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Abstract

Causal Brain Connectivity: Integrating Granger Directed Graphs in fMRI Analysis
By Tianyi Zhang

Functional Magnetic Resonance Imaging (fMRI) has significantly advanced our
understanding of human brains by capturing dynamic neural activities, providing
basis for causal analysis between brain regions. However, conventional correlation-
based analyses often fail to account for the directionality and complexity of neural
interactions. We propose an approach that integrates Granger causality with graph-
based deep learning to better capture effective connectivity between brain regions.
Specifically, we compare three methods: MLP-based approaches on flattened time
series, Graph Convolutional Networks (GCNs) using undirected connectivity, and a
GCN framework incorporating directed Granger-causal influences into brain graph
construction. Through the optimization of Granger parameters such as the lag order
via Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),
we investigate the impact of different graph construction methods on connectome-
based outcome prediction. The directed graph framework demonstrates robustness to
hyperparameter variations, while also providing biologically plausible insights into brain
functionalities that complement undirected correlation-based graphs. Evaluations
on classification and regression tasks using large-scale fMRI datasets reveal that
directionality preserves predictive performance while offering additional understanding
of information flow within brain networks. These findings emphasize the potential
of Granger-causality-informed graphs for robust, nuanced, and causality-aware fMRI
analyses.
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Chapter 1

Introduction

Functional magnetic resonance imaging (fMRI) has significantly advanced our under-

standing of brain function by non-invasively measuring blood oxygen level-dependent

signals (BOLD), thus capturing dynamic aspects of neural activity. However, many

existing analyses continue to rely on static, undirected pairwise correlations between

regions of interest (ROIs), overlooking the directional and causal nature of neural

interactions. This omission limits our ability to determine how brain regions causally

influence each other and restricts our understanding of the underlying mechanisms of

neural communication.

Recent advances in effective connectivity emphasize modeling how activity causally

propagates between brain regions, rather than merely identifying co-activation patterns

[11, 61]. Granger causality (GC) is a well-established technique for estimating effective

connectivity that provides a robust statistical framework to infer directed influences

from time-series data, offering deeper insights into the flow and directionality of

neural interactions than correlation-based methods [14, 26, 58]. In recent years,

Graph Neural Networks (GNNs) have attracted broad interest for modeling graph-

structured interactions between brain regions [12, 30, 31, 73, 52, 72]. Several pioneering

methods have been developed for cognition assessment and neural disorder detection
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[12, 31, 39, 75]. However, to the best of our knowledge, most existing neuroimaging

applications of GNNs are built on correlation-based brain connectivity, which overlooks

the causal directionality inherent in brain activity.

In this work, we propose a novel framework that integrates Granger-causal directed

graphs with Graph Convolutional Networks (GCNs) to rigorously model effective

connectivity in fMRI data. We validate our approach on the ABCD and PNC

datasets, large neurodevelopmental cohorts well-suited for studying how functional

networks evolve over development. Our approach centers on four insights. First, while

correlation-based connectivity captures co-activation patterns, it overlooks the causal

directionality essential for understanding how neural signal propagate. We address

this by constructing directed adjacency matrices via Granger causality, capturing

asymmetrical information flow across brain regions. Second, we systematically tune

Granger parameters (e.g., lag order) using the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC), ensuring both statistical validity and scala-

bility to large fMRI datasets. Third, integrating these Granger-causal graphs enables

GCNs to explicitly model directed causal influences in brain networks, leveraging both

local and global connectivity patterns for more accurate clinical outcome prediction.

Finally, our Granger-causality-informed GCN directly models directed, causal influ-

ences, offering a complementary perspective to traditional correlation-based methods.

Comprehensive validation shows that incorporating causality-guided connections de-

livers robust, competitive performance across diverse clinical tasks, while revealing

deeper insights into neural information flow. Overall, our contributions bridge the

gap between statistical causal inference and graph-based deep learning, addressing

limitations of static functional connectivity analysis and paving the way for a new

generation of causality-aware fMRI studies.



Chapter 2

Related Works

Understanding the complex interactions within the brain has been a central objective

in neuroscience. Recent advances in deep learning and brain analysis methods now

enable more powerful modeling and interpretation of neural connectivity. This section

reviews three important research areas that underlie our study: Graph Neural Networks

for brain connectome analysis, functional and effective connectivity, and causality and

Directionality in brain networks.

2.1 Graph Neural Networks for Brain Connectome

Analysis

Graph-based representations have become increasingly prominent in neuroscience

for capturing the complexity of inter-regional communications in the brain [12, 31,

32, 39, 67, 77]. In these representations, each brain region is modeled as a node,

while edges capture statistical or computational relationships (e.g., correlations or

causal influences) between regions of interest (ROIs) [32, 77, 12, 31]. Conventional

machine learning techniques often process neuroimaging data as high-dimensional

vectors, thereby neglecting the inherent topological structure and interdependencies

3
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among brain regions. In contrast, Graph Neural Networks (GNNs) explicitly treat the

connectome as a graph, allowing them to leverage both local and global connectivity

patterns.

Recent GNN-based approaches have demonstrated promise in both classification

tasks, such as diagnostic prediction, and regression tasks, such as predicting cognitive

scores, by exploiting these topological features [12, 31, 39]. Typically, these models

learn node and graph embeddings via iterative message-passing and aggregation

operations. This process not only preserves the overall structure of the connectome,

but also highlights critical local connectivity patterns. For example, BrainNetCNN [34]

introduces specialized convolutional filters designed specifically for brain connectivity

matrices, while FCNet [48] processes pairwise correlation maps to capture functional

connections between ROIs. More recent methodologies, such as BrainGB [12], have

built on these ideas by integrating domain-specific anatomical or functional constraints

within scalable GNN frameworks. However, many of these approaches predominantly

utilize undirected functional connectivity graphs, thereby overlooking the potential

directional nature of neural information flow.

2.2 Functional and Effective Connectivity

In neuroimaging, functional connectivity is typically defined through correlation-based

measures that capture synchronized or coactivated neural activity patterns across

different regions of the brain [4, 6, 19, 50, 61, 65]. This is often mathematically

instantiated using the Pearson correlation coefficient or other similar metrics applied

to time series data. Functional connectivity has been instrumental in the identification

of large-scale networks such as the Default Mode Network (DMN), Visual Network, and

Sensorimotor Network [2, 27, 29, 57, 60, 64]. However, while such correlation-based

approaches offer valuable insights into co-activation patterns during resting-state or
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task-driven scenarios, they fall short in elucidating the temporal order or directional

causal influence between brain regions.

In contrast, effective connectivity focuses on uncovering the directional and causal

driving forces between ROIs [11, 61, 75]. This approach models the dynamic influence

that the activity in one brain region exerts over another. Granger causality is one

of the most widely adopted methods for this purpose [14, 26, 58, 69]. It employs a

Vector Autoregressive (VAR) framework to test whether past activity in one region

can enhance the prediction of future activity in another, thus offering directed edges

that represent putative causal influences [15, 56, 58, 49]. This distinction is crucial,

as it empowers our approach to transcend simple correlational analyses and rigorously

infer the causal mechanisms underpinning neural communication.

2.3 Causality and Directionality in Brain Networks

Shifting the focus to the neural foundations, the inherent directionality of brain

connectivity is deeply rooted in the brain’s anatomical and physiological architecture

[3, 10, 71]. At the core of this dynamic is the interplay between feedforward and

feedback pathways [5, 8, 54, 78]. In the brain, sensory information is typically

transmitted from primary sensory areas to higher-order association cortices through

feedforward connections, while feedback pathways modulate and refine this information

by projecting signals back to earlier stages [5, 8, 29, 54, 78]. This hierarchical

organization supports complex cognitive functions and adaptive behavior.

At the microscopic level, the structural connectivity—formed by white matter tracts

and synaptic networks—sets the stage for these directional interactions [13, 28, 35, 74].

Neurons form circuits that are not only spatially distributed but also functionally

specialized, where the direction of information flow is determined by synaptic strengths,

inhibitory and excitatory balances, and the intrinsic properties of neural populations
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[46, 62]. Advanced neuroimaging techniques, such as network-level fMRI, enable us

to capture these dynamics at a macroscopic scale, revealing how these microcircuit

principles manifest in large-scale brain networks [18, 78].

By integrating causal inference methods into these analyses, researchers can

disentangle the directional influences between brain regions. For example, combining

noise-diffusion models or structural equation modeling with graph neural networks

(GNNs) can help trace the flow of information, and map out how disruptions in

these directed networks might contribute to neurological disorders or psychopathology

[24, 75]. This approach not only provides a more refined understanding of neural

communication but also bridges the gap between neurobiological mechanisms and

their observable impact on cognition and behavior.

Thus, moving beyond traditional correlation analyses, modern causal inference

techniques provide a powerful framework to decode the brain’s directional connectivity.

They offer critical insights into both the flow of neural information and the alterations

that may underpin various clinical conditions.

In this work, we build upon these advances to propose a direction-aware approach

for fMRI analysis, incorporating Granger-causal edges into GNN-based models. By

fusing effective connectivity estimates with the representational power of GNNs, our

framework aims to preserve the predictive strengths of graph-based learning while

uncovering unique insights into the causal orchestration of neural activity across the

human connectome.



Chapter 3

Problem Formulation

This study addresses the challenge of downstream prediction using resting-state fMRI

(rs-fMRI) data, taking into account the directional and causal nature of neural inter-

actions. Traditional functional connectivity measures, such as Pearson’s correlation,

often capture only undirected relationships, potentially overlooking the temporal

dynamics that govern how neural signals propagate. By incorporating directionality

and causal inference into graph-based connectivity representations [9, 16], we aim to

more accurately model the functional organization of the brain and thereby improve

predictive performance on tasks ranging from classification (e.g., diagnostic labels or

gender) to regression (e.g., cognitive or clinical scores).

Data Representation and Notation

In rs-fMRI experiments, Blood Oxygen Level-Dependent (BOLD) signals are sampled

over time from N distinct Regions of Interest (ROIs). Thus, for each subject m, the

raw data can be represented as a matrix

X(m) ∈ RN×T , (3.1)

7
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where x
(m)
i,t denotes the BOLD intensity in ROI i at time step t, and T is the total

number of time points. Each subject is associated with a label y(m), which can take

the form of either a continuous value (e.g., a cognitive score) or a categorical label

(e.g., diagnostic class or behavioral trait). The supervised learning objective is to

predict:

ŷ(m) = f
(
X(m)

)
, (3.2)

where f is a predictive function learned from a training set of (X(m), y(m)) pairs.

Graph-Based Connectivity Representations

To better capture the interplay among ROIs, we transform each subject’s rs-fMRI

data into a graph structure. Specifically, we consider a graph

G(m) =
(
V , E (m)

)
,

where each node vi ∈ V corresponds to an ROI, and edges E (m) encode relationships

between ROIs for subject m. These edges may be derived in two primary ways:

Undirected Functional Connectivity: Often obtained through measures like

Pearson’s correlation, capturing how strongly two ROIs co-activate over the entire

time series. While useful for identifying global co-activation networks, this approach

ignores the temporal ordering of signals.

Directed Effective Connectivity: Derived via statistical methods such as Granger

causality, providing edges that reflect the temporal direction of influences between

ROIs. This approach attempts to unveil how activity in one ROI at a previous time

point may predict future activity in another ROI.

By modeling brain networks in a graph form, we can apply graph neural networks

to capture not only the local interactions among connected nodes but also the global
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topology of the brain network.

Study Focus

This study aims to perform downstream prediction using resting-state fMRI (rs-

fMRI) data by modeling the brain as a network of interacting regions. To enhance

predictive accuracy and interpretability, we incorporate directionality and causal

inference into graph-based connectivity representations. For a given subject m, the

resulting graph-based representation—whether undirected or directed—serves as an

input to a predictive model:

ŷ(m) = F
(
X(m),A(m)

)
, (3.3)

where A(m) denotes the adjacency matrix (undirected or directed) encoding the

subject’s brain connectivity, and F is typically a learnable function (e.g., a GNN). The

desired output ŷ(m) may correspond to a continuous cognitive score or a categorical

behavioral classification, depending on the prediction task.

Overall, the central proposition of this work is to construct brain network repre-

sentations that retain the directional causal signals inherent in time-series data. By

embedding these properties in a graph model, we aim to advance both the understand-

ing of brain function and the performance of machine learning tasks in large-scale

neuroimaging studies.



Chapter 4

Method

In this section, we first introduce two existing fMRI-based brain analysis paradigms:

MLP-Based approaches and graph-based models utilizing undirected functional con-

nectivity. We then present the proposed method based on Granger causality, which

can capture directional interactions between brain regions, providing insights into

causal relationships and temporal dependencies that are not detectable in undirected

correlation-based networks.

4.1 MLP-Based Methods

A baseline approach to fMRI-based prediction is to apply a Multilayer Perceptron

(MLP) directly to the BOLD signals, treating the data as a high-dimensional in-

put. Instead of explicitly modeling connectivity between brain regions, this method

learns feature representations through fully connected layers, allowing it to capture

straightforward but potentially effective patterns in the data.

For a given subject m, the fMRI data X(m) ∈ RN×T is first flattened into a feature

vector z(m) ∈ RN ·T , which serves as the input to an MLP:

ŷ(m) = fθ
(
z(m)

)
,

10
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where fθ represents the MLP model with learnable parameters θ. The MLP consists

of multiple fully connected (dense) layers, each followed by a non-linear activation

function (e.g., ReLU). While this approach can learn strong predictive mappings in

some cases, it does not exploit the inherent spatial or temporal structure of the brain,

and as a result, its interpretability may be limited.

For additional details on the MLP formulation and hyperparameters, we refer the

reader to Appendix B.

4.2 Graph-Based Models

For each subject m, the node feature matrix X(m) ∈ RN×T is derived from time-

series BOLD signals, where N represents the number of ROIs and T represents

the number of time steps. Each row of X(m) encapsulates the temporal activity of

an ROI. Adjacency matrices encode ROI relationships in two forms. Undirected

graphs represent functional connectivity based on Pearson correlation coefficients,

producing symmetric adjacency matrices C(m) ∈ RN×N . Directed graphs capture

effective connectivity using Granger causality, resulting in directed adjacency matrices

A(m) ∈ RN×N .

4.2.1 Undirected Graphs: Functional Connectivity.

Functional connectivity between ROIs is computed using Pearson correlation coeffi-

cients. For each subject m, the adjacency matrix C(m) is defined as:

C
(m)
ij =

∑
t

(
x
(m)
i,t − µ

(m)
i

)(
x
(m)
j,t − µ

(m)
j

)
√∑

t

(
x
(m)
i,t − µ

(m)
i

)2
√∑

t

(
x
(m)
j,t − µ

(m)
j

)2
,

where µ
(m)
i and µ

(m)
j are the mean values of ROI i and ROI j time-series, respectively.

The resulting graph G(m) models symmetric relationships between ROIs, with edge
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weights reflecting the strength of functional connectivity.

4.2.2 Directed Graphs: Effective Connectivity.

Effective connectivity is modeled using Granger causality [26, 14], allowing us to infer

putative directional influences among ROIs. Below, we outline the main steps to

construct the directed adjacency matrix A(m).

Sliding Windows: We segment each ROI’s time-series into overlapping windows of

size W , shifting by S. For each window w, the mean signal is computed:

x̄
(m)
i,w =

1

W

∑
t∈w

x
(m)
i,t ,

yielding a mean-based time-series X̄(m) ∈ RN×Wwindows. This step helps reduce high-

frequency noise and captures short-term dynamics.

VAR Modeling: Within each window w, for every pair (i, j), we fit a Vector

Autoregressive (VAR) model of order L:

xj(t) = αj,0 +
L∑

k=1

αj,k xj(t− k) +
L∑

k=1

βj,k xi(t− k) + ϵj(t).

The intuition is to assess whether past values of ROI i improve the prediction of ROI

j, beyond what j’s own past can explain [58, 59].

Hypothesis Testing: We conduct a statistical test (commonly an F -test) to examine

whether the lag coefficients βj,k associated with ROI i are jointly non-zero:

H0 : βj,1 = βj,2 = · · · = βj,L = 0 vs. H1 : ∃ k such that βj,k ̸= 0.

If H0 is rejected at a specified significance level (α = 0.05), we conclude that i

“Granger-causes” j in this window [26, 58].
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Aggregation Across Windows: We repeat the above tests for each overlapping

window. If ROI i is found to Granger-cause ROI j in a sufficient fraction of those

windows (e.g., exceeding a threshold τ), we set

A
(m)
ij = 1 (directed edge from i to j),

otherwise A
(m)
ij = 0.

Through this procedure, the final adjacency matrix A(m) ∈ {0, 1}N×N encodes the

direction and flow of information among ROIs. In contrast to undirected correlation-

based graphs, these directed edges highlight potential causal relationships and temporal

ordering of brain activity. For additional technical details (including pseudocode for

VAR fitting and statistical tests), see Appendix A.

We evaluate the constructed graphs using a Graph Convolutional Networks (GCNs)

[12, 37]. Specifically, GCNs are applied separately to undirected C(m) and directed

A(m). In undirected GCNs, C(m) serves as the adjacency matrix for symmetric feature

propagation, while directed GCNs use A(m) to incorporate directional dependencies.

The model generates embeddings, which are evaluated on downstream classification

and regression tasks.

Overall, combining causal directionality with graph neural networks offers richer

insights into how signals move across brain circuits. We refer interested readers to

Appendix A for algorithms on the Granger causality steps and to Appendix B for

additional details on the MLP and GCN formulations used in this work.
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4.3 Rationale for Selecting Granger Causality

In our study, we evaluated multiple methods for constructing connectivity graphs

from fMRI data. Traditional measures such as Pearson correlation and time cross-

correlation are well-known for their computational efficiency and scalability; however,

these methods inherently yield undirected graphs. As a result, they capture only co-

activation or temporal synchrony and cannot resolve the causal direction of interactions

among brain regions [20, 47].

In contrast, methods capable of inferring directionality—such as Transfer Entropy,

Dynamic Causal Modeling (DCM), and Granger causality—offer deeper insights into

effective connectivity by estimating causal relationships. Transfer Entropy, for instance,

provides a non-linear measure of information transfer that can theoretically capture

the direction of interactions. Yet, its high computational demand and sensitivity to

noise limit its feasibility for large-scale fMRI datasets [68].

Dynamic Causal Modeling (DCM) adopts a biophysical approach, fitting a genera-

tive model to the data to estimate directional and signed influences between brain

regions [21, 22]. Although DCM is robust and provides detailed insights into neural

dynamics, it requires a priori specification of the network structure and becomes

computationally prohibitive as network size increases. For example, on the ABCD

dataset—which contains 360 nodes and 512 time series—DCM requires approximately

120 seconds per sample, and with over 7,000 samples, the processing time becomes

impractical [47, 53].

Granger causality, on the other hand, infers directional influences by testing whether

past activity in one region improves the prediction of future activity in another [25].

Despite its underlying assumptions of linearity and stationarity, our pre-processed

fMRI data satisfy these conditions well enough to yield robust estimates. Importantly,

Granger causality achieves a significant reduction in computation time—averaging

about 11 seconds per sample on the ABCD dataset. Moreover, by employing a
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chunking strategy, we further improved scalability without degrading performance,

reducing the processing time to approximately 3 seconds per sample on average.

Additionally, the use of parallelization further enhances the efficiency of iterative

computations. Experiments on the smaller PNC dataset demonstrate that chunking

not only maintains consistent performance but also effectively smooths noise, which

does not inherently contribute to improved training.

In summary, the efficiency and scalability of Granger causality make it ideally

suited for large-scale fMRI studies. Its ability to efficiently infer directional influences,

combined with our practical improvements through chunking, offers a compelling

balance between computational feasibility and the extraction of meaningful, causal

interactions from complex neuroimaging data.

4.3.1 Overview of Connectivity Inference Methods

Table 4.1: Comparison of connectivity inference methods for fMRI analysis.

Method Directed Complexity Scalability Time (in ms)

Pearson Corr. No Low High 152

Time Cross-Corr. No Low–Mod High 456

Transfer Entropy Yes High Limited 88,000

DCM Yes High/Mod Limited 120,000

Granger Causality Yes Moderate Moderate 11,000

Note: All timing measurements are based on the ABCD dataset, comprising 360 nodes and 512 time steps per sample.
The time (in milliseconds) reflects the average duration required to process a single sample for graph construction.

Based on our experiments and practical considerations, we adopted Granger causal-

ity for constructing directed graphs. While DCM provides detailed biophysical insights,

its computational intensity and requirement for pre-specified network models limit

its applicability to large networks. Similarly, Transfer Entropy, though theoretically

robust, is less practical for large-scale datasets due to its high complexity. In contrast,

Granger causality offers a favorable compromise by efficiently inferring directional

interactions while scaling well to large fMRI studies.
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Experiments

Our experimental design is structured to address three central research questions that

aim to evaluate both predictive performance and the neurobiological interpretability

of our approaches:

RQ1 Does model performance vary across different graph construction methods? We

compare models based on flattened time-series data, undirected correlation

graphs, and directed Granger-causal graphs to determine whether directional

information offers advantages in terms of predictive accuracy and robustness.

RQ2 What parameters best optimize Granger-causal graphs? We systematically tune

hyperparameters such as window size, step size, and lag order using model

selection criteria (e.g., AIC and BIC) to identify configurations that effectively

balance model complexity and temporal resolution in directed connectivity.

RQ3 How do directed connectivity insights complement undirected graphs? We focus

on how causal (directed) edges can provide deeper neurobiological insights,

particularly by highlighting potential top-down vs. bottom-up pathways that

remain obscure in undirected correlation-based methods.

16
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5.1 Experimental Settings

Datasets. We use two large-scale neuroimaging datasets: the Adolescent Brain

Cognitive Development Study (ABCD) and the Philadelphia Neurodevelopmental

Cohort (PNC) [9, 51].

Table 5.1: Summary of Datasets and Tasks

Dataset Task Atlas # Subjects # Time Steps # Nodes Response # Classes

ABCD [9] Classification HCP 360 7,901 512 360 Gender 2
ABCD [9] Regression HCP 360 4,613 1,024 360 Cognitive Score –
PNC [51] Classification Power 264 503 120 264 Gender 2

ABCD Dataset. The ABCD dataset tracks 9-10-year-olds through early adult-

hood with repeated MRI scans [9]. It includes 7,901 subjects, parcellated using the

HCP 360 atlas [16], with a balanced gender distribution. For gender prediction tasks,

512 time steps are used, while regression tasks predicting the Cognition Summary

Score utilize 1,024 time steps. Samples with fewer than 1,024 time steps were excluded,

resulting in 4,613 samples for regression.

PNC Dataset. The PNC dataset comprises 503 subjects from the University of

Pennsylvania and Children’s Hospital of Philadelphia, also with a balanced gender

distribution [51]. Each subject provides 120 time steps of rs-fMRI data from 264 ROIs,

with preprocessing steps including motion correction, normalization, and bandpass

filtering [44].

Metrics. For binary gender classification, we use the Area Under the Receiver

Operating Characteristic (AUC), Accuracy, and F1 Score, reflecting the model’s ability

to distinguish between classes, overall correctness, and balance of precision and recall.

The classification threshold is set at 0.5. For cognitive score regression, Mean Squared

Error (MSE) is employed to measure the average squared difference between predicted

and actual scores.

Implementation Details. All models were trained using the Adam optimizer

(learning rate = 1 × 10−4, weight decay = 1 × 10−4) [36]. We used binary cross-
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entropy loss for classification tasks and mean squared error (MSE) for regression tasks,

training each model for up to 100 epochs with early stopping (patience = 10 epochs).

Batch size was set to 16, with validation loss checked every 5 epochs, and mixup

regularization (mixup=1) was applied to enhance generalization. Prior to training,

each time series was z-score normalized on a per-ROI basis. To ensure robustness, we

repeated experiments 5 times with different random seeds and report averaged results.

We evaluated two main architectures. The MLP baseline flattens the time-series

data into a single feature vector and processes it through two fully connected layers

(512 and 256 units, both with ReLU activation and dropout = 0.5). A final output

layer uses sigmoid activation for classification tasks or a linear activation for regression

tasks. The GCNs, on the other hand, incorporate node features and either undirected

or directed adjacency matrices. Specifically, two graph convolution layers (256 units,

ReLU) are followed by a fully connected layer (256 units, dropout = 0.5) and an

output layer (sigmoid or linear, depending on the task). Except for the graph-specific

operations, training procedures (e.g., optimizer settings, early stopping, batch size)

remain consistent across both architectures.

Baselines. We compare our proposed model with a range of baselines: (i) MLP

Approach—a time-series MLP that directly encodes BOLD data without network

modeling; (ii) Direction-Free Deep Learning Approaches—including BrainNetCNN,

FCNet, and BrainGB with functional connectivity (BrainGB w/FC), which exploit

correlation-based connectivity features via BrainGB’s GCN architecture to model

ROI relationships without directionality [12, 34, 48]; (iii) Effective Connectivity

Method—which estimates directed interactions using the Noise-Diffusion Network

(NDNetwork) followed by a GCN module [12, 24, 37].
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Table 5.2: Performance Comparison Across Models and Tasks

Type Method Dataset: PNC Dataset: ABCD

AUC
↑

Acc ↑ F1 ↑ AUC
↑

Acc ↑ F1 ↑ MSE
↓

Time-series MLP 53.80 53.28 52.48 51.29 50.38 49.17 106.43
Direction-Free BrainNetCNN [34] 52.73 54.16 53.33 54.36 53.29 54.10 85.81

FCNet [48] 52.95 51.64 50.82 50.36 51.29 50.10 103.65
BrainGB w/FC [12, 37] 56.39 56.74 55.32 63.32 59.74 59.33 79.93

Effective Connectivity NDNetwork [24, 37] 54.46 53.58 50.95 TLE TLE TLE TLE
Directed (Ours) BrainGB w/GC [12, 14, 37] 56.74 56.35 54.93 63.76 59.65 59.56 81.32

TLE (Time Limit Exceeded): Indicates that the training exceeds 72 hours.

5.2 Model Performance (RQ1)

5.2.1 Graph-Based Models Outperform MLP.

Table 5.2 shows that graph-based models consistently outperform the MLP baseline.

By incorporating functional connectivity (whether correlation-based or Granger-based),

these models capture the spatial and temporal organization of neural systems more

effectively than the MLP, which treats each voxel or ROI time series as an independent

feature. In particular, BrainGB w/FC and BrainGB w/GC achieve higher AUC and

F1 scores for classification tasks on the PNC dataset, and lower MSE for regression

on the ABCD dataset. The MLP’s lower performance highlights the importance of

leveraging inter-regional relationships in fMRI analysis.

5.2.2 Compatibility of Directed and Undirected Graphs.

Our findings further indicate that introducing directionality does not compromise

predictive performance. Specifically, BrainGB w/GC achieves results comparable to,

and occasionally better than, BrainGB w/FC, suggesting that Granger-causal edges can

be as effective as correlation-based edges when used in GCNs. Moreover, the directed

approach delivers additional insights into causal interactions between brain regions

that cannot be captured by undirected methods. Notably, the dispersed connectivity

in directed graphs enhances neurological interpretability, offering plausible pathways
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of information flow throughout the connectome. In contrast, the Noise-Diffusion

Network (NDNetwork) approach times out (TLE) when scaling to the large ABCD

dataset, underscoring potential computational inefficiencies relative to correlation-

or Granger-based methods. This highlights the practical advantage of constructing

directed Granger-causal graphs, which remain both computationally tractable and

neurobiologically meaningful. Overall, these results demonstrate that directionality

can be introduced without sacrificing performance, while providing more nuanced

understandings of functional relationships in the brain.

5.3 Hyperparameter Study for Directed Graphs

(RQ2)

The construction of directed Granger-causal graphs involves optimizing three key

hyperparameters—window size (W ), step size (S), and lag order (L)—within

a Vector Autoregressive (VAR) framework [58, 59, 75]. These parameters crucially

determine how effectively the model captures temporal dependencies and causal

influences in fMRI time-series data.

The window size (W ) controls how many consecutive time steps are grouped

together, with larger windows capturing more extended dependencies but risking the

smoothing-over of finer-scale dynamics. Conversely, smaller windows provide sharper

temporal resolution but may fail to capture longer-lag effects. The step size (S)

specifies how far the sliding window shifts at each step; small shifts allow for denser

sampling of the time series, while larger shifts reduce computation at the potential

cost of missing fast-evolving phenomena. Finally, the lag order (L) defines how many

past time points from each ROI are used to predict future activity in another ROI,

balancing the trade-off between model complexity and its ability to capture relevant

temporal delays.
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To select the optimal L, we employ the Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) [1, 42]. AIC is computed as AIC = 2k− 2 ln(L),

where k denotes the number of parameters in the VAR model, and ln(L) is the log-

likelihood [1]. BIC uses a stricter penalty for model complexity: BIC = k ln(n)−2 ln(L),

where n is the number of observations [42]. The lag order that jointly minimizes AIC

and BIC is typically regarded as optimal.

Using the ABCD dataset for a gender prediction task, we conducted a grid

search over combinations of W , S, and L (see Table 5.3) to empirically assess how

each hyperparameter setting influences both model fit (AIC/BIC) and predictive

performance (AUC, Accuracy, F1).

Table 5.3: Grid Search Results for Granger Causality Hyperparameters

Window
Size (W )

Step Size
(S)

Lag Order
(L)

AIC [1] BIC [42] AUC Accuracy F1

32 16 1 79.59 83.90 63.32 59.44 59.33
32 16 2 78.10 85.11 62.82 58.93 58.75
32 16 3 77.34 86.92 63.03 59.19 59.08
32 32 1 78.40 82.70 63.62 59.61 59.71
32 32 2 77.72 84.73 63.12 59.21 59.01
32 32 3 76.96 86.53 63.76 59.65 59.56

64 32 1 167.37 173.79 62.53 58.02 58.07
64 32 2 166.26 176.90 63.04 58.58 58.56
64 32 3 165.43 180.21 63.58 59.05 59.07
64 64 1 161.80 168.23 62.89 58.20 58.24
64 64 2 160.97 171.61 63.20 58.64 58.62
64 64 3 160.44 175.21 63.55 59.00 59.03

128 64 1 352.23 360.76 61.82 57.94 57.83
128 64 2 350.05 364.24 62.19 58.21 58.19
128 64 3 348.88 368.68 62.40 58.54 58.32
128 128 1 339.90 348.43 62.71 58.86 58.60
128 128 2 337.63 351.81 63.05 59.11 58.99
128 128 3 336.39 356.18 63.36 59.33 59.22

Findings

Despite the assumption that lower AIC and BIC would yield better results, performance

remained robust under various hyperparameter settings. Table 5.3 highlights a nuanced

picture of Granger-causal modeling under various window sizes, step sizes, and lag

orders. While theory often suggests that minimizing AIC and BIC should yield the

best predictive model, our results show that even configurations not strictly optimal
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in these criteria can still produce robust outcomes. Notably, (W = 32, S = 32, L = 3)

achieves the lowest AIC (76.96) along with the highest AUC (63.76%) and Accuracy

(59.65%), whereas (W = 32, S = 32, L = 1) obtains the lowest BIC (82.70) and

the best F1 score (59.71%). These differences illustrate that balancing AIC against

BIC may lead to slightly different optimal settings, yet both configurations deliver

comparable performance.

Beyond individual metrics, the grid search underscores that small modifications to

W , S, or L rarely compromise predictive accuracy in a significant way. This suggests

that fMRI signals contain sufficient temporal structure to be modeled effectively across

a range of window and lag parameters. From a practical standpoint, researchers can

afford to choose hyperparameters that best fit their computational budget or domain-

specific needs (e.g., emphasizing fine-grained temporal resolution versus reducing

runtime) without sacrificing much predictive power. In particular, smaller window sizes

and step sizes can capture more granular dynamics, albeit at higher computational cost,

while larger windows and fewer lags can simplify training without severely degrading

performance. Overall, these results confirm that Granger-based causal modeling is

robust to moderate variations in hyperparameter choices, reinforcing its applicability

to diverse fMRI datasets and experimental protocols.

5.3.1 Effects of Window Size, Step, and Lag on Directed

Connectivity Patterns

Figure 5.1 illustrates a series of directed connectivity matrices generated by varying the

hyperparameters in our Granger-causal estimation. Although changes in window size,

step size, and lag order modulate the edge density and fine structure of the matrices,

the overall pattern of inter-regional relationships remains consistent. This indicates

that the Granger-causal approach is robust to moderate variations in these settings.

Smaller window sizes and step sizes tend to capture more fine-grained temporal
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Figure 5.1: Directed Connectivity Under Different Hyperparameters. Each matrix is a Granger-
causal adjacency (rescaled to [0,1]) using different window sizes (W ), step sizes (S), and lag orders
(L). Overall connectivity structure remains similar, despite parameter changes.

dynamics, resulting in matrices with higher resolution but increased computational

cost. Larger windows, conversely, average over longer periods, potentially smoothing

out transient effects while preserving the general connectivity pattern. Similarly, the

lag order (L) is crucial: higher lag orders can model extended temporal dependencies

but may also introduce noise and risk overfitting, while lower lag orders might overlook

subtle delayed interactions. Our grid search (see Table 5.3) demonstrates that both

lower and higher lag orders can yield competitive performance metrics. Neurologically,

these parameter adjustments provide additional insights. For example, configurations
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with lower lag orders might be more sensitive to immediate interactions among

ROIs, whereas higher lag orders could capture more complex, hierarchical signal

propagation—such as how sensorimotor activity may initiate cascades that influence

higher-order regions like the DMN. Such directional insights, not discernible from

correlation-based methods, highlight the potential of Granger-causal graphs to capture

the brain’s hierarchical organization and feedback loops.

Overall, while tuning hyperparameters can optimize model fit (as reflected by lower

AIC and BIC values), the stability of the inferred connectivity structure across a range

of settings reinforces the utility of directed Granger-causal graphs. This robustness

underscores their applicability to diverse fMRI datasets and experimental protocols,

providing a reliable means of capturing meaningful neurobiological dynamics.

Sliding Window Length. The choice of window length strongly influences the

detected connectivity dynamics. Shorter windows (e.g., 16 - 32 time steps) allow rapid

fluctuations to be captured but risk higher variability and spurious connections due

to limited data in each window [38, 45, 66, 76]. In contrast, longer windows (e.g., 64 -

128 time steps) produce smoother, more stable connectivity estimates by averaging out

brief transients, albeit at the cost of temporal precision [38, 45, 66, 76]. In our analysis,

shorter windows tended to produce denser effective connectivity matrices, revealing

more significant directed edges, whereas longer windows yielded sparser matrices,

capturing only the strongest, most persistent connections. Increasing window length

also helps reduce spurious fluctuations in connectivity, strengthening confidence that

the remaining directed links are robust [23, 38]. However, excessively long windows

may assume stationarity and overlook meaningful dynamic shifts.

Step Size (Window Offset). The step size (i.e., overlap between successive

windows) determines how finely one tracks changes in connectivity over time. Smaller

steps (high overlap) yield a more continuous time course of connectivity, at the expense
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of greater computational load and potential serial correlations. Larger steps (low

overlap or non-overlapping windows) reduce redundancy but may skip over rapid

transitions. Empirical evaluations indicate that step size, second only to window length,

affects the detection of connectivity-state durations [? ]. In practice, a moderate

overlap (e.g., 50–80%) often balances smoothness with computational efficiency. In

our runs, high overlap produced more gradual changes in directed edge strengths,

whereas a large step sometimes caused abrupt transitions between windows. Checking

for consistency across overlapping windows can also help validate truly robust directed

influences (e.g., a persistent DMN→SM link should appear in consecutive windows

rather than isolated ones).

Lag Order of the VAR Model. Another critical hyperparameter is the autore-

gressive lag order. Too few lags can bias Granger causality tests by failing to capture

the actual delay structure of neural interactions [55, 63], potentially missing directed

links with longer neural or hemodynamic latencies. Conversely, using too many lags

consumes degrees of freedom and can introduce noise, diminishing statistical power

[55, 63]. In our resting-state analyses, the appropriate lag order depends on the tempo-

ral resolution determined by the repetition time (TR) of the dataset. For the ABCD

dataset, which has a TR of 0.8 s (yielding a sampling rate of approximately 1.25Hz),

a lag order of 1 (i.e. one TR, or 0.8 s) sometimes yielded sparse connectivity because

one TR may be shorter than the typical hemodynamic delay [9, 16, 23]. Increasing

the lag (e.g., to 3–5 TRs, corresponding to approximately 2.4–4.0 s) allowed detection

of slower, multi-TR influences; however, very high lags (e.g., 10 TRs, or about 8 s)

risked overfitting, resulting in nearly fully connected networks. In contrast, for the

PNC dataset, where the TR is 3.0 s (sampling rate of approximately 0.33Hz), one TR

represents a 3-second interval [7, 44, 51]. Given this slower temporal resolution, the

choice of lag order is even more critical to capture delayed neural interactions without



26

overestimating connectivity. This bias–variance tradeoff is especially salient consider-

ing that rapid neural interactions occurring on a sub-TR scale may not be detectable,

particularly in datasets with slower sampling rates [63]. Therefore, selecting a lag

order that aligns with the temporal scale of interest (and considering methods such as

pre-whitening or deconvolution to better account for the hemodynamic response) is

crucial for reliable inference in both the ABCD and PNC datasets.

Edge Density and Sparsity. Finally, these hyperparameter factors collectively

affect the overall sparsity of the directed connectivity matrix. More conservative

configurations (long windows, high overlap, low lag) often yield sparser networks,

retaining only the strongest directed edges, whereas more aggressive settings (short

windows, minimal overlap, higher lag) produce denser networks. The resulting sparsity

or density can greatly influence interpretations of brain organization: a sparse directed

network might suggest a hierarchical system with a few causal hubs, while a denser

network implies more distributed, bidirectional information flow. Certain edges (e.g.,

within tightly coupled subsystems like Vis↔SM) appeared consistently across many

configurations, suggesting they represent stable causal pathways. Other edges emerged

only under specific parameter choices, indicating potential context- or parameter-

dependent interactions. By identifying robust edges that persist across multiple

configurations, researchers can be more confident in the neurobiological relevance of

those directed influences, while edges sensitive to small parameter changes warrant

careful scrutiny.
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Figure 5.2: Both matrices are derived from the ABCD dataset (HCP 360 atlas). The undirected
matrix (e) is correlation-based; the directed matrix (f) stems from Granger causality. Each is
normalized to [0,1]. White grid lines outline functional networks (SM, DMN, VS, CE, DS, Vis).

5.4 Neurological Insights (RQ3)

5.4.1 Comparison of Undirected and Directed Connectivity

Matrices

Figure 5.2 presents the correlation-based (e) and Granger-causal (f) connectivity

matrices derived from the ABCD dataset using the HCP 360 atlas, each normalized

to the range [0,1]. The undirected matrix (left) exhibits a prominent block structure,

with large-scale networks (e.g., Sensorimotor (SM), Default Mode Network (DMN),

and Visual (Vis)) forming visible diagonal blocks of high correlation. Such block-like

patterns suggest that regions within each network tend to co-activate strongly and

relatively synchronously.

By contrast, the directed matrix (right) has more diffuse or asymmetrical connec-

tivity, reflecting unidirectional influences among regions. The diagonal blocks appear

less pronounced, indicating that while intra-network connections remain important,

inter-network edges become more relevant when directionality is taken into account.
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Figure 5.3: Chord Plots Showing the Top 2% of Edges. Each segment represents a network; arcs
link strongly connected or causally influencing ROIs.

In particular, sensorimotor areas often emerge as ‘sources’ that drive activity in higher-

order networks (e.g., DMN), rather than merely co-activating with them. The ability

of Granger causality to capture temporal precedence and predictive relationships

underscores potential causal flow, hierarchical organization, and feedback loops that

can be obscured in correlation-based approaches.

Chord Plots of the Top 2% of Edges Figure 5.3 shows chord diagrams of the top

2% of connections for both undirected (left) and directed (right) connectivity. Each

colored segment corresponds to a major functional network (e.g., SM, DMN, Vis, CE,

DS), while the arcs represent the strongest pairwise links. In the undirected chord

plot, arcs cluster heavily within the same functional modules (e.g., DMN-to-DMN),

mirroring the block-like structure seen in the correlation matrix. This pattern suggests

high intra-network synchrony.

In contrast, the directed chord diagram reveals a greater number of inter-network

arcs, highlighting the potential for causal influences between distant regions. For

instance, SM regions may project to DMN or other association networks, consistent
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with a feedforward hierarchy in which sensorimotor signals propagate to higher-order

systems. Moreover, some arcs appear unidirectional (e.g., SM → DMN) rather than

reciprocal, suggesting that while sensorimotor activity may drive default-mode regions,

the reverse influence is comparatively weaker. Because directed connectivity does not

double-count symmetric links, the overall set of edges can be larger, yet sparser in a

node-to-node sense—reflecting the fact that many pairs exhibit only one dominant

direction of influence.

Implications and Observations: The directed (Granger-causal) vs. undirected

connectivity patterns highlight key neurodevelopmental dynamics in the ABCD cohort.

Notably, strong directed influences from sensorimotor regions to the default mode

network (DMN) suggest that in children and adolescents, lower-order sensorimotor

signals heavily drive activity in higher-order self-referential networks. This bottom-up

bias aligns with neurodevelopmental models positing that cortical hierarchies are

initially dominated by feed-forward influences, with top-down feedback pathways

maturing later in adolescence [41, 43]. Indeed, recent work shows that top-down

propagations (e.g., frontoparietal-to-sensory cortical activity flows) become more

prevalent with age during youth, indicating a strengthening of bidirectional (feedback)

circuits over development [43]. Thus, the observed unidirectional sensorimotor→ DMN

connectivity in younger participants likely marks an earlier developmental stage when

external bodily inputs can intrude on or drive internal mentation. Consistent with this,

information flow from visual regions to associative networks (including the DMN) tends

to decrease as cognitive abilities improve [40], suggesting that maturation involves

greater top-down regulation of sensory-driven activity. The pronounced directed links

from visual networks to attention networks in the ABCD data similarly underscore

children’s reliance on bottom-up visual inputs to engage attention orienting systems.

As the dorsal attention network matures, more balanced reciprocal connectivity (i.e.,
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increased feedback from attention-control regions to sensory cortex) supports selective

attention and goal-directed behavior.

In parallel, the emergence of executive control loops—reciprocal connections among

frontoparietal and other control regions—reflects the refinement of cognitive control

circuitry. For example, the segregation (even anti-correlation) of the DMN from lateral

frontoparietal networks becomes more pronounced from childhood to adulthood, and in

9–10 year-olds, weaker DMN–executive coupling (i.e., more decoupling) correlates with

better cognitive performance [17]. This developmental shift from diffuse, positively

coupled networks toward more specialized, anticorrelated networks suggests that

bidirectional executive-DMN interactions are tuned to enable focus on external tasks

by suppressing self-referential activity. In short, unidirectional influences in childhood

may be a hallmark of immature hierarchical organization, whereas the emergence of

robust bidirectional influences by adolescence marks a brain that can flexibly alternate

between bottom-up and top-down modes of information flow [41, 43]. Such changes

are biologically grounded in processes like synaptic pruning and myelination that

sharpen network specificity, and they align with theories of gradual integration and

segregation of brain networks during development.

These network-level developmental differences have important cognitive and clinical

implications. Improved top-down connectivity within executive circuits and from

salience/attention networks to sensory regions is crucial for developing self-regulation

skills such as sustained attention, working memory, and inhibitory control. Conversely,

if connectivity remains overly bottom-up or unbalanced, a child may struggle with

regulating internal versus external focus. For instance, heightened sensorimotor–DMN

coupling could reflect difficulties suppressing motor-sensory impulses during internally

focused thought, potentially contributing to attention lapses or impulsivity. Indeed,

children with more neurodevelopmental symptoms (e.g., inattention, hyperactivity)

show atypical connectivity patterns involving the DMN—specifically, a trend toward
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lower within-DMN coherence and stronger anti-correlation between the DMN and other

networks—indicative of immature or dysregulated integration of internal and external

attention systems [33]. Similarly, a recent large-scale study found that youth with

better cognitive performance exhibited weaker coupling between DMN and executive

networks at rest (and stronger within-network executive connectivity), supporting the

idea that appropriate segregation of these networks facilitates executive function [17].

On the mental health front, the directionality of influences between networks

provides insight into pathophysiology: for example, adolescent depression has been

associated with a reduction in top-down inhibitory influence from the salience network

to the DMN, resulting in an overactive DMN and excessive self-focused rumination

when regulatory control fails [70]. Such a hierarchical imbalance—a predominance

of intrinsic DMN activity unchecked by salience/executive circuits—aligns with the

directed connectivity findings and could help explain internalizing symptoms. Likewise,

aberrant executive-loop development and DMN connectivity have been implicated

in ADHD and related conditions, where insufficient top-down control and delayed

network segregation may lead to poor impulse control and distractibility [33].

In summary, the observed directed vs. undirected connectivity differences (e.g.,

sensorimotor→ DMN, visual→ attention, evolving executive network reciprocity) are

developmentally meaningful: they illustrate a brain transitioning from predominantly

unidirectional, bottom-up information flow in childhood to more bidirectional, integra-

tive network communication by adolescence. This trajectory supports the maturation

of attention, memory, and self-regulatory capacities, while deviations from it (e.g.,

persistent unidirectional or uncoupled networks) can foreshadow cognitive and mental

health challenges. These interpretations are supported by recent large-scale develop-

mental fMRI studies and underscore how directed connectivity analyses in youth can

illuminate the biological underpinnings of cognitive development and psychopathology

[17, 33, 40, 70].
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5.4.2 Consistent Directed Connectivity Patterns in the ABCD

Cohort

Figure 5.4: Chord Diagrams for Three Randomly Selected Participants in the ABCD Dataset. (i),
(j), and (k) show correlation-based undirected connectivity (top row) and the corresponding Granger-
causal directed connectivity (bottom row). Edges are thresholded at the top 2% for visualization.

Figure 5.4 illustrates chord diagrams from three randomly selected participants in

the ABCD cohort. The top row displays undirected connectivity (red edges), while

the bottom row shows the corresponding Granger-causal directed connectivity (blue

edges). Strikingly, despite variations in individual-level dynamics, certain inter-network

patterns consistently emerge across samples. For example, strong directed edges from

the Sensorimotor (SM) network to both the Default Mode Network (DMN) and Visual

(VIS) regions appear repeatedly. These recurring SM→DMN and SM→VIS influences

support the notion of stable, large-scale information flow patterns, particularly from

lower-order sensorimotor regions toward higher-order cognitive networks.

While individual differences in edge density, lateralization, and specific ROI con-
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nections are expected due to noise and subject variability, the preservation of major

hierarchical pathways indicates that the Granger-causal approach captures meaningful,

generalizable aspects of brain functional architecture. Notably, directed connectivity

maps are sparser and highlight predominant directional influences, thereby filtering

out symmetric, bidirectional couplings that are present in undirected correlations.

Recent developmental studies have demonstrated that such consistent directed pat-

terns, especially the SM→DMN drive, are characteristic of typical maturation in youth

[41, 40, 43]. Moreover, the reproducibility of these directed edges across samples rein-

forces their biological validity. As top-down connectivity from higher-order networks

gradually strengthens with age, the persistent bottom-up influences observed here

likely reflect a normative, developmental state where external sensorimotor inputs

dominate internal cognitive processing [17].

Importantly, while these consistent pathways provide a robust template of neural

communication, subtle individual differences remain. Variations in overall edge density,

hemispheric lateralization, and the presence of intra-network loops suggest that per-

sonal factors or developmental stage nuances contribute to the observed connectivity

profiles. Nevertheless, the stability of core directional links across diverse individuals

highlights the potential of directed connectivity measures as reliable markers of typi-

cal brain development and as potential clinical biomarkers for neurodevelopmental

disorders [33, 70]. Overall, the consistent emergence of these directed pathways under-

scores their representativeness and provides compelling evidence that the observed

connectivity patterns are not artifacts of hyperparameter choices or isolated samples,

but rather reflect systematic, biologically grounded neural dynamics shared across the

population.



Chapter 6

Analysis

In this chapter, we synthesize our experimental findings and explore their broader impli-

cations for understanding neural connectivity and brain dynamics. Our results clearly

demonstrate that graph-based models, particularly those leveraging Granger-causal

directed graphs, maintain competitive predictive accuracy while providing valuable

insights into the directional flow of neural signals. This dual advantage—robust perfor-

mance coupled with richer interpretability—underscores the promise of causality-aware

approaches in neuroscience research.

A key contribution of our work lies in revealing how directed edges capture

asymmetrical and hierarchical interactions among brain regions. In particular, we

observe that the Sensorimotor (SM) network frequently emerges as a driving influence

on higher-order networks such as the Default Mode Network (DMN) and Visual (Vis)

regions. This finding is consistent with neurobiological theories that propose SM

regions play an active role in orchestrating and modulating cognitive processes, rather

than merely co-activating alongside them. By highlighting such directional influences,

our model goes beyond conventional undirected (correlation-based) methods, shedding

light on plausible feedback loops and causal pathways that shape large-scale neural

dynamics.

34
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Our investigation into hyperparameter settings—namely window size (W ), step

size (S), and lag order (L)—further reveals that while specific choices can influence

the density of inferred connections, the core connectivity structure remains consistent

across a range of configurations. This robustness is important in both clinical and

research contexts, where fMRI signals are typically noisy and subject to various

artifacts. The ability to extract stable directed graphs even under different parameter

choices indicates that Granger-based methods can capture fundamental temporal

features of neural activity without being overly sensitive to minor methodological

adjustments.

One particularly notable distinction is between undirected, correlation-based

graphs and the directed graphs produced by Granger causality. Whereas correlation

captures broad co-activation patterns, it does not illuminate the possible flow of

information. By contrast, our directed approach reveals a richer picture of network

organization, identifying potential upstream and downstream neural hubs and pointing

to hierarchical ordering within and across major networks. These findings not only

enhance predictive modeling but also open avenues for deeper neuroscientific inquiry,

such as investigating how brain regions might shift roles from being drivers to receivers

under different cognitive or developmental contexts.

Despite these strengths, practical considerations remain. First, constructing

Granger-causal graphs can be computationally intensive, particularly for high tem-

poral resolution datasets or when exploring larger lag orders. Continued efforts in

algorithmic optimization, parallelization, or adaptive lag selection may help alleviate

these challenges. Second, integrating complementary data modalities—such as struc-

tural connectivity from diffusion MRI or electrophysiological measures—could enable

more comprehensive models and richer neurobiological interpretations. Third, coupling

directed graph inference with emerging neural architectures, including attention-based

or reinforcement-learning-inspired mechanisms, might further refine both predictive
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performance and the discovery of meaningful causal insights. Finally, exploring end-to-

end adjacency learning—where graph connectivity is jointly optimized alongside model

parameters—offers a promising avenue to capture context-dependent interactions more

flexibly than a strictly deterministic pipeline.

In summary, our findings emphasize the power of causality-aware graph represen-

tations in capturing the spatiotemporal complexity of the human connectome. By

bridging the gap between traditional correlation-based analyses and more sophisticated

causal inferences, these directed models pave the way for a deeper understanding of

both typical and atypical brain functioning. This approach lays a solid foundation for

future endeavors in cognitive neuroscience, clinical diagnostics, and any domain where

elucidating the direction and magnitude of inter-regional influences is paramount.



Chapter 7

Conclusion

This study explores the integration of directed graph structures into brain connectivity

analysis for gender classification, focusing on three key research questions that balance

predictive performance and interpretability.

RQ1: Our experiments show that graph-based models substantially outperform

MLPs, primarily by capturing complex, inter-regional interactions through functional

connectivity. Additionally, Directed Graph Convolutional Networks (e.g., BrainGB

w/GC ) perform on par with their undirected counterparts (BrainGB w/FC ), while

also illuminating the causal flow of signals—a capability absent in standard correlation-

based methods.

RQ2: We examine how hyperparameters such as window size, step size, and lag order

affect the stability of Granger-causal graphs. Our results confirm that, despite the

computational overhead of varying these parameters, the essential structure of directed

connectivity remains consistent across a wide range of configurations. This robustness

is valuable for both large-scale datasets and diverse experimental protocols.

RQ3: Comparative analyses reveal that undirected, correlation-based graphs offer

broad co-activation patterns yet fail to capture directional influences among brain

regions. By contrast, directed (Granger-based) networks highlight asymmetrical causal
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pathways, clarifying how regions such as the Sensorimotor (SM) network may drive

higher-order systems like the Default Mode Network (DMN) and Visual (Vis) regions.

This directionality furnishes complementary insights into the hierarchical organization

of the connectome.

Although these findings are promising, we note some limitations. Granger-causal

graph construction can be computationally intensive—particularly for higher lag

orders—and real-time or large-scale applications may require further optimization.

Additionally, our two-stage deterministic pipeline does not facilitate end-to-end learning

of the adjacency structure and model parameters, potentially restricting the discovery

of subtler or context-dependent neural interactions. Future efforts could explore

learnable adjacency frameworks and multi-modal data integration (e.g., structural MRI,

electrophysiological signals) to enrich both the biological grounding and adaptability

of the resulting networks.

Overall, by integrating causality-aware graph structures, this work enhances both

predictive performance and our understanding of neural information flow in cognitive

and clinical contexts. Our approach paves the way for more nuanced analyses of fMRI

data, setting the stage for applications in developmental neuroscience, psychiatric

research, and beyond.



Appendix A

Granger Causality Algorithms

In this appendix, we detail the algorithms for constructing a directed Granger causality

graph from fMRI data. The process comprises: (1) data partitioning into overlapping

time windows, (2) Vector Autoregressive (VAR) modeling with hypothesis testing

for Granger causality, and (3) aggregation of significant causal influences. The final

algorithm integrates these steps to output a directed adjacency matrix representing

effective connectivity among brain regions.

A.1 Data Partitioning

Description. This step segments the time series data into overlapping windows, each

of size W . The mean signal within each window is computed to reduce high-frequency

noise and computational overhead in later steps. By controlling both window size

W and step size S, this procedure captures short-term temporal dependencies while

providing sufficient data for robust VAR modeling.
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Algorithm 1: Data Partitioning

Input: X ∈ RN×T : fMRI data, W,S ∈: window size and step size

Output: {X̄w}Wnum
w=1 : collection of window-averaged signals

1 Compute number of windows:

Wnum ←
⌊
T −W

S

⌋
+ 1

for w = 1 to Wnum do

2 for i = 1 to N do

3

x̄i,w ←
1

W

(w−1)S+W∑
t=(w−1)S+1

xi,t

4 end

5 end

6 return {X̄w}Wnum
w=1

A.2 VAR Modeling and Hypothesis Testing

Description. For each window, a VAR(L) model is fitted to pairs of ROI time series.

The null hypothesis H0 states that past values of ROI i do not explain additional

variance in ROI j. If H0 is rejected (based on a significance level α), we conclude that

ROI i Granger-causes ROI j. These results are stored in an indicator matrix I(w), one

for each window w.
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Algorithm 2: VAR Modeling and Hypothesis Testing

Input: Window-averaged data X̄w ∈ RN ,

VAR lag order L ∈,

Significance level α ∈ (0, 1)

Output: I(w) ∈ {0, 1}N×N : indicator matrix for window w

1 Initialize I(w) with zeros;

2 for i = 1 to N do

3 for j = 1 to N do

4 if i ̸= j then

5 Fit VAR(L) model:

xj(t) = α
(w)
j,0 +

L∑
k=1

α
(w)
j,k xj(t− k) +

L∑
k=1

β
(w)
ij,k xi(t− k) + ϵ

(w)
j (t)

Test null hypothesis H0 : β
(w)
ij,1 = · · · = β

(w)
ij,L = 0 vs. alternative;

6 if H0 is rejected at level α then

7 I
(w)
ij ← 1

8 end

9 end

10 end

11 end

12 return I(w)

A.3 Aggregation of Test Results

Description. Causal inferences are aggregated across windows to capture consistent

directional influences. Each pair (i, j) accrues a count of how many windows reject

H0. If this count surpasses a threshold τ , edge (i→ j) is deemed significant in the
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final adjacency matrix.

Algorithm 3: Aggregation of Test Results

Input: {I(w)}Wnum
w=1 : indicator matrices,

Aggregation threshold τ ∈

Output: A ∈ {0, 1}N×N : directed adjacency matrix

1 Initialize C ∈N×N with zeros;

2 for w = 1 to Wnum do

3 C← C+ I(w)

4 end

5 for i = 1 to N do

6 for j = 1 to N do

7 if i ̸= j then

8

Aij ←


1, if Cij ≥ τ

0, otherwise

9 end

10 end

11 end

12 return A

A.4 Granger Causality Graph Construction

Description. The final algorithm orchestrates the entire process. First, it partitions

the input data using Algorithm 1, then performs Granger causality testing (Algo-

rithm 2) for each window. Finally, it aggregates repeated causal detections using

Algorithm 3 to yield a directed adjacency matrix A.
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Algorithm 4: Directed Granger Causality Graph Construction

Input: X ∈ RN×T : fMRI data,

W,S, L ∈: window size, step size, VAR lag order,

α ∈ (0, 1): significance level,

τ ∈: aggregation threshold

Output: A ∈ {0, 1}N×N : directed adjacency matrix

1 Step 1: Data Partitioning

2 {X̄w}Wnum
w=1 ← Algorithm 1 (X, W, S);

3 Step 2: VAR Modeling and Testing

4 for w = 1 to Wnum do

5 I(w) ← Algorithm 2
(
X̄w, L, α

)
;

6 end

7 Step 3: Aggregation

8 A ← Algorithm 3
(
{I(w)}Wnum

w=1 , τ
)
;

9 return A



Appendix B

Model Description

B.1 Multilayer Perceptron (MLP)

Given an input vector x ∈ Rd, a Multilayer Perceptron (MLP) computes a mapping

fθ(x) by applying a sequence of linear transformations and element-wise nonlinearities.

Formally, let h(0) = x, and for each layer l = 1, . . . , L:

h(l) = σ
(
W(l) h(l−1) + b(l)

)
,

where W(l) ∈ Rdl×dl−1 and b(l) ∈ Rdl are trainable weights and biases, and σ(·) is a

pointwise nonlinear activation (e.g., ReLU). After L layers, we obtain the final output

ŷ = W(out) h(L) + b(out) for either classification or regression tasks.

B.2 Graph Convolutional Network (GCN)

A Graph Convolutional Network (GCN) operates on a graph G = (V , E) with N

nodes. Let X ∈ RN×d be the node feature matrix and A ∈ {0, 1}N×N the adjacency

matrix (possibly directed or undirected, depending on the application). We often

define Ã = A+ I, and let D̃ii =
∑

j Ãij be the corresponding degree matrix [37].
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For each GCN layer l = 1, . . . , L, let H(l) ∈ RN×dl be the node embedding matrix

(with H(0) = X). The graph convolution updates the node embeddings as [37]:

H(l+1) = σ
(
D̃−1

2 Ã D̃−1
2 H(l) W(l)

)
,

where W(l) ∈ Rdl×dl+1 are trainable weights, and σ(·) is an element-wise activation

[37]. After L layers, a readout function aggregates the node embeddings into a single

vector r (e.g., via mean pooling), and the final prediction ŷ is obtained through a

linear transformation of r [37].

Whether the adjacency matrix A is symmetric or not depends on whether undi-

rected or directed edges are used.
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