedom. The top 1000 SNPs for each comparison, IBD-, CD-, and UC-vs controls have been 
provided and further assessed for clinical and biological relevance. Variants were assessed for 
their allele frequencies across other populations using gnomAD version 4.051. These groups 
comprised of African/African American (AFR), Amish (AMI), Admixed American (AMR), 
Ashkenazi Jewish (ASJ), East Asian (EAS), Finnish (FIN), Middle Eastern (MID), European 
non-Finnish (NFE), and South Asian (SAS).  
 Rare Variant Association Analysis: Genetic loci with both MAF <0.01 and p-value <1e-8 
were considered as statistically significant and rare variants. Variants that were likely deleterious 
based on combined annotation dependent depletion (CADD) greater than 15 were selected. 
Using the merged cBGE-WGS dataset after quality control, rare variants were aggregated to 
nearest gene (HG38) and tested for association by optimal sequence kernel association test 
(SKAT-O) using SKAT package in R. All three phenotypes: IBD vs controls, CD vs controls, 
and UC vs controls were assessed for potential rare variants that meet CADD, MAF, and 
genome-wide significance p-value <1e-8. Afterwards, the allele frequences of these rare variants 
were compared to those across populations: AFR, AMI, AMR, ASJ, EAS, FIN, MID, NFE, and 
SAS using gnomAD version 4.0. Due to the few numbers of rare variants observed across 
disease subtypes, pathway analysis was not assessed due to lack of minimal hits in query.  
Polygenic Risk Scores: Using PLINK2, known IBD associated loci from Liu et al34 were 
extracted for corresponding variant IDs, odds ratios, alternative allele, reference allele, and p 
values. The distribution of PRS scores was assessed across IBD subtypes, IBD vs controls, CD 
vs controls, and UC vs controls, and population groups (AFR, AMR, EUR, SAS, and EAS) for 
any statistical significance using a standard T-test.  
Pathway Analysis: To calculate enrichment scores for Kyto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology biological processes, cellular components, and molecular 
functions, the top 1000 variants were considered across IBD vs controls, CD vs controls, and UC 
vs controls. Enrichment testing and evaluation was performed using GO Enrichment Analysis 
and following best practices in R52. All pathways were considered significant if p adjusted < 0.01 
after correcting for multiple testing using a weighted Fisher test.  
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Results 
Power Calculation and Summary Statistics of Clinical Phenotypes: To generate a foundation 
for any statistical ascertainments, it is critical to assess for sufficient sample sizes. I used a power 
calculation based upon known IBD associated loci from Somineni et al3 to generate theoretical 
MAFs based upon ORs (Figure 2). I assumed 80% power, alpha set to 5x10-8, and a Chi-square 
distribution with n=1 degrees of freedom. Using 5000 cases and 5000 controls dataset, I am 
confident to detect risk allele frequencies of 0.05 with OR=1.45 with statistical significance 
(Table 1). The cBGE sequencing of samples is ongoing at IBDGC with n=1794 samples 
processed thus far.  

To increase the sample size, I harmonized and merged Somineni et al3 with cBGE 
dataset. Using the CRAM files from WGS and cBGE, an integrated VCF.gz file was generated. 
Our initial dataset, pre-quality control consisted of n=5402 samples, of which n=3608 were from 
WGS and n=1794 from cBGE. To combine the two datasets for consistency, the variables: 
sample-IDs, disease status (IBD, UC, CD, or control), and type of study (WGS or cBGE) was 
compiled. Using this list, we first needed to calculate summary statistics of the entire dataset to 
eliminate any outliers. To do this, the VCF.gz file of all samples was uploaded to BYSTRO45 to 
generate sample specific measurements of total variants, theta, and types of SNPs (silent, 
replacement, transitions, transversions, homozygotes, heterozygotes, exonic, and intronic). 
Missingness of variants was calculated using PLINK2 and considered for quality control to 
eliminate any samples with too little data as having too much data, compared to the overall 
dataset is not a disadvantage in this context.  

To generate ancestry profiles for each sample admixture analysis was performed using 
MANTRA53 to assess for percentage of population group. Each sample’s genotypes were 
compared to the 1000 Genomes Project and the proportion contributing to each super population 
group was calculated. These encompass Africans (AFR), Admixed Americans (AMR), East 
Asians (EAS), Europeans (EUR), and South Asians (SAS)54. For WGS, there were n=3401 
AFR, n=35 AMR, n=161 EUR, n=10 SAS, and n=3 EAS. cBGE comprised of n=1174 AFR, 
n=503 AMR, n=115 EUR, n=2 SAS, and n=0 EAS. In summary, prior to quality control, our 
merged harmonized dataset contained a total of n=5402 samples with disease status, sequencing 
platform, and super population group.  
Quality Control of Post-Alignment Variant-Called-Files: For quality control thresholds, 
outliers were defined as any sample that was + or – 4 standard deviations away from the median. 
We considered theta, theta exonic, ratios of heterozygotes/homozygotes, deletion/insertion, 
transitions/transversions, and missingness for evaluating putative outlier samples (Table 2). By 
comparing these parameters across cBGE (Table 3) with WGS (Table 4), there were minimal 
differences in the overall median, mean, and standard deviations. Theta, a measurement of 
nucleotide diversity, was the most significant in terms of difference between WGS vs cBGE with 
p < 2.22x10-16 (Figure 3). I hypothesized most of this significance was driven by outliers as 
noted by the trailing sample plots in the box plot. By comparing populations and theta across 
cBGE vs WGS, only AFR and AMR groups showed statistically significant differences, p < 
2.22x10-16 and p = 0.00023, respectively (Figure 4). Much of the differences observed between 
cBGE and WGS was denoted to sequencing depth and coverage thus we are confident that these 
two platforms’ datasets can be merged to form a cBGE-WGS combined sample set. Therefore, 
we calculated summary statistics and standard deviations for filtering thresholds based on the 
merged dataset. Considering Bystro variant metrics, relatedness, and missingness, a total of n=28 
samples were removed leading to a total dataset, post-quality control, of n=5374 (Table 5). 
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Common Variant Association Analysis: Using PLINK2, common variant analysis was 
performed between IBD vs controls, CD vs controls, and UC vs controls. We considered 
common variants as those with MAF < 0.05 and > 0.01 with p < 5x10-8. Using n=2050 controls 
and n=3324 IBD patients, 6,589,111 variants in the form of SNPs and INDELs were observed of 
which only 108409 reached genome-wide significance (Figure 5). In comparing CD, n=2361, vs 
controls, n=2050, only 42397 were observed. UC, n=963, vs controls, n=2050, showed 
n=128413 genome-wide significant common variants. The genomic inflation value, l, signifies 
inflation of p values with respect to a normal distribution. Using all identified variants, l was 
calculated for IBD vs controls (Figure 6A), CD vs controls (Figure 6B), and UC vs controls 
(Figure 6C). The greatest l was in IBD and UC with l=1.014 for both. In contrast, CD showed 
a l=1.012 implying lower inflation compared to overall IBD or UC. Using all the variants 
observed in IBD vs controls, principal component analysis showed variance explained of 
PC1=37.86% and PC2=5.00% (Figure 7). There was minimal clustering observed by population 
group (Figure 7A) or by disease status (Figure 7B), suggesting more specific phenotypes are 
required for further sequestering. 

Comparing to previously identified genetic loci attributing to IBD, CD, and UC, we 
observed PTGER4, CARD9, and HLA axis related variants. In IBD vs controls, over 38 genome-
wide significant variants near PTGER4 were observed in the top 1000 variants.  For CD vs 
controls, PTGER4 was detected 44 times in the top 1000 variants. Also, four SNPs were found 
with CARD9 being the nearest gene comprising of OR 1.23-1.24. In UC vs controls, genes 
belonging to the HLA group were observed, HLA-A, HLA-DQA1, HLA-DQB1, HLA-DQB1-AS1, 
and HLA-DRA-2, and HLA-DRB1 with 2, 134, 53, 16, 44, and 52 variants respectively. The top 
15 variants for IBD, CD, and UC by p value highlight LIN02511 in IBD and CD, PTGER4 for 
CD, and HLA-DRA group genes for UC (Tables 6, 7, and 8). Variant rs1789907735 on 
chromosome 6 had the greatest OR = 6.0902 in IBD with no nearby gene based upon the SNP 
being in an intergenic region. Similarly for CD, rs1789907735 was also the largest OR = 
6.12602 variant. Ulcerative colitis patients showed variant rs60180187 with OR=14.9477 and 
HIVEP2 as the nearest gene. Across IBD, CD, and UC, the variant with the largest OR was 
found on chromosome 6, implying shared genetic loci potentially playing a role across disease 
subtypes.  
Rare Variant Association Analysis: Rare variants were assigned as SNPs or INDELs with 
MAF < 0.01 and p < 5x10-8. With n=2050 controls and n=3324 IBD patients, 6,589,111 variants 
were observed with only 78450 meeting the rare variant thresholds. In comparing CD, n=2361, 
vs controls, n=2050, only 78681 were observed. UC, n=963, vs controls, n=2050, showed 
n=185663 genome-wide significant rare variants. Using these as input, CADD scores were 
generated for the variants by uploading to the University of Washington server and following 
best practices55. After filtering, only n=4 variants remained in IBD, n=11 in CD, and n=2 in UC 
that were statistically significant with CADD > 15 (Tables 9, 10, and 11).  

For IBD vs controls, rs1165244940 showed lowest MAF of 0.00546 and CADD = 23.8 
with ATP1A4 being the nearest gene. There was no GnomAD population frequencies observed 
for this SNP implicating its novel nature to our cohort. SNP rs268065 with CADD=18.5 showed 
allele frequencies in populations with some proportion of AFR contribution, AFR = 0.0065, 
AMR = 0.00033, and NFE = 2.94e-05 (Table 9). There is no known nearby gene located to 
rs268065. Similarly, CD vs controls also showed rs1165244940 as the highest CADD = 23.8 and 
lowest MAF = 0.00546 implicating a potential common role in IBD and CD, but not UC. The 
OR for rs1165244940 was higher in CD = 0.14551, compared to IBD = 0.13837. Also in CD, the 
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SNPs rs6711382 and rs1789502 with CADD scores of 18.3 and 15.6, respectively, were the only 
two out of eleven with AFR population specificity (Table 10). For UC, out of the two variants, 
rs268065 with CADD = 18.5 exhibited AFR population specificity with only GnomAD AFR and 
GnomAD AMR showing allele frequencies of 0.0074 and 0.00013 respectively (Table 11).  

Of the known IBD associated rare variants, IL23R was observed in the top 1000 variants 
by p value in both IBD and CD lists. In IBD, IL23R had OR =1.244, p < 5.20E-06, and 
MAF=0.279. In CD, IL23R showed OR = 1.27, p < 4.01E-06, and MAF = 0.279. Although, 
aggregated SKAT-O testing could not be performed for rare variant association testing, we were 
able to categorize, highlight, and observe population specific differences across variants with 
deleterious natures.  
Polygenic Risk Scores: Using the known IBD associated genetic loci from Liu et al, polygenic 
risk scores were calculated for IBD, CD, and UC vs. controls. Due to our cohort being comprised 
of a large AFR population, we hypothesized population specific differences to be highlighted 
over disease status. Scores were generated using PLINK2 and showed statistically significant 
differences in IBD vs controls (Figure 8A), CD vs controls (Figure 8C), and UC vs controls 
(Figure 8E) with p < 2.22e-16. IBD vs controls displayed ancestry specific differences, AFR vs 
AMR, p = 2.5e-13, AFR vs EUR, p = 2.6e13, and AMR vs EUR, p = 0.00031 (Figure 8B). CD 
vs controls had fewer population based statistically significant differences, AFR vs AMR, p = 
3.3e-12, AFR vs EUR, p = 5.7e-12, and AMR vs EUR, p = 0.0017 (Figure 8D). UC vs controls 
had the least number of statistically significant population differences with AFR vs AMR, p = 
1.6e-06, and AMR vs EUR, p = 0.00016 (Figure 8F). Across all disease subtypes, EUR vs SAS 
was not found to be significant and EAS lacked sufficient samples to be tested. Overall, CD and 
IBD showed a similar distribution of PRS compared to UC (Table 12). The observations across 
IBD, CD, and UC may be due to sample size differences across populations. Nonetheless, our 
predominantly AFR cohort shows that IBD, CD, and UC are different across ancestorial groups. 
Pathway Analysis: Using the top 1000 variants by p-value for IBD-, CD-, and UC vs controls, 
gene ontology pathway analysis was performed for biological processes, cellular components, 
and molecular functions. In IBD vs controls, a total of 26 pathways that were p < 0.01 after 
multiple-test correcting were observed, n=12 biological processes, n=8 cellular components, and 
n=6 molecular function (Table 13). Whereas in CD vs controls, only 14 pathways were detected, 
n=4 BP, n=7 CC, and n=3 MF (Table 14). In UC vs controls, 21 pathways were observed, 
comprised of n=17 BP, n=3 CC, and n=1 MF (Table 15).  

IBD and CD shared multiple pathways pertaining to cell migration (GO:0030335), cell 
adhesion (GO:0044331, GO:0007156, GO:0016339, and GO:005925), and extracellular 
regulation (GO:0070062 and GO:0005576). Cell to cell processes were the common theme 
across all IBD pathways whereas CD showed a variety from cell migration, chromatin 
remodeling, to protein, ion, and enzymatic binding. The most pathways detected belonged to the 
lowest sample size group of UC patients. In UC, most of the pathways corresponded to 
immunological regulation, specifically of T-cells from signaling, binding, to regulation. IBD and 
UC shared only one pathway, extracellular exosome (GO:0070062) alluding to potential gut-
microbiome relationships. UC and CD shared no common pathways thus exemplifying their 
disease subtype differences. Although these enrichments analysis only utilized the top 1000 
variants from IBD, CD, and UC; these highlighted pathways showcase the heterogeneity of IBD 
and provide potential mechanisms of action to further interrogate.  
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Discussion: The novelty of cBGE has shown significant advantages and disadvantages, 
compared to canonically WGS, WES, and GWAS. Being the cheapest solution to obtaining 
genome and exome sequencing below $100, cBGE can fill the need of sequencing large datasets 
at reduced costs. Here, we demonstrated that cBGE provides adequate coverage to detect 
common variants in IBD. Also, cBGE can be combined and harmonized with WGS at 30X 
coverage to generate a merged dataset thus increasing power. Nonetheless, there are multiple 
disadvantages to cBGE. The amount of data is significantly reduced in cBGE, compared to 
WGS, in terms of total variants detected, types of variants, and the quality of the variants. 
Harmonization of WGS with cBGE required extensive reannotation of variants, re-alignment to 
HG38, and resulted in minimal improvements in detecting common and rare variants. We 
hypothesized that this novel technology, in combination with previous WGS dataset, would yield 
novel variants in AFR populations. The cBGE samples comprised n=1794 and WGS were 
n=3608. We harmonized the two platforms to increase our sample size by comparing Bystro and 
PLINK2 output across platforms. The original WGS was of better quality and the merged cBGE-
WGS only increased the significance of previous discoveries. The imputing resources and 
troubleshooting for mapping intronic regions or non-protein coding regions with cBGE are 
overwhelming compared to developed, well-tested, and published best-practices for GWAS, 
WES, or WGS. We have provided the top 1000 variants with PLINK2, Bystro, CADD, and 
GnomAD outputs for IBD (Supplementary Table 1), CD (Supplementary Table 2), and UC 
(Supplementary Table 3). Due to ongoing data collection, sequencing, and collaborative 
projects, raw data files are available by request through IBDGC consortium. Future directions of 
cBGE would entail sequencing in other diseases, across larger cohorts, and comparing to similar 
coverages (2X-3X) with WES or WGS. In IBD, based on our power calculations (Figure 2), 
gathering n=5000/10000 WGS with n=5000/10000 cBGE to do a matched analysis may 
highlight more novel common and rare variants across populations.  
 Efforts to sequence and integrate more cBGE samples are ongoing by IBDGC and Broad 
Institute. Overall, we report similar odds ratios statistical significance across IBD, CD, and UC 
of variants near known loci, such as IL23R, PTGER4, CARD9, and HLA-group genes. 
Interestingly, we observed rs1789007735 on chromosome 6 with OR = 6.0902 in IBD and OR = 
6.1260 in CD. Using the vast sample types at the Kugathasan lab biorepository, next directions 
would entail testing for rs1789007735 across IBD, CD, and controls using RT-PCR and 
performing statistical association testing with clinical phenotypes such as treatments, Montreal 
classifiers, or population group.  In UC, the variant with the largest OR=14.9477, rs60180187, is 
also located on chromosome 6. The top variant across IBD subtypes to be on chromosome 6 
suggests potential common genetic loci being involved. To further elucidate role of variants on 
chromosome 6, Hi-C could be performed looking at IBD, CD, UC, and controls to test for 
variants and potential interactions amongst them.  

It will be very beneficial for researchers to test IBD-, CD, or UC vs controls analysis with 
cBGE vs WGS separately to cross-compare outputs using the same samples. Due to the vast 
differences in samples sizes for disease subtypes, n=2361 CD and n=963, we did not perform CD 
vs UC analyses. Future endeavors may be able to use a matched cohort to test for disease subtype 
specific common and rare variants. In summary, here we provide the largest AFR population 
IBD dataset to date using merged cBGE-WGS, showed the feasibility of cBGE in detecting 
common and rare variants, and were able to replicate our previous findings of PTGER4, IL23R, 
and the HLA-group genes.  
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Figures  
 
Figure 1: Graphical abstract showing specific aim I of IBD and non-IBD participants collected 
blood (A) of combined-blended-Genome (B)-Exome (C). Specific aim II with a polygenic risk 
score (PRS) of IBD associated loci using a merged, cBGE+WGS dataset (D).  PLINK2 and 
BYSTRO, software will be used to compare odds ratios and standard errors across known 
variants and novel variants identified from specific aim I. Summary statistics of variants will be 
compared across studies, IBD vs controls, subtypes of IBD, and populations (AFR = African, 
AMR=American, and EUR = European) (E).  
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Figure 2: Power calculations with 80% power and alpha set to 5x10-8 using known IBD risk  
associated loci (n=271) based upon corresponding minor allele frequencies in IBD patients (x  
axis) and the absolute value of the log odds ratio of the variants on the y axis. Sample sizes of  
cases and controls are shown in 1764/1644 (green), 5000/5000 (blue), and 10000/10000 (red). A  
Chi-square distribution is assumed with n=1 degrees of freedom. Variants that were observed  
MAF >0.02 in IBD cases by Somineni et al are labeled.  
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Figure 3: Boxplot showcasing theta values for prior Somineni et al (2019) Whole Genome  
sequencing and combined-blended Genome Exome sequencing calculated using Bystro. Variants  
tested totaled n=38008946 with cBGE and WGS samples, n=1794 and n=3608, respectively  
showing a statistically significant difference using a T-test.  
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Figure 4: Boxplot showcasing theta values across populations for Whole Genome Sequencing 
and combined-blended Genome Exome sequencing. The most notable difference was between 
AFR with (p < 2.22 x 10-16). Comparing EUR between platforms did not show a statistically 
significant difference, p = 0.034. Whereas AMR showed significance with p = 0.00023. There 
were insufficient samples to compare SAS or EAS populations between platforms. 
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Figure 5: Manhattan plot of common variants observed across autosomes of n=2050 controls vs 
n=3324 IBD patients. The red line marks genome-wide significance of p = 5x10-8 and the blue 
line denotes standard significance threshold of p = 1x10-5. Over 6 million variants were observed 
with MAF < 0.05, of which 108409 reached genome-wide significance. The top variants by 
significance have been annotated with the closest nearby gene.  
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Figure 6: Quantile-Quantile plots of all observed variants in IBD vs controls (A), Crohns disease 
vs controls (B), and ulcerative colitis patients vs controls (C). Genomic inflation was calculated 
using a Chi-square distribution with one degree of freedom. The null hypothesis was that any 
observed p values are random and normally distributed.  
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Figure 7: Principal component analysis of all IBD and control samples variants showed a 
variance explained of PC1=37.86% and PC2=5.00%. Samples are color-coded by ancestry (A) 
and by disease status (B).  
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Figure 8: Polygenic risk scores of IBD vs controls (A), Crohns disease vs controls (B), and 
ulcerative colitis vs controls (C) using known IBD associated loci, n=278. Ancestry-based 
comparisons for IBD (B), Crohns disease (D), and ulcerative colitis (F) were calculated using T-
test and showed AFR vs EUR to be statistically significant across all subtypes of IBD.  
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Tables 
 
Table 1: Power calculation based on matched cases and controls using Somineni et al observed  
odds ratios and p-values for IBD associated SNPs, n=278. 

 
 
Table 2: Bystro summary statistics of merged cBGE and WGS dataset before quality control. 

 
 
Table 3: Bystro summary statistics of cBGE dataset before quality control filtering. 

 
 
Table 4: Bystro summary statistics of WGS dataset before quality control filtering.  

 
 
 
 
 

With 5000/5000 Case/Controls proposedPrevious WGS StudyEffect Size for 80% Power

Variance  ExplainedOdds RatioVariance 
Explained

Odds 
RatioRisk Allele Frequency

0.00111.450.00301.840.05
0.00111.320.00321.590.1
0.00121.240.00341.430.2
0.00121.210.00351.380.3
0.00131.190.00371.350.5
0.00131.220.00391.410.7
0.00131.260.00411.490.8
0.00141.370.00451.760.9

Standard DeviationMedianMeanMetric
0.1752.192.14Heterozygotes/Homozygotes Ratio

0.01571.141.14Deletion/Insertion Ratio
11500022200002180000Theta

7811470014400Theta Exonic
0.003142.282.28Transitions/Transversions Ratio

Standard DeviationMedianMeanMetric
0.2172.172.05Heterozygotes/Homozygotes Ratio

0.01291.121.12Deletion/Insertion Ratio
16200023800002280000Theta

11701690016300Theta Exonic
0.002572.112.11Transitions/Transversions Ratio

Standard DeviationMedianMeanMetric
0.1312.192.18Heterozygotes/Homozygotes Ratio

0.01341.151.15Deletion/Insertion Ratio
7620022300002210000Theta

5801630016100Theta Exonic
0.002882.272.27Transitions/Transversions Ratio
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Table 5: Total number of samples per disease status and super population group after quality 
control filtering. 

  
 
Table 6: Top 15 variants by p value amongst Inflammatory Bowel Disease patients vs controls 
denoted by variant ID, chromosome location, odds ratio (OR), p value, and nearest gene if 
available.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ulcerative ColitisCrohns DiseaseInflammatory Bowel Disease
CaseControlCaseControlCaseControlStatus
70919741974197426831974AFR
215553025551755AMR
010101EAS
3820782011620EUR
107080SAS
96320502361205033242050Total

301344115374Total

Nearest GenePORChromosomersID
LINC025113.49E-160.1080674rs201803404

NA9.24E-160.0557182rs1553450141
3.01E-130.29987416rs1408990865
3.73E-130.1361512rs1305058916
1.34E-120.18146910rs71383930
2.82E-120.33255816chr16_34574641
3.21E-120.25129113rs1474733259
5.14E-123.2912116rs36086189
8.95E-122.2514119rs920821247

TCP11L23.34E-113.1665712rs201006837
2.39E-100.27813rs145214322

NIM1K4.00E-100.1377255rs112869181
TMEM334.42E-102.174164rs386673910

5.81E-100.7194093rs7651040
9.03E-102.885042rs1213444357
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Table 7: Top 15 variants by p value amongst Crohns disease patients vs controls denoted by 
variant ID, chromosome location, odds ratio (OR), p value, and nearest gene if available. 

 
 
Table 8: Top 15 variants by p value amongst Ulcerative colitis patients vs controls denoted by 
variant ID, chromosome location, odds ratio (OR), p value, and nearest gene if available. 

 
 
 
 
 
 
 
 
 
 
 

Nearest GenePORChromosomersID
LINC025111.26E-120.1003314rs201803404
RPRM1.29E-120.06724292rs1553450141

5.47E-122.3525919rs920821247
1.95E-110.28080616rs1408990865

TCP11L22.00E-113.327912rs201006837
4.69E-113.2475516rs36086189
1.35E-100.11553612rs1305058916
1.62E-100.32035716chr16_34574641
3.97E-100.18022810rs71383930
6.37E-100.25189513rs1474733259
7.58E-103.008032rs1213444357
4.47E-092.501567rs746451076

PTGER46.45E-090.7562925rs957100
LINC012669.52E-092.042553rs375394643
PTGER41.34E-080.7602645rs7730591

Nearest GenePORChromosomersID
HLA-DQB1-AS13.81E-090.6403156rs3891173
HLA-DRA3.85E-090.6142846rs4321864
NAALADL24.42E-090.6039983rs7651040
TMEM335.28E-092.54354rs386673910
HLA-DQA18.90E-090.6727616rs7745002
HLA-DQA11.61E-080.6668076rs7744613

1.94E-083.3428616rs36086189
2.17E-080.5488935rs35302873

HLA-DQA12.53E-081.457816rs9271418
3.45E-080.6548786rs9279966
3.81E-081.603436rs201621006

HLA-DRB13.95E-081.453746rs9271176
HLA-DQB14.27E-080.6149066rs148411365
HLA-DRB14.46E-081.423426rs796439239

4.66E-081.463746rs9270915
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Table 9: Statistically significant variants from IBD patients vs controls with CADD scores  
greater than 15. Amongst all SNPs, only 4 passed CADD threshold of which n=2 rare with MAF  
<0.01.   

 
 
Table 10: Statistically significant variants from Crohns disease vs controls with CADD scores  
greater than 15. Amongst all SNPs, only 11 passed CADD threshold of which n=2 were common  
with MAF <0.05 and n=2 rare with MAF <0.01.   

 
 
Table 11: Statistically significant variants from Ulcerative colitis patients vs controls with  
CADD scores greater than 15. Amongst all SNPs, only 2 passed CADD threshold of which only  
one was rare with MAF <0.01.   

 
 
Table 12: Polygenic Risk Score summary statistics for IBD patients, n=3324 and controls,  
n=2050. Of the IBD patients, n=2361 had Crohns disease and n=963 ulcerative colitis.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gnomad_NFEgnomad_MIDgnomad_FINgnomad_EASgnomad_ASJgnomad_AMRgnomad_AMIgnomad_AFRCADDGeneMAFPORrsIDChr
NANANANANANANANA23.8ATP1A40.005466.01E-080.13837rs11652449401

2.94E-0500000.00032675500.0065147418.5NA0.5536.37E-060.823385rs2680652
0.7545760270.7346940040.7440479990.2777560060.7919309740.7416729930.6043959860.52075898617KCNH80.1392.85E-050.77924rs776550873
0.0194649010.0714285970.0174231990.2638829950.0328341010.07385099700.15568399421.6NA0.00751.79E-050.337016rs1436534448

gnomad_NFEgnomad_MIDgnomad_FINgnomad_EASgnomad_ASJgnomad_AMRgnomad_AMIgnomad_AFRCADDGeneMAFPORrsIDChr
NANANANANANANANA23.8ATP1A40.005462.11E-060.14551rs11652449401

0.02018150.1468510.005781070.1099860.03266450.06957320.01315790.19936917.4KCNH70.01292.20E-053.0821rs778612822
2.94E-0500000.0003267600.0065147418.3NEB0.6734.13E-050.818898rs67113822
0.895959970.865060990.883727010.552600980.843604030.902610.851974010.6419990116.8LY6G5B0.1944.47E-051.26077rs8052676
0.06008420.04421770.06618200.04493090.02394380.1373630.0090830222.5AIF10.1894.22E-051.26298rs27361826
0.0312930.140878010.005098310.1098530.05188140.07365190.01648350.20464115.1NRCAM0.03353.90E-050.602859rs1418915917
0.000102880.003401360000.0045086300.053983221.6NA0.00757.81E-060.236153rs1436534448
0.369457990.321029990.356225010.1905120.393819990.372828010.3004390.20573215.4NA0.04371.42E-051.59471rs38677078413
0.342370990.408120990.308308990.1895830.4275510.382600990.2807020.20395915.7NA0.04371.42E-051.59471rs19282660513
0.00010290.003401360000.0045074500.054009215.6SLC39A60.2314.18E-051.26303rs178950418
0.00026470.00340136000.005472350.0040586500.038543115.7NA0.2339.92E-061.2851rs163216918

gnomad_NFEgnomad_MIDgnomad_FINgnomad_EASgnomad_ASJgnomad_AMRgnomad_AMIgnomad_AFRCADDGeneMAFPORrsIDChr
000000.0001310100.007389418.5LINC017930.5531.32E-060.73225rs2680652

0.754576030.7346940.7440480.277756010.791930970.741672990.604395990.5207589921.5PIK3C30.006021.23E-065.73711rs14781056618

Ulcerative ColitisCrohns DiseaseInflammatory Bowel Disease
-1.30640-1.30640-1.30640Minimum
-0.21730-0.15915-0.155881st Quartile
0.24000.096100.09585Median
0.023890.092160.09461Mean
0.279700.341150.347233rd Quartile
1.214301.454401.45440Maximum
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Table 13: Gene ontology analysis using IBD vs controls top 1000 variants as input for detecting  
biological processes (BP), cellular components (CC), and molecular functions (MF). Fisher’s  
Exact test was performed and pathways with values less than 0.01 were considered. The number  
contributing is denoted by annotated and of which were deemed statistically qualified was  
termed significant. A total of 26 pathways were detected, n=12 BP, n=8 CC, and n=6 MF. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fisher WeightExpectedSignificantAnnotatedTermGO:IDOntology
0.0008317.682533cell migrationGO:0016477BP
0.0017650.896195signal transductionGO:0007165BP

0.002436.961113negative regulation of DNA-
templated transcriptionGO:0045892BP

0.00282.6855homophilic cell adhesion via plasma 
membraneGO:0007156BP

0.007728.571316response to bacteriumGO:0009617BP
0.00893106.07131198biological_processGO:0008150BP

0.008972.6855adenylate cyclase-activating G 
protein-c...GO:0007189BP

0.008972.6855cell-cell adhesion mediated by 
cadherinGO:0044331BP

0.009172.1444adherens junction organizationGO:0034332BP
0.009172.1444positive regulation of JNK cascadeGO:0046330BP

0.009172.1444calcium-dependent cell-cell 
adhesion via...GO:0016339BP

0.009513.391825cell morphogenesisGO:0000902BP
0.0004215.461828extracellular exosomeGO:0070062CC
0.000487.731114glutamatergic synapseGO:0098978CC
0.001227.181013perinuclear region of cytoplasmGO:0048471CC
0.002745.52810adherens junctionGO:0005912CC
0.003496.07811actin cytoskeletonGO:0015629CC
0.003632.7655basolateral plasma membraneGO:0016323CC
0.005913.8667focal adhesionGO:0005925CC
0.006514.351526cell surfaceGO:0009986CC
0.0004116.091930zinc ion bindingGO:0008270MF
0.001213.2266integrin bindingGO:0005178MF
0.002234.2978beta-catenin bindingGO:0008013MF
0.003742.6855actin filament bindingGO:0051015MF
0.007035.36810cadherin bindingGO:0045296MF
< 1e-3099.22131185protein bindingGO:0005515MF
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Table 14: Gene ontology analysis using Crohns disease patients vs controls top 1000 variants as  
input for detecting biological processes (BP), cellular components (CC), and molecular functions  
(MF). Fisher’s Exact test was performed and pathways with values less than 0.01 were  
considered. The number contributing is denoted by annotated and of which were deemed  
statistically qualified was termed significant. A total of 14 pathways were detected, n=4 BP,  
n=7 CC, and n=3 MF. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fisher WeightExpectedSignificantAnnotatedTermGO:IDOntology
0.00413.55711positive regulation of cell migrationGO:0030335BP
0.00450.9733Rac protein signal transductionGO:0016601BP

0.00450.9733positive regulation of NF-kappaB 
transcr...GO:0051092BP

0.00784.19713chromatin remodelingGO:0006338BP
0.0001614.641944extracellular regionGO:0005576CC
0.001212.9969external side of plasma membraneGO:0009897CC
0.001212.9969Golgi membraneGO:0000139CC
0.002015.991118endoplasmic reticulum membraneGO:0005789CC
0.00352.3357perinuclear region of cytoplasmGO:0048471CC
0.00497133endoplasmic reticulum lumenGO:0005788CC
0.005579.651829endoplasmic reticulumGO:0005783CC
0.00179.081328identical protein bindingGO:0042802MF
0.00275.51817calcium ion bindingGO:0005509MF
0.0031.6245small GTPase bindingGO:0031267MF
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Table 15: Gene ontology analysis using ulcerative colitis patients vs controls top 1000 variants  
as input for detecting biological processes (BP), cellular components (CC), and molecular  
functions (MF). Fisher’s Exact test was performed and pathways with values less than 0.01 were  
considered. The number contributing is denoted by annotated and of which were deemed  
statistically qualified was termed significant. A total of 21 pathways were detected, n=17 BP,  
n=3 CC, and n=1 MF. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fisher WeightExpectedSignificantAnnotatedTermGO:IDOntology

0.000170.0323positive regulation of T cell mediated 
c...GO:0001916BP

0.000350.0424humoral immune responseGO:0006959BP
0.000350.0424T cell receptor signaling pathwayGO:0050852BP

0.002240.149positive regulation of immune 
responseGO:0050778BP

0.008810.0111protein tetramerizationGO:0051262BP
0.008810.0111T-helper 1 type immune responseGO:0042088BP

0.008810.0111positive regulation of viral entry into 
...GO:0046598BP

0.008810.0111positive regulation of insulin 
secretion...GO:0035774BP

0.008810.0111negative regulation of inflammatory 
resp...GO:0002862BP

0.008810.0111negative regulation of T cell 
proliferat...GO:0042130BP

0.008810.0111regulation of interleukin-10 
productionGO:0032653BP

0.008810.0111positive regulation of T cell mediated 
i...GO:0002842BP

0.008810.0111negative regulation of type II 
interfero...GO:0032689BP

0.008810.0111regulation of interleukin-4 productionGO:0032673BP

0.008810.0111positive regulation of ERK1 and 
ERK2 cas...GO:0070374BP

0.008810.0111positive regulation of kinase activityGO:0033674BP

0.008810.0111positive regulation of monocyte 
differen...GO:0045657BP

0.000170.0323immunological synapseGO:0001772CC
0.002460.11210extracellular exosomeGO:0070062CC
0.008620.0111intermediate filamentGO:0005882CC
0.000170.0323T cell receptor bindingGO:0042608MF
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