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Abstract

Automating Biomedical Abstract Screening using Network Embedding
By Eric Wonhee Lee

Systematic review (SR) is an essential process to identify, evaluate, and summarize the
findings of all relevant individual studies concerning health-related questions. How-
ever, conducting a SR is labor-intensive, as identifying relevant studies is a daunting
process that entails multiple researchers screening thousands of articles for relevance.
Automating SR, especially abstract screening, using machine learning models has
been proposed to identify relevant articles but primarily focuses on the text and ig-
nores additional features like citation information. Recent work demonstrated that
citation embeddings can outperform the text itself, suggesting that better network
representation may expedite SRs. Yet, how to utilize the rich information in hetero-
geneous information networks (HIN) for network embeddings is understudied. Also,
the lack of a unified source that includes the metadata of biomedical literature makes
the research more challenging. To deal with this problem, we propose four works.
First, we propose a model that exploits three representations, documents, topics,
and citation networks to show the effectiveness of the additional features. Second,
we introduce the PubMed Graph Benchmark, one of the largest HIN to date, which
aggregates the rich metadata into a unified source that includes abstracts, authors,
citations, MeSH terms, etc. Third, we propose a HIN embedding model that uses
a community-based multi-view graph convolutional network for learning better rep-
resentations using the PubMed Graph Benchmark. Lastly, we propose a hyperbolic
representation learning model for graphs with mixed hierarchical (MeSH hierarchies)
and non-hierarchical (citations) structures.
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1

Chapter 1

Introduction

1.1 Motivation

Systematic reviews (SRs) are essential knowledge translation tools focused on bridging

the research-to-practice gap across a wide range of domains. In health research,

SRs aim to identify, evaluate, and summarize the findings of all individual studies

(which typically describe clinical trial results) relevant to a clinical question, thereby

making the available evidence more accessible. For instance, a SR can be used to

synthesize findings from randomized intervention studies to robustly determine which

interventions are best supported for a particular condition. Thus SRs (and meta-

analyses) provide high-quality evidence that can inform healthcare decision-making,

support clinical guidelines, and guide health policies [17, 37, 38].

Unfortunately, conducting SRs is a time-consuming and complex task [43]. Estab-

lished methodologies for performing a SR [20, 78, 81] require a comprehensive search

to identify all the relevant studies for inclusion. Indeed, comprehensiveness (so as

to avoid bias via ‘cherry-picking’ of evidence) is a key property of rigorous evidence

synthesis. Yet the broad searches necessary to achieve this yield imprecise search

results including searches that often yield only ∼1% relevant results. Domain experts
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Figure 1.1: A simplified illustration of the SR screening process using “ACEIn-
hibitors” from Cohen [26] dataset.

must wade through these mostly irrelevant articles to identify those that meet the

inclusion criteria; thus, producing a single review can require thousands of person-

hours [2]. Figure 1.1 provides an example of the laborious SR screening process for

ACE inhibitors. The step for identifying the initial list which is 2544 from the figure

is called the Identification step of the SR screening process. The step for determining

relevant articles from the title and the abstract is the Abstract Screening step, and

from the full-text is the Eligibility step. Only 1.61% of the articles were selected from

the Eligibility step, and only 7.19% were included (i.e., analyzed and evaluated) from

the Abstract Screening step in the actual review itself. The estimate for the aver-

age time to conduct a SR is 67 weeks from registration to publication [13]. Clearly,

this process is unsustainable nor scalable, especially given the exponential growth of

biomedical literature [8].

Given the importance of SRs for realizing evidence-based practice and the labor

that conducting these entails, there is a clear need to expedite tasks necessary for ev-

idence synthesis while maintaining rigor and comprehensiveness. In particular, semi-
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automation can help speed up the screening process, an extremely time-consuming

endeavor due to a large number of articles [80]. The standard methodology for semi-

automating the abstract screening step of SRs entails training a custom classification

model for each new review. Unfortunately, many of the previous approaches assume

that they have small labeled batches from the reviewers, and train their model on

those batches to predict the rest [26, 57]. Moreover, the existing methods focus

primarily only on the text itself using representations like bag-of-words or word em-

beddings [9, 25, 26, 57, 61, 77, 117]. However, there is rich information (i.e., citation

relationships between the articles, or MeSH Terms) that can be used to learn more

accurate models. Khabsa et al. [57] used co-citation relation between articles with

brown clustering on the bi-grams to tackle the data sparsity problem but still the

usage of citations remains largely underexplored.

Citation networks can be represented as a graph structure that includes articles

(nodes) and references (edges). This representation is used across many application

domains including social networks, the World Wide Web, and knowledge graphs. As

real-world networks can be huge and complex, it is difficult to analyze the graph,

thus learning meaningful low-dimensional vectors of the nodes and edges or network

embeddings have been proposed while preserving the features of the network [70].

Recently, there has been an emergence of deep learning-based models such as graph

neural networks (GNN) to learn the network embeddings [36, 71, 100]. One popu-

lar method is Graph Convolutional Network (GCN) [59] which can efficiently learn

the structural dependencies through convolutional operations on the graph. How-

ever, GCN is designed for a homogeneous network that contains a single node type

and edge type as a citation network (only paper nodes and paper-paper edges in the

citation network). The bibliographic network of biomedical literature is a hetero-

geneous information network (HIN) and contains multiple objects (nodes) and link

types (edges) including citations, author information, venue information, and Medical
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Figure 1.2: Dissertation Contributions.

Subject Headings (MeSH) terms that are used for indexing articles.

Since many real-world networks are HIN with multiple objects and link types,

several variations of GNN and GCN models have been proposed for HIN embeddings.

However, existing models have focused on preserving the meta-path structure (i.e.,

the path with various object types and edge types that capture the semantics of

the network) by transforming the HIN into several homogeneous networks to learn

the representations [31, 102, 134]. Unfortunately, the defined meta-path impacts

the embedding quality. ie-HGCN [132] was introduced to automatically evaluate all

possible meta-paths and project the representations of different types of neighbor

objects into a common semantic space. However, ie-HGCN is susceptible to noise in

the graph and ignores the community structure.

The goal of this dissertation is to reduce the reviewers’ workload by excluding the

maximum number of irrelevant documents in the abstract screening step by leveraging

the rich information in the HIN bibliographic network. Our general strategy builds

upon a body of work on semi-automating abstract screening for evidence syntheses

via machine learning [26, 89, 117, 119], but focuses on layering in citation information

and other metadata to improve the automation process.
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1.2 Research Contributions

Given the limitations of existing semi-automated biomedical abstract screening meth-

ods of SR to incorporate citation networks, we propose new models to (1) appropri-

ately leverage the co-citation information with the textual data to learn better repre-

sentations, (2) incorporate the different edge and node types into a unified embedding

that captures the complex structure, and (3) utilizes the hierarchical structure of the

MeSH terms associated with each article to improve the article embedding. We also

introduce a new benchmark dataset for evaluating HIN embeddings that layer in the

rich metadata in PubMed. Our contributions (illustrated in Figure 1.2) are summa-

rized as follows.

1.2.1 MMiDaS-AE

We propose MMiDaS-AE which adopts multi-modal stacked autoencoder [15] to en-

code three input representations, document, topic, and citation. The multi-modal

stacked autoencoder learns a shared representation of different inputs that have dif-

ferent information. The document representation uses the text from the title and the

abstract, the topic representation uses MeSH terms, and citations use the co-citation

relations of the articles. As the citation information is not complete, we also propose

a missing data imputation technique to handle any missing information.

1.2.2 PGB

We present PGB, a new benchmark dataset of over 30 million PubMed articles for

evaluating HIN embeddings for biomedical literature. It leverages the citations and

author disambiguation capabilities of Semantic Scholar while also layering in the rich

metadata that is offered in PubMed including the MeSH Terms, Chemical List, and

Publication Type. PGB also layers in the MeSH hierarchical structure for all the
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terms associated with the articles, which previous benchmarks do not support.

1.2.3 SR-CoMbEr

We propose SR-CoMbEr, a HIN embedding model, which constructs multiple local

GCNs where each of them is centered around a community. To learn from the different

object and link types, each community adopts a multi-view approach where a view-

specific representation is learned to capture the complex structure information for

each relation type. Moreover, we pose the multiple community GCN aggregation

problem as a multi-modal problem to yield a robust final embedding that reflects the

different community representations.

1.2.4 Hyperbolic Representation Learning

We propose HypMix, a new hyperbolic representation learning model to capture

graphs with mixed hierarchical (MeSH terms) and non-hierarchical (citations) struc-

tures of the articles. MeSH terms help identify the article contents and codify ab-

stract concepts that can be divided into subcategories that are arranged from general

to specific such as Head → Face → Eye. Each MeSH category can contain up to

13 hierarchical levels. To capture the MeSH hierarchy, we adopt Poincaré embedding

space [86] and introduce regularizations and hyperbolic entail cones [5] to represent

not only the hierarchical structure but also the non-hierarchical relationships between

MeSH terms and articles.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces the

basic background of SR and related works. Chapter 3 proposes MMiDaS-AE, a multi-

modal stacked autoencoder model that uses three different sources of information.
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Chapter 4 introduces PGB, a PubMed graph benchmark which is a new benchmark

dataset that includes the rich metadata of biomedical literature. Chapter 5 describes

SR-CoMbEr, a community-based multi-view GCN to capture the structural hetero-

geneity that is useful for downstream tasks. Chapter 6 proposes HypMix, a hyperbolic

representation learning model for mixed hierarchical and non-hierarchical structures

which uses the MeSH hierarchies and citations. Finally, Chapter 7 concludes the

dissertation and discusses the future direction.
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Chapter 2

Background and Related Work

2.1 Systematic Review

Methods for semi-automating the abstract screening step of SRs have been widely

studied; see [89] for a survey of this work. The typical approach is to adopt a su-

pervised learning model – equivalent to training a custom classification model for

each new review. The classification models used to discriminate between relevant

and irrelevant articles for a given topic include support vector machines (SVMs)

[46, 91, 117, 119], generalized linear models [48], Voting Perceptron [26], Random

Forest [57], Complement Naive Bayes [75], Decision Tree [9], and k-NN [1]. Note that

models can be used either to make ‘hard’ include/exclude decisions, or can be used

to rank articles in order of likely relevance.

Because supervision is expensive for this task, and a new model must be trained for

each new review, a common strategy explored is active learning [27, 61, 77, 116, 119]

in which the learner starts with a small subset of manually labeled records, which are

used to train the initial classifier. After each learning (or annotation) cycle, the newly

trained model classifies the remaining unlabelled citations and presents a sample of

these records to the reviewer for annotation. This iterative approach may be used to
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train a model that is used to classify all remaining (unscreened) articles, or can simply

be used to prioritize identification of relevant abstracts so that the review team can

begin data extraction from these [89].

Most of the semi-automation SR approaches use bag-of-words and their combi-

nations [9, 25, 26, 57, 61, 77, 117]. For example, Cohen et al. [25] proposed to use

uni-grams and bi-grams to treat each of them as a single word, Bannach-Brown et

al. [7] used tri-gram and GENIA tagger [110] prior to extracting uni-grams, and

Khabsa et al. [57] used brown clustering on the bi-grams to tackle the data sparsity

problem. Some more recent efforts have proposed to learn a paragraph vector using

neural models [46, 69].

2.2 Network Embedding

The goal of network embedding (or network representation learning) is to learn low-

dimensional vectors that are projected into an Euclidean space while preserving the

network structure and the property. Within the past few years, many network em-

bedding methods have been proposed. For example, node2vec [40] and DeepWalk

[95] used random walk-based method, SDNE [120] used deep neural network-based

method, and M-NMF [121] used matrix factorization based method. However, all

these methods are introduced for the homogeneous network.

A heterogeneous information network (HIN) contains multiple types of objects

and links. Formally, such a network is defined as follows.

Definition 1. HIN. A HIN is defined as G = (V , E , ϕ, ψ), where V is the set of

objects, E is the set of links, ϕ is the object type mapping function, and ψ is the link

mapping function. ϕ is defined as ϕ : V → A, and ψ is defined as ψ : E → R. A and

R denotes predefined object and link types respectively where |A| + |R| > 2.

A homogeneous network contains a single object and relation type such as a social
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network with User (U) as an object type and a single type of link U – U. On the

other hand, HIN contains multiple types of objects such as a bibliographic network

which has four types of objects (i.e., Author (A), Paper (P), Venue (V), and MeSH

terms (M) and three link types, A – P, P – V, and P – M.

2.2.1 Graph Neural Networks

Graph Neural Networks (GNNs) are a conventional model that has been widely stud-

ied in various tasks using graphs in recent years. GNNs extend the deep neural net-

work to transform the complicated graph-structured data into a meaningful represen-

tation while preserving the graph structure. Graph Convolutional Network (GCNs)

is an extension of GNN and has been proven to be efficient in achieving a good perfor-

mance in a variety of graph datasets. GCNs can be categorized into two categories:

1) spectral [14, 29, 47, 59, 68, 128] and 2) non-spectral [21, 44, 79, 112]. For the spec-

tral approach, Bruna et al. [14] proposed to do convolution in the spectral domain

by using a Fourier basis. Kipf et al. [59] proposed a convolutional architecture via a

localized first-order approximation of spectral graph convolutions. Michaël et al. [29]

proposed to use K-order Chebyshev polynomials to approximate smooth filters in the

spectral convolutions. On the other hand, non-spectral approaches define convolution

operations directly on the graph operating on spatially close neighbors. For example,

Hamilton et al. [44] proposed GraphSAGE which uses local aggregation functions

from sampled local neighbors for the target node. Also, attention mechanisms are

used in GNNs. For example, Veličković et al. [112] proposed to use self-attention to

enable specifying different weights to different nodes in a neighborhood. However,

these models cannot deal with multiple types of nodes and edges, in other words, can

only be used for homogeneous networks.
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2.2.2 Graph Convolutional Networks

GCNs [59] can be formally defined as follows. SupposeHk is the feature representation

of the k -th layer in GCN, the propagation becomes

Hk = σ(D̃− 1
2 ÃD̃− 1

2Hk−1W k) (2.1)

where Ã = A+ I ∈ RN×N is the adjacency matrix A with a self connection. D̃ is the

degree matrix of Ã which is formally defined as D̃ii =
∑

i Ãij. And W k is a trainable

weight matrix. As shown in Equation (2.1), the convolution operation is determined

by the given graph structure and GCN only learns the node-wise linear transform

Hk−1W k. Thus, the convolution layer can be interpreted as the composition of a

fixed convolution followed by an activation function σ on the graph after the node-

wise linear transformation.

2.2.3 Heterogeneous Information Network Embedding

For HIN embedding, many works focus on preserving the meta-path structure which

contains the semantic information of the graph. ESim [102] uses multiple user-defined

meta-path to learn representations in the user-preferred embedding space, and meta-

path2vec [31] is a skip-gram model that uses meta-path based random walk. HIN2Vec

[32] learns the representation of nodes and meta-paths to capture the semantics in

the network by carrying out multiple prediction training tasks, and HERec [103] cap-

tures the semantics in the network by using the type constraint strategy to filter the

node sequence. Some works extend GNNs for modeling HIN. For example, HAN

[122] proposed to transform the given HIN into a homogeneous network based on the

meta-path and use GNN based on the hierarchical attention.

HIN embedding models which encode hierarchical structure are also studied. Yang

et al. [130] proposed TAXOGAN which is a model that co-embeds nodes with a
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non-hierarchical structure and taxonomies with a hierarchical structure. Bai et al.

proposed ConE for a knowledge graph that has heterogeneous hierarchies using a

relation-specific transformation. However, limited work encodes both hierarchical and

non-hierarchical structures for the heterogeneous graph representation learning task.

Most of the works target learning the representations of only hierarchical structures for

topic detection [125, 137], taxonomy completion [4, 54], and recommendation systems

[127]. To handle the graph with mixed hierarchical and non-hierarchical structures,

Gu et al. [41] proposed a model that uses the mixed-curvature representations of the

product of hyperbolic and spherical space.

2.3 Hierarchical Structure Embeddings

Hierarchical structures are common in the real-world, for example, social networks,

sentences in natural language, and evolutionary relationships in phylogenetics [94].

One important characteristic of hierarchical structures is that the number of leaf nodes

increases exponentially as the number of hierarchical levels increases. As such, most

graph representation learning approaches suffer from distortion issues when embed-

ding graphs with hierarchical structures. Instead, hyperbolic space has been proposed

as an alternative to learning the latent hierarchical structures in the context of em-

bedding models. Hyperbolic representation learning is widely studied in the area of

knowledge graph [5, 19, 106], lexical entailment [42, 86, 98], and recommender sys-

tems [22, 114]. The goal of the model is to learn the representation of the hierarchical

structure which can be represented as a tree-like structure.

Hyperbolic representation learning models use the hyperbolic space to learn the

representation of the underlying hierarchical structures [131]. One important char-

acteristic of the tree-like structure is that the number of leaf nodes increases expo-

nentially as the number of levels (or tree depth) increases. This is suboptimal for
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Euclidean space as the volume of the ball increases polynomially according to the

radius, r, such that V E
d (r) = Θ(rd). As a result, Euclidean space becomes too narrow

to accommodate the exponential leaf node growth that arises with increasing tree

depth.

On the other hand, the hyperbolic space can handle this growth. The equation of

the hyperbolic (or Poincaré) ball volume is:

V H
2 (r) = Θ(er) (2.2)

where r is the radius. Another benefit of hyperbolic space is when computing the

distance between two nodes. The distance between two leaf nodes can be small when

using the Euclidean distance, however, in the hyperbolic distance we can measure the

tree distance which helps to capture the property of the tree-like graph. Thus, hyper-

bolic space allows learning representations of symbolic data by capturing hierarchy

and similarity.

2.3.1 Poincaré Embedding

Poincaré embedding [86] is a model for learning representations of hierarchical struc-

ture. It uses hyperbolic space or an n-dimensional Poincaré ball and shows advantages

over Euclidean embedding on hierarchical data. Poincaré Embedding is based on the

approach of the Poincaré ball model which is well-suited for gradient-based optimiza-

tion.

Let B = x ∈ Rd|||x|| < 1 be the open d-dimensional unit ball where || · || denotes

the Euclidean norm. The Poincaré ball model of hyperbolic space uses Riemannian

manifold (Bd, gx). The open unit ball equipped with the Riemannian metric tensor

is

gB = (
2

1 − ||x||2
)2gE (2.3)
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where x ∈ Bd and gE denotes the Euclidean metric. The distance between two nodes

u, v ∈ Bd in Poincaré ball model is

d(u, v) = arccosh(1 +
2||u− v||2

(1 − ||u||2)(1 − ||v||2)
) (2.4)

The boundary of the Poincaré ball is denoted by ∂B. The geodesics in Bd are then

circles that are orthogonal to ∂B.

2.3.2 Hyperbolic Entailment Cones

Hyperbolic entailment cones [33] is a model that embeds nodes into hyperbolic cones

which is a generalized idea of order embedding [113]. The hyperbolic entailment cones

model views the hierarchical relations as partial orders and is defined by a family of

nested geodesical cones. In short, it defines a region that is the hierarchical relation

that can fit in the hyperbolic space. Using this idea, it addresses the limitation of

Poincaré embedding model which is that most points collapse on the border of the

Poincaré ball.

Let Cx denote the cone at apex x. The goal is to model partial order by contain-

ment relationship between cones. The cones satisfy transitivity:

∀x, y ∈ Bd0 : y ∈ Cx ⇒ Cy ⊆ Cx (2.5)

For x, y ∈ Bd, the angle of y at x to be the angle between the half-lines −→ox and −→xy

and denote it as ∠xy. This can be expressed as:

∠xy = cos−1(
< x, y > (1 + x2) − ||x||2(1 + ||y||2)

||x||||x− y||
√

1 + ||x||2||y||2 − 2 < x, y >
) (2.6)

To satisfy the transitivity of nested angular cones and symmetric conditions [33], the
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following expression of Poincaré entailment cone at apex x ∈ Bd can be used.

Cx = y ∈ Bd|∠xy ≤ sin−1(K
1 − ||x||2

||x||
) (2.7)

where K ∈ R is a hyperparameter.

2.4 Systematic Review Datasets

For ease of comparison with previous works, we evaluate our model on the publicly

available dataset provided by Cohen et al. [26]. The dataset includes 15 SRs (or

topics) concerning different drug efficacies.1 The 15 SRs were performed by members

of evidence-based practice centers (EPCs). Each SR contains a PubMed identifier

(PMID), and abstract triage status. The PMID allows us to identify which article

was included in the SR process. Abstract triage status indicates whether the article

passed the title/abstract screening.

The next set of datasets is 3 sets provided by SWIFT-Review [49].2 The dataset

was generated by the National Toxicology Program (NTP) Office of Health Assess-

ment and Translation (OHAT). The next 3 sets are provided by CLEF 2019 e-Health

TAR Lab [55] (Task 2)3 which focuses on retrieving relevant studies from during the

abstract phase of conducting an SR. From the CLEF-TAR dataset, we randomly

selected 3 sets which are the CD012661 topic from Prognosis, the CD008803 topic

from DTA, and the CD005139 topic from Intervention. The title of the topic CLEF-

Prognosis-CD012661 is “Development of type 2 diabetes mellitus in people with inter-

mediate hyperglycemia” [97]. The title of the topic CLEF-DTA-CD008803 is “Optic

nerve head and fibre layer imaging for diagnosing glaucoma”[76]. The title of the

1This dataset was later extended to include 24 SRs [27], however, only 15 SRs have been made
publicly available.

2https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/

s13643-016-0263-z#Sec30
3https://github.com/CLEF-TAR/tar

https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-016-0263-z#Sec30
https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-016-0263-z#Sec30
https://github.com/CLEF-TAR/tar
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Table 2.1: Statistics of all datasets used. Abs refers to the number of abstract triages.
% shows the percentage of the articles that are included after the abstract screening.

Dataset Abs Total %

Cohen-ACEInhibitors 183 2544 7.19
Cohen-ADHD 84 851 9.87
Cohen-Antihistamines 92 310 29.67
Cohen-AtypicalAntipsychotics 363 1120 32.41
Cohen-BetaBlockers 302 2072 14.57
Cohen-CalciumChannelBlocker 279 1218 22.90
Cohen-Estrogens 80 368 21.74
Cohen-NSAIDs 88 393 22.39
Cohen-Opioids 48 1915 2.51
Cohen-OralHypoglycemics 139 503 27.63
Cohen-ProtonPumpInhibitors 238 1333 17.85
Cohen-SkeletalMuscleRelaxants 34 1643 2.56
Cohen-Statins 173 3465 4.99
Cohen-Triptans 218 671 32.48
Cohen-UrinaryIncontinence 78 327 23.85

SWIFT-Transgenerational 765 48638 1.57
SWIFT-PFOS-PFOA 95 6331 1.50
SWIFT-BPA 111 7700 1.44

CLEF-Prognosis-CD012661 192 3367 5.70
CLEF-DTA-CD008803 99 5220 1.89
CLEF-Intervention-CD005139 112 5392 2.07

Anemia 653 5653 11.55
COPD 196 1606 12.20
Clopidogrel 771 8291 9.30
Proton Beam 243 4751 5.11

topic CLEF-Intervention-CD005139 is “Anti-vascular endothelial growth factor for

neovascular age-related macular degeneration” [105]. Last 4 datasets we use are:

COPD [23], proton-beam [108], anemia [62], and clopidogrel [6].

Table 2.1 reports the distribution of articles in each topic. The first 15 SRs are the

Cohen dataset, the next three are the SWIFT-Review dataset, the next three are the

CLEF-TAR dataset, and the last four are from other sources. As shown in the table,

for the abstract screening results, the number of articles screened ranged from 310

(Antihistamines) to 48,638 (Transgenerational) with anywhere from 1.44% (BPA) to
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32.48% (Triptans) passing the abstract screening process. This demonstrates a large

degree of imbalance.

2.5 Evaluation Metrics

Cohen et al. [26] introduced a new measure work saved over sampling (WSS). WSS

measures the work saved over random sampling for a given level of recall. WSS is

defined as

WSS = (TN + FN)/N − (1.0 −R) (2.8)

where TN denotes true negatives, FN denotes false negatives, N is the total number

of articles, and R is the recall. Cohen et al. used the special modification of the

WSS called WSS@95% which means WSS for recall at 95%. Note that in some cases,

the models may not achieve exactly 95% recall. Thus, to calculate WSS@95%, we

compute WSS with the highest recall of no less than 95%. In addition to WSS@95%,

some works reported an area under the receiver operating curve (AUC); we use this

as an additional evaluation metric.
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Chapter 3

Multi-modal Missing Data aware

Stacked Autoencoder

Our general strategy builds upon a body of work on semi-automating abstract screen-

ing for evidence syntheses via machine learning [26, 89, 117, 119]. To address the

limitations of existing semi-automation SR models, we introduce MMiDaS-AE [67],

a Multi-modal Missing Data aware Stacked AutoEncoder. We adopt the multi-

modal stacked autoencoder [15] to encode a variety of information that includes 1)

text from the document, 2) Medical Subject Headings (MeSH) terms, and 3) citation

networks. In addition to the textual data in the documents, each article in PubMed

(a repository of biomedical articles) is associated with MeSH terms, which codify

abstract concepts and can be used to learn topic representations. MMiDaS-AE also

uses co-citation relations between articles. The intuition is that an unknown article

with co-citation relations to an article that passes the SR screening is more likely to

be relevant.

However, it is crucial for the model to be robust to missing data representations,

especially when learning a shared representation using three different sources of in-

formation. Thus, to mitigate the effects of missing data, we extend work for bimodal
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speech classification [85] to design an imputation technique for multi-modal data in

which we intentionally leave one or more representations out while learning to induce

a shared representation in a latent space from which we can reconstruct all input

modalities. Consequently, this multi-modal stacked autoencoder is robust to missing

data. We also introduce a multi-label classification task to improve the prediction

result by utilizing whether the article passed the abstract screening and whether it

passed the full-text screening. Finally, we utilize a cross-topic learning strategy to

utilize existing SRs to pre-train MMiDaS-AE, and then fine-tune the weights of the

model to a specific SR topic.

3.1 Feature Representations

Feature extraction is a crucial component of the success of the classification pro-

cess. Previous approaches use bag-of-words of titles, abstracts, and MeSH terms

[9, 25, 26, 57, 61, 77, 117]. Khabsa et al. [57] used co-citation data as a feature

to semi-automate the SR. However, unlike previous approaches that deal with each

representation separately, we propose to learn a shared representation that encodes

different article information. As a result, the model can be robust to missing data

and a limited number of samples.

3.1.1 Document Representation

Natural language processing (NLP) systems typically transform input documents into

fixed-dimensional vector representations that can subsequently be used as feature

vectors by ‘downstream’ modules (e.g., logistic regression or a feed-forward neural

network). Previous work for semi-automating screening for SRs predominantly rep-

resented documents via sparse bag-of-words (BOW) representations [7, 26, 57, 75, 88,

117]. More recent work in NLP has moved towards learning better representations
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of texts, in particular by mapping high-dimensional and sparse BOW representations

into dense, low-dimensional vectors. For example, doc2vec extends word2vec to learn

distributed representations of documents (rather than words) [56, 64]. ELMO [96]

and BERT [30] were proposed to learn the contextual representations.

For our task, we restrict our document to titles and abstracts due to potential

copyright issues inherent to full-text articles. As a result, each article’s input is rel-

atively short (an average of 118 words after simple preprocessing). For short texts,

averaging the embeddings of all words in the text can serve as the document repre-

sentation [56]. Therefore, we adopt PMCVec [34], a pre-trained word2vec embedding,

and learn the document representations of all articles by averaging embeddings in the

title and the abstract of each document. PMCVec was trained on titles and abstracts

from ∼27 million documents indexed in the PubMed database. We explored SciB-

ert [10], a deeper representation, but this did not yield better predictive power as

demonstrated in our empirical results.

3.1.2 Topic Representation

In the Identification step of SRs depicted in Figure 1.1, a combination of MeSH

terms that represent the SR topic is used for database search to retrieve the initial

articles list. Using these MeSH terms, we can compute the distance between the

article and the MeSH terms. Thus, we learn a topic representation of an article by

using the relationship between MeSH terms and the article. This can be done in two

steps. First, we learn the representation of all MeSH terms of the topic. Second, we

subtract the document representation we learned from the previous section from the

MeSH term representation. Thus, this topic representation captures the relationship

between the article and the MeSH terms used in the SR search. This has the added

benefit of distinguishing articles that are in multiple SRs.

Because we are learning the relationships between documents and associated
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Figure 3.1: A simplified example of the co-citation relations and the partial citation
network used to learn representations. Solid nodes denote target articles that we
need to classify; empty nodes are the articles used to learn the representation of
target articles.

MeSH terms of the topic by subtracting their representations, both representations

should be learned from the same embedding space. One benefit of PMCVec [34] is

that it learns representations of both single words and multi-words from PubMed

abstracts as technical phrases in biomedical texts such as diseases or symptoms are

multi-word phrases. Thus for MeSH terms, instead of using the composition of sin-

gle words, multi-word MeSH terms also appear in the embedding space, and we can

directly use them to compute the MeSH terms embedding.

3.1.3 Citation Network Representation

Most existing SR screening methods primarily rely on text features derived from titles

and abstracts. This ignores the rich citation structure (e.g., the study is cited by other

studies) available for each article. Figure 3.1(a) depicts a simple citation network (a

network in which articles are nodes and citations are edges), and C and A implies A

is cited by C (or C is a citation of A). From the citation network, co-citations (two

articles cited together by the other articles) might be used to find related studies. For

example, in 3.1(a), A and B are co-citations as there exists an article C that cites

both A and B. This is motivated by the intuition that if one article is included, then

co-cited articles are more likely to be included as well. Using features consisting of
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Figure 3.2: Framework overview of the MMiDaS-AE.

just the bag-of-words of uni-grams and co-citations, Khabsa et al. [57] showed that

their machine learning model could achieve good recall. Yet, co-citation only captures

one perspective of the article. There exist cases in which two articles do not have a

co-cited article, but their citations have co-cited articles. Therefore, we propose to

construct a citation network and learn a representation (low-dimensional projection)

of each article.

However, constructing a complete citation network is infeasible. Instead, we use a

partial citation network that contains co-citation information by limiting the network

to contain only articles at most two citations away.

3.2 Model design

MMiDaS-AE adopts a multi-modal stacked autoencoder [15] which takes multiple

input representations and learns a shared representation that encodes all of these

modalities. This avoids the unwieldy number of parameters that are introduced

with a simple concatenation of each input representation. Also, compressing the

feature representations into a shared representation makes it easier to apply any

matrix manipulation technique that can not be done in the input space because of
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the difference in dimensions. However, the existing work was insufficient to deal with

missing data representations. Thus we introduce a new learning strategy by using an

augmented dataset. Finally, we propose a multi-label classification task to improve

the prediction results. An illustration of our framework is shown in Figure 3.2.

3.2.1 Multi-modal Stacked Autoencoder

Autoencoders are unsupervised models that learn compressed representations of in-

puts. The objective for the autoencoder is to reconstruct inputs faithfully from this

learned representation with minimal error [93]. Cadena et al. [15] proposed multi-

modal stacked autoencoders for the task of robotics scene understanding to support

different input modalities simultaneously (i.e., RGB image, scene depth, and semantic

information). Each input representation was passed through an autoencoder. The

three independent autoencoders were concatenated together using their respective

hidden layers and then passed to another autoencoder, thus inducing a shared rep-

resentation from which to reconstruct the original (concatenated) inputs. One may

view this approach as a means of learning disentangled representations [51, 74] in

which we have explicit low-dimensional encodings of the respective input modalities.

We found empirically that the best performance was obtained when we unified the

length of the independent hidden layer prior to concatenation. For example, if we

have 256, 200 and 200 dimensions as an input for each representation, the best per-

formance we get is when we use unified (e.g. 100) dimensions for the independent

hidden layer.

3.2.2 Missing Data Imputation in Autoencoder

One advantage of multi-modal auto-encoders is their potential to combine the avail-

able modalities to impute representations in the case that one of these is missing

[15, 85]. However, robustness to missing data is crucial when learning the shared rep-
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Figure 3.3: The process of imputation on multi-modal stacked autoencoder to deal
with missing data.

resentation of multi-modal inputs; otherwise, missing inputs may yield poor shared

representations. There are three possible cases of missingness (for different modali-

ties):

1. Citation network representation: lacking citation information.

2. Document representation: missing abstract.

3. Topic representation: missing document representation as topic representation

is computed by using document representation.

Ngiam et al. [85] proposed the use of an augmented dataset in the bimodal

autoencoder that has a single modality as an input (the other input is set to zero

values) that reconstructs two modalities as an output. However, naively extending

this to the multi-modal scenario does not yield desirable results. We introduce a

strategy that generalizes this work [85] for multi-modal in which we intentionally

leave one or more representations out (or ‘empty’) while learning to induce a shared

representation in a latent space from which we reconstruct all input representations.

Figure 3.3 illustrates our proposed imputation process to construct the augmented

dataset. In particular, for the inputs with no missing values, we purposely use an

empty representation for each input and try to reconstruct the output with clean

representations.

For illustration purposes, we demonstrate our process on a simple 2-dimensional

example. Suppose we have 3 representations, c = [1, 2], d = [3, 4], and t = [5, 6].
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Then we train our encoder with all cases shown in Figure 3.3. For each case, the

inputs are

• Case 1: c = [0, 0], d = [3, 4], and t = [5, 6]

• Case 2: c = [1, 2], d = [0, 0], and t = [5, 6]

• Case 3: c = [1, 2], d = [3, 4], and t = [0, 0]

• Case 4: c = [1, 2], d = [3, 4], and t = [5, 6]

• Case 5: c = [0, 0], d = [0, 0], and t = [5, 6]

• Case 6: c = [0, 0], d = [3, 4], and t = [0, 0]

• Case 7: c = [1, 2], d = [0, 0], and t = [0, 0]

and the reconstructed output is c = [1, 2], d = [3, 4], and t = [5, 6] for all cases. There-

fore, we intentionally leave one or two representations out using an empty represen-

tation (vector of zeroes) but still require the multi-modal autoencoder to reconstruct

all representations. Using this process we can handle missing input representations

because the model is forced to learn a robust shared representation from all possible

combinations of the inputs.

3.2.3 Multi-label Classification Task

The objective of the MMiDaS-AE is to minimize the number of relevant articles

(articles after the full-text screening) that are excluded while minimizing the number

of irrelevant citations that need to be screened by domain experts. Thus, the model

must make a binary prediction for each instance which indicates whether or not it

should be screened by a human reviewer. Since SRs are intended to be comprehensive

assessments of the relevant evidence, achieving high recall (i.e., sensitivity to the

relevant citations) is imperative. This is challenging in practice because there is
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severe class imbalance [53, 118], that is, there are far fewer relevant than irrelevant

citations. Consider Figure 1.1: Here we have 2,544 articles in total, but only 183

(7.23%) and 41 (1.61%) of these pass abstract and full-text screening, respectively.

To ensure the identification of relevant articles, we propose a multi-label classifi-

cation task to use the results of abstract screening as the labels are less imbalanced

than the full-text. In the literature identification phase of SRs, there are two steps

that are typically performed: title/abstract screening, which is followed by full-text

screening. We posit that documents that pass the title/abstract screening are more

likely to be “relevant” than those that are discarded. In other words, we were inter-

ested in ordering each document into three ordered categories: completely irrelevant,

inclusion in the full-text screening, and inclusion in the SR. By including an abstract

classifier, we can encode additional information that may help our model distinguish

completely irrelevant articles. Thus, MMiDaS-AE uses two classifiers, an abstract

classifier, and a full-text classifier. Then, as proposed by Niu et al. [87], we sum the

prediction probability of the true (relevant) class for each classifier and use this to

evaluate the performance of MMiDaS-AE. For example, if the article is predicted as

irrelevant by the abstract classifier, it will have a low probability (and be unlikely to

meet the final threshold). Thus, MMiDaS-AE will only detect articles that have high

probabilities for both the abstract and full-text classifier.

Therefore, MMiDaS-AE consists of the following steps (as illustrated in Figure

3.2). We first train each feature representation, citation network, title/abstract, and

MeSH terms into the citation, document, and topic representations. Then, we train a

multi-modal stacked autoencoder to learn the shared representations that encode all

three representations. While training the multi-modal stack autoencoder, we apply

our proposed missing data imputation technique. Once the shared representation is

learned, we use two softmax classifiers, an abstract classifier and a full-text classifier

which is trained separately. The prediction probability of true (relevant) classes is
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then the sum of these two classifiers.

3.3 Experimental Design

3.3.1 Data Preprocessing

For the experiment, we use the top 15 SRs and the last 4 SRs from Table 2.1. For

extracting the metadata of each article, we use the PMID to extract the title, abstract,

MeSH terms, and citations. In total, 37,149 unique articles were extracted using

Entrez API1. The title and abstract of each article are concatenated together and pre-

processed using the nltk library [11] in Python to remove stopwords, punctuations,

and numbers. Each remaining word is then converted to a 200-dimensional vector

representation using PMCVec2 [34]. The individual word representations are then

averaged to obtain the final document representation. Note that we also evaluated

the results using a larger pre-trained language model, SciBert [10], and compared the

results with PMCVec.

In the normal SR process, the initial list of articles is retrieved by the combination

of MeSH terms. However, all the datasets do not contain the MeSH terms of each

SR. Thus, we manually selected the MesH terms that describe each SR the best using

the following process. For each SR, we obtained all the MeSH terms (information

available from PubMed) that appear in the articles with their associated frequency.

Then using the top 50 most frequent terms from this list, we manually searched and

selected the MeSH terms that exist on the Wikipedia page associated with the topic

(i.e., ACE Inhibitors). We also accounted for the number of times the term appears

in the overall corpus to avoid “uninformative” terms such as “Humans”, “Male”,

“Female”, and “adult”. After excluding terms that exist in the top 50 for all SRs,

1https://www.ncbi.nlm.nih.gov/books/NBK25501/
2Since PMCVec is pre-trained on PubMed abstracts, there was no case where a word did not

have a vector representation.

https://www.ncbi.nlm.nih.gov/books/NBK25501/
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each SR contains unique terms.

As introduced, we could not use the entire citation network because of the limita-

tion of computational and memory footprint, thus we used a partial citation network3.

Starting from the articles that are in the dataset, we looked backward and forward

from the citation links by following the PMID to construct the citation network.

For learning the citation network representations using LINE, we used 3,158,195

vertices (articles) and 139,270,829 edges (citation links) which are extracted from all

19 SRs and their citations. For both first- and second-order proximity, we use 128 as

the dimension of each representation, and as LINE [107] proposed, concatenated the

first- and second-order proximity, resulting in 256 dimensions for the citation network

representation.

3.3.2 Inter-topic Setting

As the Cohen dataset has 15 SR topics, we evaluate MMiDaS-AE with non-topic

specific settings. Specifically, for model training, 14 SR topics are used to classify the

one leftover SR topic to evaluate the workload saved. We compare the results with

two existing works that used the same inter-topic settings.

• Norman: Norman et al. [88] constructs a ranker by extracting bag-of-n-grams

in titles, abstracts using TF-IDF and binary features. Also, article metadata

such as keywords, journal name, and publication types are used as features.

• Cohen (2008): Cohen et al. [25] studies the performance of the Support Vector

Machine (SVM) classifier using both textual (unigram and bigram terms of titles

and abstract) and conceptual (MeSH terms) features.

3We attempted to construct higher-order citations but found that not only did crawling the
network take time, but LINE did not converge within 2 days on a machine with 16 CPU cores and
100GB RAM.
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3.3.3 Intra-topic Setting

Intra-topic is a topic-specific setting that only uses training data within the same

topic. Intra-topic assumes that reviewers labeled small batches of articles. Previous

works used 5× 2 cross-validation within each SR topic to evaluate intra-topic. Under

5 × 2 cross-validation, each SR topic is divided into two parts – one split is used

for training and the other for testing. Then the roles of each half are switched. This

entire process is then repeated 5 times. 5×2 cross-validation results in 10 experiments

and the final score is the average of the 10 experiment scores. We compare the results

with four existing works that use the intra-topic setting.

• Cohen (2006): Cohen et al. [26] uses a voting perceptron algorithm with

varying learning weights using bag-of-words, MeSH terms, and publication type

as their features.

• Khabsa: Khabsa et al. [57] uses textual features, co-citations, and brown

clustering as features to train a random forest model.

• Norman: Norman et al. [88] uses the same method as an inter-topic setting

but uses the intra-topic setting with 5 × 2 cross-validation.

• Matwin: Matwin et al. [75] uses similar features to Cohen et al. [26] but

trained Complement Naive Bayes instead.

3.3.4 Fine-tuning Setting

As we target the inter-topic setting that learns a model to classify articles as a function

of article-article relations and article-topic relations, we propose fine-tuning our pre-

trained model to evaluate our model in the intra-topic setting. Under the fine-tuning

setting, we follow the inter-topic setting to pre-train our model, then use an intra-

topic setting (5×2 cross-validation) to fine-tune the weights of the pre-trained model.
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For example, if we want to predict which articles are relevant for the “ACEInhibitors”

SR, then we use the other 14 SR topics to pre-train MMiDaS-AE first, and then use

one-half of the articles in “ACEInhibitors” to fine-tune the weights of the pre-trained

MMiDaS-AE, reserving the other half for testing. Then the roles of each half are

switched. In other words for each of the 10 intra-topic experiments, we use the same

pre-trained MMiDaS-AE that was trained with 14 SR topics but is then fine-tuned

on 50% of the topic-specific data. We repeat this procedure 5 times, as same as 5× 2

cross-validation. We report the average estimated score across the 10 experiments.

3.3.5 Hyperparameter Tuning

We found empirically that using a unified length of the independent hidden layer

performs better than other settings. The unified length of the independent hidden

layer means learning all three representations into the same length. For example, we

use a 256-dimensional vector representation for network representation and a 200-

dimensional vector representation for document and topic representation. We add

an independent hidden layer connected with the input representation with a 100-

dimensional vector representation, thus after these layers, all three inputs will have

equal dimensions. Also for the length of the shared representation (encoding dimen-

sions), we empirically discovered that 50 works the best in our setting that balances

the predictive power and the error in the reconstructed representation. For the ac-

tivation functions in the multi-modal stacked autoencoder, we use Rectified Linear

Units (ReLUs) for all encoders and the sigmoid activation function for all decoders.

Between 15 topics from the Cohen dataset, we left one topic out as the test set

and used the other 14 topics as the training set. The other 4 datasets, COPD, proton

beam, anemia, and clopidogrel, are used as a validation set to tune the hyperpa-

rameters and perform the testing on the topic that was being held out. For a fair

comparison, we fixed the validation set to be these 4 datasets, so that SRs from the
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Table 3.1: Comparison between MMiDaS-AE and other approaches in the inter-topic
setting. Cohen et al. [25] only reported AUC, thus we only compared WSS@95%
score with Norman et al. [88]. Bold scores are the top scores while underlined scores
are the second-best scores.

Dataset
WSS@95% AUC

MMiDaS-AE Norman MMiDaS-AE Norman Cohen (2008)

ACEInhibitors 0.602 0.566 0.872 0.817 0.806
ADHD 0.661 0.128 0.727 0.591 0.469
Antihistamines 0.273 0.073 0.667 0.652 0.62
AtypicalAntipsychotics 0.244 0.162 0.758 0.759 0.653
BetaBlockers 0.445 0.400 0.850 0.837 0.801
CalciumChannelBlockers 0.381 0.129 0.894 0.759 0.712
Estrogens 0.256 0.176 0.705 0.693 0.588
NSAIDS 0.654 0.671 0.901 0.912 0.899
Opioids 0.678 0.301 0.885 0.885 0.856
OralHypoglycemics 0.115 0.072 0.654 0.657 0.573
ProtonPumpInhibitors 0.398 0.377 0.857 0.823 0.793
SkeletalMuscleRelaxants 0.502 0.241 0.848 0.828 0.836
Statins 0.341 0.266 0.819 0.826 0.773
Triptans 0.469 0.464 0.825 0.819 0.823
UrinaryIncontinence 0.451 0.374 0.895 0.887 0.851

Cohen dataset are used only as training and test set. For the citation network, we

used all articles in the partial citation networks (from all train, validation, and test

sets), as LINE requires the entire graph as the input. For articles that are present on

multiple topics, we remove the sample from the training to prevent data leakage and

only use it for testing.

3.4 Empirical Results

In this section, we discuss the results from two different settings, inter-topic and fine-

tuning. Then we evaluate variants of MMiDaS-AE using just one of the three features,

different autoencoders (shallow versus stacked), and our proposed imputation method

in the ablation study section.
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3.4.1 Inter-topic Results

As MMiDaS-AE targets a general SR process where we do not assume that we have

any labels of the topic, we first use the inter-topic setting. For the setting, we compare

the obtained WSS@95% with the values of WSS@95% reported in existing approaches

as the inter-topic setting. Table 3.1 summarizes the results of our model in the inter-

topic setting. While Norman reported the scores for both WSS@95% and AUC,

Cohen (2008) only reported the AUC score. Thus, we also computed the AUC score

of MMiDaS-AE to be comparable with Cohen (2008).

As shown in the table, MMiDaS-AE outperforms Norman in WSS@95% in a

range from 1% (Triptans) to 416% (ADHD) except for one SR (NSAIDS). Based on

the WSS@95% scores, MMiDaS-AE reduces the reviewers’ workload by 464 articles

compared with Norman, which screens out 157 articles in CalciumChannelBlockers.

For Opioids, MMiDaS-AE excludes 1,298 articles while Norman saves 576.

For AUC, MMiDaS-AE mostly outperforms other approaches. For the topics of

AtypicalAntipsychotics, NSAIDS, OralHypoglycemics, and Statins, the AUC is lower

than Norman but not by a substantial difference. This, coupled with the WSS@95%

scores suggests that MMiDaS-AE may not perform as well on lower recall on these

topics. Overall, the results show that with an inter-topic setting (non-topic spe-

cific setting) MMiDaS-AE performs well with a reasonable score. In other words,

MMiDaS-AE works in a general case when we first start SR.

3.4.2 Fine-tuning and Intra-topic Results

While the inter-topic setting assumes that we do not have any labels for the SR topic,

we can also assume that reviewers have labeled small batches of articles. To make

this comparison, we use the fine-tuning setting and compare the results against other

intra-topic approaches. As they report the score only in WSS@95%, we only compare

our results in WSS@95% for this setting. The results are shown in Table 3.2.



33

Table 3.2: Comparison between MMiDaS-AE with fine-tuning setting and other ap-
proaches in an intra-topic setting that uses 5 × 2 cross-validation. The scores are in
WSS@95%. Bold scores are the top scores while underlined scores are the second-best
scores.

Dataset MMiDaS-AE Cohen (2006) Khabsa Norman Matwin

ACEInhibitors 0.693 0.566 0.469 0.629 0.523
ADHD 0.674 0.680 0.447 0.616 0.622
Antihistamines 0.287 0.000 0.03 0.149 0.149
AtypicalAntipsychotics 0.249 0.141 0.199 0.21 0.206
BetaBlockers 0.529 0.284 0.361 0.511 0.367
CalciumChannelBlockers 0.439 0.122 0.287 0.398 0.234
Estrogens 0.262 0.183 0.18 0.292 0.375
NSAIDS 0.671 0.497 0.404 0.537 0.528
Opioids 0.694 0.133 0.455 0.590 0.554
OralHypoglycemics 0.132 0.090 0.074 0.111 0.085
ProtonPumpInhibitors 0.431 0.277 0.288 0.307 0.229
SkeletalMuscleRelaxants 0.519 0.000 0.371 0.429 0.265
Statins 0.457 0.247 0.400 0.436 0.315
Triptans 0.485 0.034 0.312 0.303 0.274
UrinaryIncontinence 0.461 0.261 0.411 0.422 0.296

For Antihistamines and SkeletalMuscleRelaxants, according to Cohen et al. [26],

the classification process did not provide any savings, thus are marked as 0.000 in the

“Cohen (2006)” column. Except for two SRs, ADHD and Estrogens, MMiDaS-AE

outperforms other existing models. For ADHD, the size of the total articles as well

as the list of articles that pass the full-text screening are small, thus, the fine-tuning

process only marginally improves the results (0.661 in the inter-topic setting versus

0.674 in the fine-tuning setting). We also posit a similar issue with Estrogens, which

is that the total number of articles is small, and thus fine-tuning only marginally

helps. More notably, for Statins, MMiDaS-AE saves reviewers’ workload by 1,583

articles while Cohen (2006) saves 856, Khabsa saves 1,386, and Matwin saves 1,091

articles.
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Table 3.3: Ablation study on different settings. The scores are in WSS@95% using
the inter-topic setting. Bold scores are the best scores.

Dataset Shallow-AE MMS-AE (Scibert) MMS-AE (PMCVec) Imput.

ACEInhibitors 0.196 0.325 0.430 0.488
ADHD 0.133 0.210 0.212 0.297
Antihistamines 0.077 0.214 0.243 0.246
AtypicalAntipsychotics 0.053 0.094 0.156 0.171
BetaBlockers 0.235 0.291 0.319 0.377
CalciumChannelBlockers 0.060 0.117 0.123 0.152
Estrogens 0.078 0.165 0.194 0.217
NSAIDS 0.208 0.523 0.528 0.597
Opioids 0.020 0.220 0.268 0.379
OralHypoglycemics 0.019 0.082 0.080 0.108
ProtonPumpInhibitors 0.178 0.336 0.315 0.381
SkeletalMuscleRelaxants 0.154 0.406 0.489 0.495
Statins 0.157 0.234 0.237 0.292
Triptans 0.199 0.278 0.330 0.410
UrinaryIncontinence 0.314 0.316 0.317 0.323

3.4.3 Ablation Study

In addition to the results for the two settings discussed, we evaluate the results

achieved when we ablate the different components of MMiDaS-AE, summarized in

Table 3.3 and Table 3.4. First, we use a basic autoencoder to compress each of the

three representations, (“Document”, “Topic”, and “Citation”) and only train on the

individual representation. “Shallow-AE” concatenates the features of all three repre-

sentations and passes it to a single auto-encoder which is then passed to a softmax

layer. The “MMS-AE” is the multi-modal stacked autoencoder implementation [15]

without any imputation. And finally, we show the results of our proposed imputa-

tion process. All the results are shown in Table 3.3 and Table 3.4 are only using

binary classification with full-text screening as a label (not multi-label classification

task) with an inter-topic setting. Therefore, the results are different from the re-

sults reported in Table 3.1 which also demonstrates the added benefit of using a

multi-label classification task. Also to evaluate the results with a larger pre-trained

language model, we compare the PMCVec representation with SciBert representation
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Table 3.4: Ablation study on each component. The scores are in WSS@95% using
the inter-topic setting. The results of the document, topic, and citation network
representation using a basic autoencoder with a single input. Underlined scores are
the best scores.

Dataset Document (SciBert) Document (PMCVec) Topic Citation

ACEInhibitors 0.284 0.128 0.080 0.104
ADHD 0.122 0.179 0.124 0.283
Antihistamines 0.097 0.097 0.090 0.166
AtypicalAntipsychotics 0.064 0.057 0.061 0.119
BetaBlockers 0.127 0.279 0.088 0.141
CalciumChannelBlockers 0.063 0.028 0.107 0.137
Estrogens 0.054 0.055 0.086 0.158
NSAIDS 0.168 0.077 0.226 0.397
Opioids 0.182 0.180 0.124 0.232
OralHypoglycemics 0.034 0.029 0.082 0.028
ProtonPumpInhibitors 0.182 0.175 0.032 0.294
SkeletalMuscleRelaxants 0.238 0.225 0.167 0.364
Statins 0.139 0.174 0.125 0.066
Triptans 0.234 0.102 0.216 0.204
UrinaryIncontinence 0.040 0.124 0.215 0.273

using the “Document” and “MMS-AE” settings. We only evaluated “Topic” using

PMCVec as we also evaluated the result on “MMS-AE”.

In comparing individual components in Table 3.3 and Table 3.4, if the test set

has a large number of articles in total, it leads to a high WSS@95% when using

the document representation only. For example, ACEInhibitors has 2,544 articles in

total, and Statins has 3,465 articles in total, and both SRs have a relatively higher

WSS@95% than other individual components. There are cases when using only the

citation representation is better. This also depends on the number of articles that lack

citation information. For example, ADHD has only 6% of articles missing citation

information and Opioids have 8% of articles missing citation information, and both

have higher WSS@95% for the citation representation than other individual compo-

nents. However, for ACEInhibitors 17% of articles are missing citation information

and Statins has 15% of articles missing citation information, thus both have a lower

WSS@95% than using only document representation.
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Learning a classifier for SR is a difficult task as we only use partial information

(title, abstract, and MeSH terms) to predict whether the article passed the full-

text screening (where full-text is not included as a feature). Our intuition is that

citation network representation can complement the lack of full-text information to

improve the overall performance as citations are used in the full-text. In SR, although

reviewers consider texts (title, abstract, and full-text), this implicitly considers the

co-citation information. By comparing “Citation” and “MMS-AE” in Table 3.3 and

Table 3.4, we can see cases when WSS@95% of using only citation representation

outperforms multi-modal settings such as ADHD and CalciumChannelBlockers. This

demonstrates the usefulness of the citation information.

In most cases, Shallow-AE performs worse than individual components which

implies that the simple concatenation of representations does not learn a robust shared

representation that encodes all three representations. However, if we use MMS-AE,

it performs better in all topics compared to Shallow-AE. This suggests that MMS-

AE is learning a more robust shared representation than Shallow-AE. Finally, if we

apply the imputation technique that we propose, it performs the best and can reduce

the workload by up to 59.7% compared to the MMS-AE. In addition, a comparison

between the WSS@95% scores in the “Imputation” column in Table 3.1 and Table 3.2

and the MMiDaS-AE column in Table 3.1, shows a significant improvement through

the introduction of the multi-label formulation.

All the results shown in Table 3.1 and Table 3.2 are using PMCVec for the docu-

ment and topic features. However, we wanted to evaluate the difference in using ap-

proaches that exploit pre-trained representations induced by large transformers such

as SciBert [10]. We compared the results using SciBert and PMCVec on “Document”

and “MMS-AE” in Table 3.3 and Table 3.4. As shown, for most of the cases when

using a single-component (only document as a feature), SciBert performs better than

PMCVec. However, when using the MMS-AE setting, PMCVec outperforms SciBert
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in most of the cases. This illustrates the importance of the number of dimensions

in MMS-AE. We note that the dimension of SciBert is 768 while the dimension of

PMCVec is 200. When using a single-component, we can select the size of the hidden

layer based on the input dimension. However, for MMS-AE, the three features are

encoded into a shared representation, and it becomes difficult when the dimension of

one input differs greatly from the other input. In other words, there will be infor-

mation lost from the input feature with a larger dimension when learning the shared

representation. Thus, in MMS-AE, information from the Document and Topic is lost

when learning the shared representation and consequently performs worse than the

single-component.
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Chapter 4

PubMed Graph Benchmark

PubMed is a database that contains over 33 million citations and abstracts of liter-

ature related to biomedicine and health fields, as well as related disciplines such as

life sciences, behavioral sciences, chemical sciences, and bioengineering [16]. PubMed

articles have been used to perform numerous SRs [26, 51, 115], evaluate biological

processes [63], identify protein-protein interactions [52], curate genes [124], and ex-

tract biological networks [129]. To date, much of the work on PubMed literature

has focused on mining the text. The previous chapter illustrated that the citation

structure can be utilized to automate the SR process, where for some topics, the

node embedding provided better representations than their textual counterparts. Yet

our work simplified PubMed to a homogeneous graph (only paper nodes and paper –

paper edges).

Figure 4.1(a) shows an example of a Pubmed article1. In addition to the author,

venue, and citation information that is commonly found in most bibliographic data,

each PubMed article contains data regarding the Chemical Substances within the

article, the type of article that characterizes the nature of the information or the type

of research support received, and Medical Subject Headings (MeSH) terms which

identify the broader concepts in the data. The categorical information of chemical

1Article can be found herehttps://pubmed.ncbi.nlm.nih.gov/12429942/.

https://pubmed.ncbi.nlm.nih.gov/12429942/
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Phenomena and Processes

MetabolismCell Physiological Phenomena

Autophagy Cell Cycle

Chromosome Segregation Meiosis Mitosis

…

…Cell Adhesion

Anaphase Prophase…

Chromosome Pairing Pachytene Stage

(a) PubMed article (b) MeSH hierarchy

Figure 4.1: Example of PubMed Article (a) and the partial MeSH hierarchy (b) that
is associated with the article. For article (a), the PubMed database contains pmid,
title, abstract, list of articles cited by, publication types, list of MeSH terms, and list
of substances (chemicals). The MeSh hierarchy (b) shows the categorization of the
MeSH terms to a broader concept.

substances and publication types are not found in DBLP, ACM, or MAG. Moreover,

there are over 30,000 terms in the MeSH vocabulary. Furthermore, the terms follow a

hierarchical taxonomy2 (see Figure 4.1(b) for an example MeSH tree for some terms

in the example), yet also have the unique property that a term can belong to one

or more trees3. Capturing this hierarchical structure can potentially improve the

representation; however, the data in PubMed is incomplete as it does not perform

author disambiguation.

We present Pubmed Graph Benchmark (PGB) [65], a new benchmark dataset for

evaluating HIN embeddings for biomedical literature. PGB provides three different

tasks to evaluate the quality of the network embeddings that span node classification,

node clustering, and abstract screening for various SR tasks. The latter task is

2https://www.nlm.nih.gov/mesh/intro_trees.html
3We note ACM has the Computing Classification System (CCS) which is a hierarchical ontology

but does not allow a term to belong to multiple trees.

https://www.nlm.nih.gov/mesh/intro_trees.html
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Table 4.1: Comparison of existing bibliographic datasets with N denoting nodes, NT
denoting node types, ET denoting edge types, and HIER denoting a hierarchical
structure on at least one of the nodes.

Benchmark # N # NT # ET HIER

PGB 54,974,182 6 7 ✓

ogbn-mag 1,939,743 4 4 ✗

ogbn-arxiv 169,343 1 1 ✗

ogbn-papers100M 111,059,956 1 1 ✗

HGB-DBLP 26,128 4 6 ✗

HGB-ACM 10,942 4 6 ✗

HGB-Freebase 180,098 8 36 ✗

different than the existing node-level and edge-level tasks provided in OGB and HGB

in that the same node can have different labels depending on the SR content. By

providing a high-quality and large-scale heterogeneous bibliographic network with

three different graph tasks and their associated evaluation metrics, we can measure

progress in a consistent and reproducible fashion.

4.1 Benchmark Comparison

Bibliographic data is used in various tasks, for example, word embedding using the

title and abstract, network embedding using the citation, and author network. Thus,

many works have worked on constructing a benchmark for bibliographic data such

as OGB [50], HGB [73], and S2ORC [72]. Here we briefly describe the three related

academic paper benchmark datasets and their limitations.

OGB [50] is a large-scale benchmark for graph machine learning tasks. It encom-

passes a variety of domains such as social networks, biological networks, molecular

graphs, and knowledge graphs. OGB also has bibliographic data, for example, ogbn-

arxiv and ogbn-papers100M are citation networks that are extracted from arxiv and

MAG, respectively. Notably, both of these citation networks are homogeneous net-

works with paper nodes and links that represent the citation. Unlike ogbn-arxiv and
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ogbn-papers100M, OGB also has a heterogeneous academic network, ogbn-mag, which

is extracted from MAG. The ogbn-mag dataset contains 4 different node types (i.e.,

papers, authors, institutions, and topics) along with their relations. However, OGB

mainly focuses on benchmarking graph machine learning methods on the large-scale

homogeneous network.

HGB [73] provided eleven medium-scale graph benchmark datasets for node clas-

sification, link prediction, and knowledge-aware recommendation. For node classifi-

cation, they provided DBLP, IMDB, ACM, and Freebase [12] datasets, and for link

prediction, Amazon, LastFM, and PubMed datasets. The PubMed benchmark is the

subset of a previously generated network of genes, diseases, chemicals, and species

filtered by domain experts [129]. However, unlike PGB, the PubMed dataset does not

reflect the bibliographic data directly. Instead, for HGB, DBLP, and ACM datasets

serve as the lone benchmarks for the bibliographic network. contains paper, author,

subject, and terms. However, both datasets lack metadata that can be helpful for

learning node embeddings. Additionally, the benchmarks assume each node has a

single label, whereas labels can change depending on the context.

The S2ORC [72] corpus is a large-scale academic paper corpus that is constructed

using the data from the Semantic Scholar literature corpus [3]. Articles in Semantic

Scholar are derived from numerous sources which are obtained directly from publish-

ers such as MAG, arXiv, PubMed, and crawled from the open Internet. Semantic

Scholar clusters these papers based on title similarity and DOI overlap, resulting in

an initial set of approximately 200M paper clusters. Using the Semantic Scholar lit-

erature corpus, S2ORC aggregated the metadata of articles and cleaned the data to

select canonical metadata using external sources such as IEEE and DBLP. Although

S2ORC contains biomedical literature, it mainly focuses on the common metadata

that exists across all the articles. Since publication types, MeSH terms, and chem-

ical substances are only present in biomedical literature, such metadata is not in-
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Figure 4.2: Framework overview of the PGB.

cluded in the dataset. Thus, developing embeddings that reflect the heterogeneity of

the PubMed database requires additional preprocessing. Table 4.1 summarizes the

statistics of the existing bibliographic datasets.

4.2 Benchmark Construction

In this section, we introduce the framework to construct PGB, shown in Figure 4.2.

4.2.1 Paper Collection

PGB is constructed based on the S2ORC corpus [72] as it contains more complete

citation information than PubMed. However, there exist cases where the abstract

only exists in the Semantic Scholar database but not in the PubMed database. Since

PGB targets the biomedical literature, we initially extract articles that contain a

PubMed ID (PMID) from S2ORC.

4.2.2 Metadata Extraction from PubMed

The S2ORC corpus only contains basic metadata of each PubMed paper (e.g., title,

abstract, authors, year, and venue). In biomedical literature, unlike general academic

articles, there is important metadata that can serve an important role such as Medical
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Subject Headings (MeSH) terms and publication types. Additional partial informa-

tion can be found in PubMed (see Figure 4.1). To extract more detailed information

related to each article, we query information from the Entrez API4 using the PMID.

The metadata contains “Chemical List”, “Publication Type”, and “MeSH Terms”.

The chemical list provides the registry number of specific chemical substances assigned

by the Chemical Abstracts Service and the names of the chemical substances. The

publication type identifies the type of article indexed for MEDLINE and characterizes

the nature of the information, how it is conveyed, and the type of research support

received. For example, an article can have a publication type of Review, Letter, Re-

tracted Publication, Research Support, N.I.H., or Clinical Conference. Finally, MeSH

terms are used to characterize the content of the articles. MeSH terms are recorded

with the information whether they are the major topic or not. The major MeSH terms

denote that those are the most significant topics of the paper whereas the non-major

MeSH terms are used to identify concepts that have also been discussed in the item

but are not the primary topics. For the articles identified from our paper collection

process, we integrate the names of the chemical substances, the publication type, and

both major and minor MeSH terms.

4.2.3 Citation Extraction

While the PubMed database contains rich information on biomedical literature, it

contains few information about the citations. However, S2ORC corpus extracted

the citations from the collected PDF or LaTeX files on top of the Semantic Scholar

literature corpus. Thus, to construct PGB, we first use the citation information

from the S2ORC. This includes both in and out citations which refer to whether the

paper is cited by another paper or the paper cites another paper. We convert all the

Semantic Scholar IDs into PMIDs and remove papers that are not included in the

4https://www.ncbi.nlm.nih.gov/books/NBK25501/

https://www.ncbi.nlm.nih.gov/books/NBK25501/
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PubMed database5.

We note that there are cases where Semantic Scholar does not contain all the

citations. Thus we also extract citations from the Entrez API to include papers that

do not exist in the Semantic Scholar database but exist in PubMed. The metadata

associated with the PMIDs of the newly identified papers is then retrieved to ensure

consistency of the article information. In this fashion, the articles in PGB are not a

pure subset of S2ORC.

4.2.4 MeSH Terms Hierarchy

One important feature of MeSH terms is the hierarchical ontology of the terms. MeSH

terms can be categorized into broader MeSH terms that support the categorization of

the articles, as depicted in Figure 4.1(b). The categories of different hierarchy levels

reveal the similarity at coarser/fine-grained granularities. As shown in Figure 4.1(b),

MeSH terms that are assigned to the article can share the same parents or can be

in a different sub-tree. When comparing two articles, if they do not have the same

MeSH terms but MeSH terms with the same parents (or within the same sub-tree),

then the two articles are potentially closely related. Therefore, knowing the hierarchy

can play an important role in identifying similar articles.

Unfortunately, the Entrez API does not include the MeSH terms hierarchy. Thus,

we also extract the MeSH terms hierarchy dataset6 to identify the position of the

MeSH terms associated with each article. The MeSH terms hierarchy dataset only

contains the MeSH terms shown in Figure 4.1(b). However, the tree numbers help

reveal the hierarchical structure. For example, the MeSH terms “Chromosome Seg-

regation” with tree number G04.144.220.220.625 and “Mitosis” with tree number

G04.144.220.220.781 demonstrate that they share the same parent, “Cell Cycle” with

5While this can potentially harm or bias the embedding, we did this to maintain consistency in
the article information in PGB.

6https://www.nlm.nih.gov/databases/download/mesh.html

https://www.nlm.nih.gov/databases/download/mesh.html
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Table 4.2: List of metadata included in the PGB, and the field name and the type in
JSON format.

Field Description Field name Field type Explanation

PMID pmid str Pubmed ID
Title title str Title of the paper
Abstract abstract str Abstract of the paper
Authors authors List[Dict] list of authors
Year year int Published year
Venue venue str Venue of the paper
Publication Type publication type str Type of the article
Chemical List chemicals List Name of the chemical substances
MeSH Terms mesh List[Dict] List of MeSH terms
In Citation Validator has inbound citations bool Validator for inbound citation
Out Citation Validator has outbound citations bool Validator for outbound citation
Inbound Citation in citation List List of PMID that cites the paper
Outbound Citation out citation List References of the paper

tree number G04.144.220.220. Thus, we integrate the tree number for each MeSH

term using the MeSH terms hierarchy into PGB.

4.3 Data Format

Table 4.2 summarizes the field name and the field type that is used to store PGB.

The “authors” field contains 4 subfields, “first”, “middle”, “last”, and “suffix”. For

the chemical list and the MeSH terms, we exclude the ids and only included the name

because the name itself is already unique. For the MeSH terms, we use 3 subfields to

convey which MeSH terms are major or minor, The subfield “name” refers to the name

of the MeSH terms, the subfield “is major” is set to a true/false value to identify the

major MeSH terms, and the subfield “tree number” is the MeSH hierarchy informa-

tion. There can exist multiple major MeSH terms for each article. We also included

fields for validating whether the inbound and outbound citation exists in the bench-

mark. The fields are named “has outbound citations” and “has inbound citations”,

and the value is set to be either true or false. This helps users easily identify the

presence of citation information without parsing the list of citations.
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Figure 4.3: Statistics of PGB (30,872,730 articles).

Name Total # Missing (%) Avg per article

Authors 30,397,681 1.54 4.11
Articles w/ MeSH terms 26,883,163 12.92 9.32
Articles w/ chemical list 14,565,380 52.82 1.82
Articles w/ publication type 30,685,975 0.60 1.73
Articles w/ inbound citations 16,488,646 46.59 6.51
Articles w/ outbound citations 7,781,767 74.79 6.51

4.3.1 Statistics

The statistics of PGB are shown in Table 4.3. It contains 30,872,730 biomedical

literature, and all the articles have PMID, title, abstract, year, and venue. However,

there exist cases in which any one of the fields is missing which denote that the

information does not exist in both PubMed and S2ORC. 46.59% of articles do not

have an inbound citation, and 74.79% of articles do not have outbound citations.

Table 4.3 also shows the average number of MeSH terms, chemicals, and inbound and

outbound citations. Due to the large size of the benchmark (∼60GB), PGB is split

into 10 partitions where each partition is compressed as a zip file.

We can directly use the metadata in PGB to retrieve any necessary information to

construct a homogeneous or heterogeneous network. There are 5 node types (Paper

(P), Author (A), MeSH terms (M), Venue (V), and Publication type (T)) and 6

edge types (P – P, P – A, A – A, P – M, P – V, P – T). The MeSH hierarchy

can be added using another edge type M – M. The constructed HIN can be used

for node classification to determine the topic of articles, link prediction for citation

recommendation, and SR for abstract/full-text screening. To illustrate the usage of

PGB, we perform experiments using both homogeneous and heterogeneous network

embedding models and evaluate the embedding for identifying articles for a SR, node

classification, and node clustering.



47

Figure 4.4: Example of JSON format of the PGB associated with Figure 4.1.

4.3.2 Code and Data License Information

The entire data is released and publicly available on Zenodo.7 Due to the size of the

benchmark (∼60GB), we split the benchmark into 10 partitions and uploaded 10 zip

files onto Zenodo. In the uncompressed file, each article is stored in JSON format as

described in Figure 4.4.

PGB is released under the CC BY-NC 4.0 license and for non-commercial use.

PGB is constructed using the PubMed Entrez API and S2ORC. S2ORC is non-

7https://zenodo.org/record/6406776#.YqrOKnbMKUk

https://zenodo.org/record/6406776#.YqrOKnbMKUk
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commercial use and released under the same license (CC BY-NC 4.0 license). The

PubMed Entrez API does not require a signed license agreement to download publicly

accessible data. However, we note that the associated PubMed metadata (i.e., MeSH

terms, Chemical list, and publication type) in PGB may not reflect the most current

data available on PubMed. The data can be re-updated using the Github repository

assuming no major changes in the type and format of the machine-readable data.

The usage guidelines and registration for the API key are detailed in the electronic

book chapter8. Note that potential publication bias or other ethical considerations

may need to be considered further.

4.4 Experimental Design

4.4.1 Data Preprocessing

We evaluate our model on the popular, and publicly available 15 SRs provided by

Cohen et al. [26], 3 SRs provided by SWIFT-Review [49], and 3 SRs from CLEF-

TAR [55] dataset. The detailed information is described in Table 2.1. Each SR

topic contains a set of articles that were retrieved using specific search queries that

combined the health condition and the drug intervention. Each article, identified

using a PubMed identifier (PMID), was triaged using a two-step process. First, the

abstract is reviewed to determine if it meets the inclusion criteria of the SR. If the

criteria are met, the entire article is then reviewed to determine if the evidence should

be summarized in the SR. We target the abstract screening process where most of

the articles are excluded. Note that the same article can be included in one or more

SR topics and have different abstract triage status, unlike existing tasks in OGB or

HGB.

8https://www.ncbi.nlm.nih.gov/books/NBK25497/#chapter2.Usage_Guidelines_and_

Requiremen

https://www.ncbi.nlm.nih.gov/books/NBK25497/#chapter2.Usage_Guidelines_and_Requiremen
https://www.ncbi.nlm.nih.gov/books/NBK25497/#chapter2.Usage_Guidelines_and_Requiremen
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4.4.2 Baseline Models

We evaluate six different models that include document embedding, homogeneous

network embedding, HIN embedding, and knowledge graph embedding models.

• SPECTER [24]: The SPECTER is an embedding model that learns the repre-

sentation of a document by computing the embeddings using a SciBERT model

[10] pre-trained on relatedness signals derived from the citation graph. We

use the embeddings for SPECTER provided by Semantic Scholar API.9 The

Semantic Scholar API allows a paper search by using the PubMed ID to re-

trieve the Semantic Scholar ID. Using this Semantic Scholar ID, we retrieve the

SPECTER embeddings of each document.

• LINE [107]: LINE is a conventional homogeneous network embedding method

that uses first- and second-proximity. LINE uses the joint probability between

two nodes.10 We set the number of dimensions to 128 for both first- and second-

proximity. The final embedding is the concatenation of 2 proximities. As LINE

is an unsupervised model, we add a soft-max layer on top of the final embed-

dings.

• GCN [59]: GCN is a graph convolutional network embedding model designed

for a homogeneous network.11 GCN is trained in a supervised setting using the

SR task. We use the 500-dimension TF-IDF weighted word vector provided by

Namata et al. [82] as the node feature.

• HAKE [136]: HAKE is a hierarchical-aware knowledge graph embedding model

which is not a GNN-based model but a translational distance model which de-

scribes relations as translations from one node to the other.12 It uses radial

9https://www.semanticscholar.org/product/api
10https://github.com/DeepGraphLearning/graphvite.
11https://github.com/tkipf/gcn.
12https://github.com/MIRALab-USTC/KGE-HAKE.

https://www.semanticscholar.org/product/api
https://github.com/DeepGraphLearning/graphvite
https://github.com/tkipf/gcn
https://github.com/MIRALab-USTC/KGE-HAKE
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coordinates to embed entities at different levels of the hierarchy and uses angu-

lar coordinates to distinguish entities at the same level of the hierarchy. HAKE

uses the link-prediction task to learn the embeddings, and thus it is an unsu-

pervised model. For the supervised tasks, we add a soft-max layer on top of the

embeddings. We try [500, 1000] for the dimension size and select 1000 as the

validated parameter.

• GAHNE [70]: GAHNE is a model to learn representations for HIN.13 It con-

verts the network into a series of homogeneous sub-networks to capture semantic

information. An aggregation mechanism then fuses the sub-networks with sup-

plemental information from the whole network. Using the validation set, we

process a grid search using [0.01, 0.005, 0.001] for the learning rate, [0.0005,

0.001] for the L2 penalty, and [64, 128, 256] for the dimension size. The vali-

dated parameters we used are a learning rate of 0.005, a dropout of 0.5, an L2

penalty of 0.001, and a dimension of 128. GAHNE is a supervised model and

the model is trained using the labels from SR topics.

• ie-HGCN [132]: ie-HGCN is a GCN-based HIN embedding model that evaluates

all possible meta-paths and projects the representations of different types of

neighbor objects into a common semantic space using object- and type-level

aggregation.14 We use the supervised, cross-entropy loss to learn the weights of

the model. We set the number of layers to be 5 and using the validation set, we

tried [(128, 64, 32, 16), (156, 128, 64, 32)] as the dimension size. The validated

parameters used in the results are 5 layers, with the dimensions of input, 128,

64, 32, and 16. We use the same node feature as GCN.

LINE and HAKE are unsupervised models, and the other 3 GNN baselines are

semi-supervised models. For the SR task, for the homogeneous network, we only use

13https:github.com/seanlxh/GAHNE.
14https://github.com/kepsail/ie-HGCN/.

https:github.com/seanlxh/GAHNE
https://github.com/kepsail/ie-HGCN/
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the citation information to construct the network. For HAKE, we use three node

types (Paper (P), MeSH terms (M), Publication type (T)) with four edge types (P

– P, P – M, M – M, P – T). For the other two HIN embedding models, we use four

node types (Paper (P), Venue (V), MeSH terms (M), Publication type (T)) with four

edge types (P – P, P – V, P – M, and P – T)

We use the code and perform a parameter search around the neighborhood of sug-

gested parameters provided by the original paper. For each of the implementations,

we kept separate environment files to ensure that the required Python packages were

installed and the correct version as outlined in the code. The validation set is used

to tune the hyperparameters for GAHNE and ie-HGCN.

4.4.3 Experimental Setup

For the SR task, we construct 3 different subsets of PGB for computational reasons.

We trace the inbound and outbound citations up to 2-hops from the original articles to

construct 3 subnetworks of approximately 1.2M, 3.4M, and 1.8M articles, respectively

for the Cohen, SWIFT-Review, and CLEF-TAR datasets. In each subnetwork, we

randomly split the graph into train-validation-test by sampling articles within each

SR task using a 50%-25%-25% ratio. We create 3 train-validation-test trials for each

subnetwork. For all the baselines, we used a g4dn AWS instance with NVIDIA T4

GPU.

4.5 Empirical Result

All the results shown in this section use the subnetwork of each dataset (Cohen,

SWIFT-Review, and CLEF-TAR). We compare the performance of 1 language model

and 5 network embedding models on SR. The performance is reported in Table 4.3 in

the average of AUC scores of 3 trials for each SR task and in Table 4.4 in the average
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Table 4.3: SR statistics and average AUC results across the three trials for the various
models. The best score is bolded and the second highest is underlined.

Dataset SPECTER LINE GCN HAKE GAHNE ie-HGCN

Cohen-ACEInhibitors 0.677 0.580 0.592 0.677 0.731 0.740
Cohen-ADHD 0.567 0.548 0.577 0.599 0.600 0.607
Cohen-Antihistamines 0.505 0.493 0.509 0.521 0.558 0.542
Cohen-AtypicalAntipsychotics 0.638 0.555 0.597 0.648 0.708 0.699
Cohen-BetaBlockers 0.699 0.586 0.606 0.683 0.733 0.728
Cohen-CalciumChannelBlockers 0.601 0.594 0.608 0.621 0.654 0.651
Cohen-Estrogens 0.637 0.544 0.588 0.647 0.676 0.673
Cohen-NSAIDS 0.694 0.586 0.615 0.690 0.767 0.746
Cohen-Opioids 0.675 0.603 0.637 0.686 0.725 0.727
Cohen-OralHypoglycemics 0.535 0.512 0.529 0.533 0.567 0.557
Cohen-ProtonPumpInhibitors 0.674 0.604 0.626 0.681 0.731 0.729
Cohen-SkeletalMuscleRelaxants 0.688 0.605 0.632 0.687 0.724 0.733
Cohen-Statins 0.668 0.572 0.608 0.662 0.710 0.716
Cohen-Triptans 0.658 0.587 0.618 0.668 0.723 0.717
Cohen-UrinaryIncontinence 0.696 0.605 0.633 0.681 0.745 0.741

SWIFT-Transgenerational 0.695 0.637 0.667 0.684 0.741 0.761
SWIFT-PFOS-PFOA 0.671 0.634 0.657 0.695 0.721 0.728
SWIFT-BPA 0.632 0.563 0.604 0.645 0.725 0.729

CLEF-Prognosis-CD012661 0.678 0.593 0.628 0.647 0.671 0.691
CLEF-DTA-CD008803 0.619 0.598 0.628 0.643 0.681 0.691
CLEF-Intervention-CD005139 0.665 0.623 0.646 0.666 0.702 0.704

of WSS scores with the same setting. The best results are bolded and the second-best

results are underlined.

As shown in the tables, both of the results (AUC and WSS scores) of the het-

erogeneous network embedding models (HAKE, GAHNE, and ie-HGCN) significantly

outperform the homogeneous network embedding models (LINE and GCN). This sug-

gests that not only the citation information but also other node types (venue, MeSH

terms, and publication type) help to improve the performance of the SR task. GAHNE

and ie-HGCN outperform HAKE as HAKE is an unsupervised model while others

are semi-supervised models. However, by comparing the performance with the homo-

geneous model, HAKE shows the importance of the hierarchical information (MeSH

hierarchy). The performance between GAHNE and ie-HGCN is similar. The results

suggest that ie-HGCN performs better when there are more articles excluded from the
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Table 4.4: SR statistics and average WSS results across the 3 trials for the various
models. The best score is bolded and the second highest is underlined.

Dataset SPECTER LINE GCN HAKE GAHNE ie-HGCN

Cohen-ACEInhibitors 0.388 0.343 0.364 0.385 0.472 0.489
Cohen-ADHD 0.274 0.247 0.253 0.277 0.343 0.344
Cohen-Antihistamines 0.111 0.042 0.079 0.109 0.168 0.137
Cohen-AtypicalAntipsychotics 0.092 0.059 0.066 0.087 0.111 0.102
Cohen-BetaBlockers 0.209 0.186 0.19 0.211 0.291 0.304
Cohen-CalciumChannelBlockers 0.21 0.173 0.194 0.208 0.221 0.242
Cohen-Estrogens 0.223 0.169 0.197 0.222 0.259 0.256
Cohen-NSAIDS 0.385 0.377 0.384 0.437 0.508 0.505
Cohen-Opioids 0.253 0.21 0.218 0.276 0.339 0.343
Cohen-OralHypoglycemics 0.111 0.057 0.065 0.102 0.133 0.128
Cohen-ProtonPumpInhibitors 0.233 0.194 0.204 0.249 0.287 0.283
Cohen-SkeletalMuscleRelaxants 0.198 0.143 0.165 0.204 0.239 0.246
Cohen-Statins 0.229 0.169 0.179 0.227 0.255 0.256
Cohen-Triptans 0.343 0.278 0.294 0.348 0.372 0.362
Cohen-UrinaryIncontinence 0.21 0.162 0.174 0.202 0.233 0.232

SWIFT-Transgenerational 0.202 0.111 0.155 0.191 0.253 0.277
SWIFT-PFOS-PFOA 0.241 0.195 0.203 0.258 0.378 0.383
SWIFT-BPA 0.354 0.258 0.287 0.376 0.441 0.441

CLEF-Prognosis-CD012661 0.207 0.152 0.164 0.205 0.252 0.248
CLEF-DTA-CD008803 0.302 0.219 0.222 0.297 0.341 0.337
CLEF-Intervention-CD005139 0.2 0.143 0.158 0.199 0.278 0.283

abstract screening phase. For example, the “SWIFT-BPA” dataset has a total of 7700

articles in the beginning but only 111 articles (1.44%) are selected. Whereas ie-HGCN

performs better in cases when fewer articles are selected, GAHNE performs better in

cases when more papers are selected. For example, “Cohen-AtypicalAntipsychotics”

starts with 1120 articles, and 363 articles (32%) passed the screening.

By comparing with the language model (SPECTER), it shows similar results with

HAKE. In other words, SPECTER outperforms the homogeneous network embedding

models (LINE and GCN) which only uses the citation network but underperforms

the heterogeneous network embedding models (GAHNE and ie-HGCN). Although

SPECTER is based on the transformer language model, it uses the document-level

relatedness from the citation graph. Thus, this helps SPECTER to outperform the

supervised homogeneous network embedding models. This illustrates the importance
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of both the abstract and the citation graph in the SR process. Yet, even integrating

the text and citation together does not beat the rich contextual information found in

the venue, MeSH terms, and publication type.
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Chapter 5

Community Multi-view based

Enhanced Graph Convolutional

Network

Given the rich metadata in PGB, we propose SR-CoMbEr [66], a Community Multi-

view Based Enhanced GCN for Systematic Review to integrate the various node and

edge types. SR-CoMbEr extends the multiple local GCN approach [123] to the HIN

setting while also introducing a technique to eliminate additional hyperparameter set-

tings. To automatically learn from the different object and link types, SR-CoMbEr

adopts a multi-view approach at the community level to learn a view-specific embed-

ding representation associated with each community. As a result, each community

representation can capture the complex structure information across different rela-

tion types. Moreover, the multiple community GCN aggregation problem is posed as

a multi-modal problem to yield a robust final embedding that reflects the different

community representations. Our main contributions to this work are:

• We pose the problem of HIN representation as a multi-view learning problem to

avoid specification of the meta-path while automatically capturing the network
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Figure 5.1: The framework overview of the SR-CoMbEr. The input network is a toy
example of a PubMed Network which contains four node types and three edge types.
Four node types are Paper (P), Author (A), Venue (V), and MeSH Terms (M), and
three edge types are P – A, P – V, and P – M. The target node is set to P which is
used for the node classification task.

semantics.

• We propose an innovative multiple, community-based multi-view GCN to cap-

ture the structural heterogeneity that is useful for downstream tasks.

• We conduct extensive experiments on SR screening to demonstrate the superior

performance of SR-CoMbEr over HIN baselines.

5.1 Model Design

SR-CoMbEr is inspired by the multiple-filtering local GCN model [123], which con-

structs multiple local versions of a homogeneous network to capture different aspects

of the node attributes while providing robustness to noise. Yet, the local versions of

the multiple GCN approach may fail to capture the complex neighborhood structure

when solely focusing on a homogeneous network. Moreover, the model can be sensi-

tive to the number of local filters. We address these limitations using three parts: (1)
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automatic identification of communities in HIN, (2) community multi-view learning

to capture information from each link type, and (3) global consensus across the com-

munities. Figure 5.1 depicts SR-CoMbEr’s overall architecture, where the goal is to

learn the representation of the target object α (i.e., circle node (P)).

5.1.1 Heterogeneous Community Detection

The ability to capture the neighborhood information is a crucial aspect of ensuring the

quality of the network embedding. Many network embedding methods use random

walks to capture the neighborhoods before passing them to a deep learning model. For

example, the multiple-filtering local GCN model [123] uses random walk to construct

M local networks are constructed. However, sampling of a single link type may not

encapsulate the community structure via other link types while sampling multiple

links may not be sufficient to capture the complicated structure [134]. However,

utilizing the entire HIN can pose computational problems for large networks as well

as limit their generalizability to unseen data [123]. Instead, we propose to utilize the

community structure ubiquitous in networks, where a group of nodes exhibits more

intra-connections than inter-connections with external nodes [35], to determine the

construction of the local networks. Given a set of communities, a random walk is

initiated using the nodes belonging to the community. Thus each local GCN version

learns a better local embedding by integrating information found in the community

structure. It is important to note that SR-CoMbEr does not restrict the random

walk to just links between community nodes, therefore the local network may contain

neighborhood information of nodes outside the community. Moreover, since a node

may be part of multiple communities, the combination of multiple local GCNs will

thereby reflect different neighborhood information for the same object.

The community-based focus of each local GCN lends itself naturally to auto-

matic detection of the “optimal” number of local filters, M. While there are many
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types of community detection methods including clustering-based methods [83] and

modularity-based methods [84], many of these models are developed for the homo-

geneous setting. Instead, SR-CoMbEr uses Tucker decomposition [111], a popular

tensor factorization model, to identify the community structure and the number of

optimal filters in the HIN setting. Tucker decomposition can be viewed as a gen-

eralization of singular value decomposition (SVD) which can detect communities in

homogeneous networks [99]. The HIN tensor, X , is a higher-order tensor where each

object type serves as a mode of the tensor and the entries in the tensor capture the

status of the links between the different modes of the tensor. For Figure 5.1, a paper

by author by venue by term tensor (4-mode tensor), can be constructed where each

element captures who authored a paper, where it was published, and what terms were

present in that paper. Thus, the tensor succinctly encapsulates the relations between

different object types.

Formally, for a 3rd order tensor, X ∈ RI×J×K , Tucker decomposition approximates

the tensor into a core tensor, H ∈ RP×Q×S multiplied by a factor matrices along each

mode, A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×S:

X ≈ H×1 A×2 B ×3 C. (5.1)

The core tensor, H captures the level of interactions between the different compo-

nents, and the factor matrices, A,B,C, are often assumed to be column-wise or-

thonormal. We note that Tucker decomposition generalizes to any N -mode tensor,

does not impose column-wise orthonormal factor matrices nor does the core tensor

have a decreasing Frobenius norm along each matrix slice. In addition, the column

rank of each factor matrix can be different (i.e., P ̸= Q ̸= S) in the Tucker decompo-

sition. We refer the reader to [60, 92] for additional details.

Since each local filter encapsulates a community, the column rank of each factor
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matrix is set to be the same, P = Q = S. To compute the Tucker decomposition, we

use the higher-order orthogonal iteration (HOOI) algorithm as it is one of the more

efficient techniques. HOOI uses SVD to compute the orthonormal basis of each factor

matrix [28]. Moreover, the resulting core tensor and factor matrices can be seen as

the generalized counterparts of the matrix SVD. Thus, the superdiagonal entries of

the core tensor (Hiii,∀i ∈ [1, R]) are comparable to the singular values of SVD (i.e.,

diagonal entries in Σ). As a result, the number of communities can be calculated as

the point in which the superdiagonal values converge, similar in fashion to using the

Σ matrix in SVD to find the number of communities in a homogeneous network [99].

This eliminates the need for the user to grid search the number of filters M.

The next step is to identify the nodes that belong to each community. Without

loss of generality, we assume that the target object, α, corresponds to the first mode

of the tensor. Each object can then be represented in a low-dimensional vector space

(i.e., P << I) using the row vectors of the corresponding factor matrix A. Spectral

clustering is performed on A to identify the community members using M for each

node in the target object α. For simplicity of implementation, SR-CoMbEr uses the

k-means algorithm to generate a hard cluster assignment but the framework can use

any spectral clustering method. The graph for each community (local) filter is then

obtained by performing a fixed-size random walk starting with only nodes within the

community. Note that the community filters can contain not just nodes within the

same community but also other nodes that are connected during the random walk

process. The entire community detection process is summarized in Algorithm 1.

5.1.2 Community Multi-view Learning

Since random walk of G directly may fail to capture the complex structure, SR-

CoMbEr treats each link type as a different view of the network. For each link type

containing the target object α, a view of the community is created by performing
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Algorithm 1: Heterogeneous Community Detection in SR-CoMbEr.

Input: Graph G = (V , E , ϕ, ψ), ϕ : V → A, ψ : E → R
Output: Number of filters M, Communities C1, ..., CM

1 Construct tensor X from G;
2 Compute X ≈ H×1 A×2 B ×3 C using HOOI;
3 Set M based on convergence of values in the superdiagonal entries of H;
4 Detect communities of α, C1, C2, . . . , CM , using spectral clustering of A;
5 return M, C1, C2, . . . , CM ;

the fixed-size random walk using only this link type. For each community GCN m,

a view is constructed from each link type thus yielding |R| different representations,

Xm
1 , · · · , Xm

|R|. As an example, three views are constructed for Figure 5.1 with a

different link type (e.g., P – A, P – V, P – M). Thus, rather than having a sin-

gle community GCN, each community will have multiple view-specific filters of the

network.

Although each view contains a single link type, GCN still cannot be applied

directly because the neighbors of an object are of different types. Moreover, the

adjacency matrix is not a square matrix and thus cannot be fed into Equation (2.1),

where Ã is the square matrix. We thus use the idea of projection, introduced in

ie-HGCN [132], to ensure both object types are in the same space. Suppose the view

captures the link α–β, where Vα and Vβ represent the set of objects in the α and β

node type, respectively. Let Aα−β ∈ R|Vα|×|Vβ | denote the adjacency matrix between

α and β and the degree matrix Dα−β = diag(
∑

j A
α−β
ij ) ∈ R|Vα|×|Vα|. Every object is

then projected into the same space and passed to the GCN:

Ãα−β = (Dα−β)−1 · Aα−β

Xα−β = Ãα−β ·Wα−β (5.2)

where Ãα−β is the row-normalized matrix and Wα−β is the trainable convolution

weight matrix of α–β relation.
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The community embedding, Xm, should capture all the information from the

|R| views while reducing information redundancy that may be present in the views.

Moreover, certain views may learn better representations of the community. Thus,

to summarize the different view modalities simultaneously, SR-CoMbEr adopts the

multi-modal stacked autoencoder (MAE) [15]. MAE takes multiple input represen-

tations, concatenates the input together, and then passes this to an autoencoder

to induce a succinct, shared representation from which to reconstruct the original

(concatenated) inputs. Formally, the global consensus process for the shared repre-

sentation in the mth community GCN is:

Hm = MAE(Xm
1 , X

m
2 , . . . , X

m
|R|). (5.3)

5.1.3 Global Consensus

Since each community multi-view GCN representation Hm, captures community-

specific information, the learned representation can differ. We formulate the ag-

gregation of the community multi-view GCN representation as a multi-modal prob-

lem. Although the final shared representation can be computed as the average of

the community representations, this assumes each community is equivalent. In prac-

tice, some community representations are of higher quality and thereby should have

higher weights. MAE is used again to learn the final representation across the M

communities:

H = MAE(H1, H2, . . . , HM) (5.4)

The final embedding representation, H, is then used for a variety of tasks such as

classification, clustering, etc, where the loss function is tailored towards the specific
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Algorithm 2: The pseudocode of SR-CoMbEr.

Input: Graph G = (V , E , ϕ, ψ), ϕ : V → A, ψ : E → R
Number of localized filters M

Output: Final representation H

1 Compute M, C1, C2, . . . , CM using Algorithm 1;
/* Loop through the communities */

2 for i=1, ..., M do
/* Loop through the views */

3 for α− β ∈ R do

4 Run random walk on objects ∈ Cα
i and ∈ Cβ

i ;
5 Compute Xα−β according to Eq. (5.2);

6 end
7 Compute H i according to Eq. (5.3);

8 end
9 Compute loss and update parameters;

10 return H according to Eq. (5.4);

task. For example, in a multi-class node classification task, H is passed to a fully con-

nected layer with softmax activation, and the loss is defined as the cross-entropy over

the object type. The weights are then learned using stochastic gradient descent with

backpropagation. Algorithm 2 shows the overall training procedure of SR-CoMbEr.

5.2 Experimental Design

5.2.1 Data Preprocessing

We evaluate our model on the publicly available dataset provided by Cohen et al.

[26]. The detailed information is described in Table 2.1. The dataset includes 15

SRs (or topics) concerning different drug efficacies that were performed by members

of evidence-based practice centers (EPCs). In the dataset, each SR topic contains a

set of PubMed article identifiers (PMID) and their associated title/abstract screening

status (i.e., whether or not the article passed the title/abstract screening stage). The

PMID allows us to retrieve the metadata (citation, author, venue, and MeSH terms)
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Table 5.1: Comparison of baseline characteristics. The * symbol next to the model
name denotes a homogeneous network model. The columns MP, SS, and MVF repre-
sent meta-path specification, subgraph sampling, and multi-view fusion, respectively.

MP SS MVF Module Supervision

LINE∗ ✗ ✗ ✗ Skip-gram ✗

GCN∗ ✗ ✗ ✗ GCN ✓

HAN ✓ ✗ ✗ Transformer ✓

GAHNE ✗ ✓ ✓ GCN ✓

ie-HGCN ✗ ✓ ✓ GCN ✓

SR-CoMbEr ✗ ✓ ✓ GCN ✓

from the PubMed database. There exist other SR datasets [101], however, the dataset

does not contain the PMID. We extract a subset of articles from the PubMed database

using Entrez API1. Including all the articles from the Cohen dataset and using Entrez

API, we trace articles up to 3-hops based on the citation information and retrieve

about 7.6M articles with the meta-data including author, venue, and MeSH terms.

5.2.2 Baseline Models

We compare with five baselines spanning both homogeneous and HIN embedding

methods in the SR task. Table 5.1 compares the characteristics of baseline models.

• LINE [107]. A conventional network embedding method that uses first- and

second-proximity. Since it is designed for a homogeneous network, we transform

the HIN by collapsing the object and link types as a single type and using LINE

to learn the representation of the whole HIN.

• GCN [59]. A semi-supervised graph convolutional network that is designed

for a homogeneous network. Similar to LINE, we ignore the heterogeneity of

the network and collapse it into a homogeneous network.

• HAN [122]. A model to learn representations for HIN. It transforms the HIN

1https://www.ncbi.nlm.nih.gov/books/NBK25501/

https://www.ncbi.nlm.nih.gov/books/NBK25501/
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into several homogeneous sub-networks by user-defined meta-paths. For object-

level aggregation, it uses GAT [112], then uses an attention mechanism to fuse

object representations from each sub-network.

• GAHNE [70]. A model to learn representations for HIN. It converts the

network into a series of homogeneous sub-networks to capture the semantic

information. Then an aggregation mechanism fuses the sub-networks with sup-

plemental information from the whole network.

• ie-HGCN [132]. A HIN embedding model that evaluates all possible meta-

paths and projects the representations of different types of neighbor objects into

a common semantic space using object- and type-level aggregation.

5.2.3 Implementation Details

The source codes of the other baselines are provided by their authors and are im-

plemented in either PyTorch or TensorFlow. All experiments are conducted on a

machine with 1 Nvidia GeForce GTX 1080Ti and 11GB GPU memory. For each SR

task, we randomly split the articles in the SR into train-validation-test as 50%-25%-

25%, and use the validation set for the hyperparameter tuning. Articles not in the

target SR task are marked as irrelevant in the training process.

For the baseline models, we adopt the same hyperparameter settings introduced

in their respective papers. For LINE [107], we use a dimension of 128 for each first-

and second-order proximity resulting in a dimension of 256 for the final embedding.

For GCN [59], we use the learning rate of 0.01, the dropout rate of 0.5, and the L2

penalty weight decay of 0.0005. For HAN [122], the number of attention heads is set

to 8, and the meta-paths PAP, PMP, and APVPA are used (P: Paper, A: Author, M:

MeSH terms, and V: Venue). For GAHNE [70], we used a learning rate of 0.005, a

dropout of 0.5, an L2 penalty of 0.001, and a dimension of 128. For ie-HGCN [132],
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Table 5.2: Performance results (AUC score) for the SR task. The best score for each
SR is bolded and the second highest is underlined.

Dataset LINE GCN HAN GAHNE ie-HGCN SR-CoMbEr

ACEInhibitors 0.622 0.627 0.649 0.662 0.667 0.672
ADHD 0.597 0.605 0.621 0.644 0.646 0.659
Antihistamines 0.541 0.544 0.567 0.588 0.586 0.593
AtypicalAntipsychotics 0.601 0.607 0.617 0.638 0.636 0.641
BetaBlockers 0.629 0.632 0.658 0.671 0.677 0.684
CalciumChannelBlockers 0.636 0.64 0.662 0.67 0.666 0.688
Estrogens 0.577 0.583 0.607 0.629 0.626 0.631
NSAIDs 0.637 0.639 0.662 0.691 0.685 0.697
Opioids 0.632 0.635 0.654 0.667 0.671 0.686
OralHypoglycemics 0.555 0.559 0.582 0.591 0.583 0.598
ProtonPumpInhibitors 0.638 0.641 0.664 0.677 0.681 0.687
SkeletalMuscleRelaxants 0.64 0.643 0.658 0.672 0.677 0.684
Statins 0.606 0.609 0.633 0.653 0.659 0.665
Triptans 0.617 0.624 0.64 0.652 0.66 0.671
UrinaryIncontinence 0.633 0.639 0.658 0.678 0.675 0.683

the number of layers is set to 5, and the dimension for the four hidden layers starting

from the second layer is set to 64, 32, 16, and 8. For SR-CoMbEr, we use M = 12,

set the random walk length to 20, and the embedding dimension to 128. The Adam

optimizer [58] is used with a learning rate of 0.01 and all parameters are initialized

randomly. Dropout is used for all layers except the output layer with a dropout rate

of 0.5.

5.3 Empirical Results

The AUC on the Cohen dataset is reported in Table 5.2 for each SR. The best results

are bolded and the second-best results are underlined. The results show that HIN

embedding significantly outperforms homogeneous network embedding (LINE and

GCN). This demonstrates that not only citation information but also other node

types (author, venue, and MeSH terms) help to improve the performance of the SR

task.

From the table, we observe that SR-CoMbEr outperforms all other baselines from
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0.002 to 0.018 by comparing with the second-best AUC score. This indicates the

importance of effectively modeling the HIN and demonstrates the effectiveness of SR-

CoMbEr in the SR task. Between the existing HIN models, HAN shows the limitation

of the user-defined meta-path. The results suggest that there are more hidden but

important paths that are difficult for users to define. In contrast, the performance

between GAHNE and ie-HGCN is similar. GAHNE performs better when there

are more papers excluded from the abstract screening process. For example, the

“SkeletalMuscleRelaxants” dataset has a total of 1,643 articles in the beginning but

only 34 articles are selected from the abstract screening which is only 2.56%. While

GAHNE performs better in cases when fewer articles are selected, ie-HGCN performs

better in cases when more papers are selected. For example, “AtypicalAntipsychotics”

has a total of 1,120 articles in the beginning and 363 articles passed the screening

which is 32.41%.

5.4 Ablation Study

We assess the importance of each component in SR-CoMbEr for the final embedding.

LMV is a localized, multi-view model that does not use the heterogeneous community

detection component (i.e., Section 5.1.1). Each localized, multi-view filter is subsam-

pled using a random walk of all the nodes in the graph. Then the local representations

are aggregated using an average function. CoAvg extends LMV by using the commu-

nity detection module to construct the localized, multi-view filters. However, unlike

the SR-CoMbEr, it does not use the MAE to learn the shared representation from the

community filters (i.e., Equation (5.4) is replaced with H = AV G(H1, H2, ..., HM)).

Table 5.3 summarizes the AUC scores on the test set of the two different multi-view

learning techniques on the ACEInhibitors SR task. As shown in the table, incorporat-

ing the community information improves the performance (see CoAvg versus LMV).
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Table 5.3: Comparison of the AUC score using different community detection algo-
rithms on ACEInhibitors from the SR task.

LMV CoAvg CP SVD SR-CoMbEr

0.658 0.665 0.668 0.662 0.672

By leveraging the community structure, the embedding model can capture different

neighborhood information to learn a better representation. While the overall results

suggest that although the performance boost is less compared to the community de-

tection component, MAE is beneficial to automatically learn the weights from each

of the community representations for the final embedding.

To better understand the importance of the community detection algorithm, we

compared the performance using SVD to identify the communities using just one view

of the network [99] and CANDECOMP-PARAFAC (CP), a special case of Tucker

decomposition where the core tensor only has values along the superdiagonal entries

[60]. For SVD, let F ∈ Rm×n denote the adjacency matrix of the link type with the

largest number of nodes and the target node α. Under SVD, F = UΣV ∗, where

U ∈ Rm×p, V ∈ Rn×p matrix, and Σ ∈ Rp×p. Spectral clustering is then performed

in a similar fashion using M as the number of clusters on the target object, α, and

U as the low-dimensional embedding. For CP decomposition, the alternating least

square method is used to find the leading left singular values [45]. As shown in the

table, SR-CoMbEr (using the HOOI algorithm) for community detection outperforms

other techniques (see CP and SVD). While we identify 12 local filters for SR-CoMbEr

using HOOI, SVD identifies 9 and CP identifies 14. This shows the importance of

identifying the optimal number of filters as using too many or fewer filters can also

slightly degrade the performance.
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Chapter 6

Hyperbolic Representation

Learning for Graphs with Mixed

Hierarchical and Non-hierarchical

Structures

Graphs are popular data structures that contain entities (or nodes) and relations

(edges) between nodes. Most real-world graphs are a mixture of hierarchical and

non-hierarchical structures. Humans naturally use hierarchy to organize entity cate-

gories [94] with typical hierarchical structures denoted as a tree. The structure often

consists of an is-a relationship between abstractions such as “Elephant” is-a “Ungu-

late” and “Ungulate” is-a “Mammal”. As a motivating example from PGB, consider

the PubMed articles. Articles can cite each other (article-article link) and have a

non-hierarchical structure. Each article is also associated with one or more MeSH

terms. MeSH terms are controlled and hierarchically organized keywords created

and updated regularly by the National Library of Medicine and used for searching

biomedical and health-related information. The associated MeSH terms for an article
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can be within the same MeSH hierarchy or tree (i.e., terms that are supported by

a broader MeSH term) or can be in a different MeSH tree. As a result, knowing

the hierarchy relation can play an important role in identifying similar articles as

MeSH terms within the same tree are likely to be more similar than those in different

trees. Furthermore, it can be difficult to determine if two articles share the same

parents without incorporating the MeSH taxonomy. MeSH concepts exhibit a hierar-

chical structure and consist of multiple trees of different depths. Thus, modeling the

PubMed graph with citation and MeSH nodes necessitates handling both hierarchical

and non-hierarchical structures.

Unfortunately, most graph representation learning approaches focus on modeling

non-hierarchical structures by ignoring the hierarchical nodes or considering the hi-

erarchical (i.e., directed) link as an undirected form. One important characteristic of

hierarchical structures is that the number of leaf nodes increases exponentially as the

number of levels increases. As such, most graph representation learning approaches

suffer from distortion issues when embedding graphs with hierarchical structures. In-

stead, hyperbolic space has been proposed as an alternative to learning the latent

hierarchical structures in the context of embedding models [5, 18, 86, 94, 135]. A key

property of hyperbolic space is that the volume grows exponentially with the radius

and thus can naturally model the exponential growth in leaf nodes.

Poincaré embedding model [86] is one of the most popular hyperbolic space-

based embedding models. The learned node representations are defined within the

n-dimensional Poincaré ball such that parallel points along two lines grow exponen-

tially as the points get near the surface of the ball. A Poincaré embedding model

implicitly learns the representations of the hierarchy such that root nodes generally

lie at the origin while nodes at lower levels of the hierarchy will reside closer to the

surface of the ball. Yet there are several limitations to existing Poincaré-based em-

bedding models, as illustrated by our toy example in Figure 6.1. First, they assume
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(a) Mixed hierarchical and
non-hierarchical structures

(b) Poincaré embedding

Figure 6.1: A toy example of hierarchical structures with four trees, and the results
of Poincaré embedding. The circle nodes are from the hierarchical structure, and the
star and square nodes are non-hierarchical structures. Some edges are not illustrated
in (a) for simplicity. Note that non-hierarchical structures are not shown in (b).

a hierarchical structure with a single root node and may not yield reasonable rep-

resentations in the presence of multiple nodes (e.g., multiple trees within PubMed).

As shown in Figure 6.1(b), none of the 4 roots are embedded close to the origin.

Second, when there is a poly-hierarchical structure (i.e., a child can have multiple

parents from different trees), the implicit modeling of the hierarchy can result in rep-

resentations where the child resides closer to the origin than the parent. As shown

in Figure 6.1(b), the poly-hierarchical structure results in C and B embedded with

a similar distance from the origin. Third, there are only a few hyperbolic embedding

models that consider graphs with mixed hierarchical and non-hierarchical structures

and leverage the hierarchical structures to learn better representations for the non-

hierarchical structures. However, it still remains difficult to transform two different

spaces. Last, embedding was developed for the unsupervised setting, recent work has

focused on the semi-supervised or supervised setting, partly due to the advantages of

graph neural networks.

To address the above limitations, we propose HypMix, an unsupervised Hyperbolic

representation learning model for graphs with Mixed hierarchical and non-hierarchical

structures. For graphs with hierarchical structures that contain multiple root nodes,
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(a) Root Regularization (b) Child Regularization
(c) Non-hierarchical
structure embedding

Figure 6.2: A toy example of embedding results after applying each component.
Note that non-hierarchical structures are not shown in (a) and (b). (c) shows the
embedding results of using a hyperbolic entailment cone, and the shadowed area
shows the region in the nodes in the non-hierarchical structure can reside. The star
node in (c) is the node from a non-hierarchical structure from Figure 6.1(a).

we propose a regularization term to embed the root nodes close to the origin of the

Poincaré ball. To tackle challenges related to poly-hierarchical structures, we propose

two regularizations: (1) a distance-based restriction to embed parent nodes closer to

the origin than their children and (2) using the hyperbolic entailment cone [33] to

ensure 2 children reside in a similar Poincaré region. We also introduce the use of the

hyperbolic entailment cone to the non-hierarchical structures to better embed these

nodes in the Poincaré ball. We conduct extensive experiments across 3 real-world SR

tasks to demonstrate the effectiveness of HypMix over existing baselines. We also

perform an ablation study to better understand the benefits of the three components

of our model.

6.1 HypMix

HypMix adopts Poincaré embedding [86] which learns the representation of hierar-

chical structure into a hyperbolic space or an n-dimensional Poincaré ball. However,

the basic Poincaré embedding model does not always learn the representation that

preserves the hierarchical structure. For example, Poincaré embedding model cannot
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handle multiple root nodes which leads the root nodes to be placed in the outer part

of the hyperbolic space than their child nodes as shown in Figure 6.1(a). Also, some

parent nodes are located further from the origin compared to their child node be-

cause of the poly-hierarchical structures. Another limitation of Poincaré embedding

is that it is a model only for hierarchical structure which makes it difficult to learn the

representation with non-hierarchical structures. To resolve these limitations, we use

two regularizations to learn a better representation of the hierarchy structure and use

hyperbolic entailment cone [33] to also learn the representation of non-hierarchical

structures.

6.1.1 Root Regularization

One limitation of existing Poincaré-based models is the implicit design for a hierarchi-

cal structure with a limited number of roots (i.e., a small number of trees). However,

some hierarchical taxonomies may have multiple categories or concepts that can be

further separated into subcategories. For example, the MeSH contains 115 root nodes.

Unfortunately, when the hierarchical structure encompasses multiple trees, the root

embeddings of the tree may reside closer to the surface of the Poincaré ball (as shown

in Figure 6.1). This restricts the embedding space to learn the hierarchical structure

of subsequent children nodes and thus may result in suboptimal leaf embeddings.

To address the limitation of existing Poincaré-based embedding models for hi-

erarchical structures with multiple root nodes, we propose a regularization term to

encourage the root node to reside close to the origin. In this manner, the subtree has

sufficient space and more flexibility to better preserve deeper trees. Formally, given

a root node, root, we denote the distance to the origin, origin as d(origin, root) and

require the root node to be within a certain δ such that d(origin, root) < δ. The

distance metric is denoted in Equation 2.4. Figure 6.2(a) shows the results of root

regularization with our motivating toy example shown in Figure 6.1. As shown in
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Figure 6.1(b), an unconstrained Poincaré-based embedding model may place one or

more of the root nodes near the surface of the hyperbolic space. In comparison, our

root regularization term, shown in Figure 6.2(a), will force all the root nodes to lie

near the origin.

6.1.2 Child Regularizations

Another limitation of the Poincaré embedding model is that it only implicitly captures

the hierarchical structure. As such, it may not be able to distinguish which node

is a child or parent and place child nodes closer to the origin than their parents.

This is particularly difficult for a poly-hierarchical structure where a node may have

parents from different trees. For example, MeSH is a poly-hierarchical ontology where

concepts can belong to multiple categories. Figure 6.1(b) illustrates an example of

where the Poincaré confuses a child and parent due to the poly-hierarchical structure.

In this scenario, the ideal representation is the parent embedding residing closer to

the origin than the child.

Distance-based Child Regularization.

We first propose a regularization term that restricts a parent from being further in

distance from the origin than its child. Similar to the root regularization, given a

parent node and a child node, we compute 2 additional distances, d(origin, parent)

and d(origin, child using Equation (2.4). We then enforce the model to learn a repre-

sentation such that d(origin, parent) < d(origin, child). Figure 6.2(b) demonstrates

the learned embedding after the child regularization is applied to Figure 6.1(b). We

briefly note that root regularization is not applied in this scenario. As shown in the

figure, the child node resides further from the origin than its parent node and explic-

itly preserves the hierarchical structure where nodes at lower levels will be closer to

the surface of the ball.
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Hyperbolic Entailment Cone Regularization.

The above distance-based child regularization can help preserve the relationship be-

tween one parent and one child, yet may not ensure two children of the same parent

reside in a “similar” Poincaré region. As such, we posit that a partial ordering where

each subtree naturally defines the Poincaré region can further improve the learned

embedding of the nodes within the tree. The idea is that a parent node will define

a cone in the Poincaré space for which its children can be placed and allows better

differentiation of the node embeddings between multiple trees. Thus if a child shares

two parents, then it can only be nested in the intersection of the two cones defined

by the parents. To achieve this, we leverage the hyperbolic entailment cone [33] to

place the children nodes within the hyperbolic cones defined by the parent. Figure

6.1(c) shows the illustration of using a hyperbolic entailment cone in a hierarchical

structure.

6.1.3 Non-hierarchical Structure Embedding

Across many real-world graphs, their nodes may capture both hierarchical and non-

hierarchical structures. The above regularizations (root, distance-based root, and hy-

perbolic entailment cone) can preserve the hierarchical structures, yet do not account

for links to nodes that may not have a non-hierarchical structure. As a motivating

example, each PubMed article can be tagged with multiple MeSH categories (which

exhibit a hierarchical structure) yet the articles themselves do not have a hierarchical

structure. As such, the natural question is how to leverage the hierarchical structure

to better embed the non-hierarchical nodes in the hyperbolic space.

Suppose we have two node types, H = {h1, h2, ..., hn} and V = {v1, v2, ..., vm},

where there is a hierarchical relationship between the nodes in H, the nodes in V have

non-hierarchical structure (i.e., can be linked to each other but not as a parent-child

relationship), and there are non-hierarchical links between H and V . Note that any
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nodes in V can have multiple relations with the nodes in H, and linked nodes in H

can be located at any level in the tree. In this scenario, the hierarchical structure of

H can serve as a guideline to learn the representation of the nodes in V . Our idea

is that any node vi that is linked to a node in hk should then naturally reside in

the same angular cone region defined by the node through the hyperbolic entailment

cone. Thus, nodes in a non-hierarchical structure are also subject to residing within

the hyperbolic entailment cone of the hierarchical nodes. The blue area in Figure

6.1(c) is the region where the nodes in non-hierarchical structures can be located.

6.2 Experimental Design

6.2.1 Data Preprocessing

We evaluate our model on 15 SRs provided by Cohen et al. [26], 3 SRs provided

by SWIFT-Review [49], and 3 SRs from CLEF-TAR [55] dataset. We follow the

experimental setting used for PGB [65]. The detailed information is explained in

the Section 4.4.1. Based on each SR dataset, a subset of the entire PGB graph is

constructed and the graph is split into three train-test trials of 70%-30%, respectively.

Table 2.1 summarizes the statistics for the abstract screening process for each SR topic

across the 3 SR datasets. For the SR task, we use two node types, Paper (P) and

MeSH terms (M), and three edge types, P – P, P – M, and M – M. The edge type,

M – M, has a hierarchical structure and others are non-hierarchical.

6.2.2 Statistics of Hierarchical Structures

Hyperbolicity is a measure of how hierarchical the graph is and is defined as follows

[39]:

Definition 2. Hyperbolicity. Let a,b,c,d are the nodes of the graph, let S1, S2,
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Table 6.1: Statistics of the MeSH hierarchies.

Statistics Value

# of root nodes 115
# of total nodes 30191
Avg. of # of leaf nodes 391.93
Avg. of # of nodes 541.89
Avg. of Depth 6.43
Avg. of Hyperbolicity 3.53

and S3 be defined by

S1 = dist(a, b) + dist(d, c)

S2 = dist(a, c) + dist(b, d)

S3 = dist(a, d) + dist(b, c)

(6.1)

and let M1 and M2 be the two largest values between S1, S2, and S3. We define

hyp(a, b, c, d) = M1 −M2, and the hyperbolicity δ(G) of the graph is the maximum

of hyp over all possible 4-tuples (a, b, c, d) divided by 2. That is, the graph is said

δ-hyperbolic when

δ(G) =
1

2
maxa,b,c,d∈V (G)hyp(a, b, c, d) (6.2)

A hyperbolicity value of 0 means the graph is a tree. In other words, a hyperbolicity

value closer to 0 means that the graph is more hierarchical. The hyperbolicity of a

graph is the maximum over all its biconnected components.

Table 6.1 provides summary statistics of the hierarchical structures of the MeSH

tree. MeSH trees have 115 unique trees with a total of 30,191 unique MeSH terms.

The results suggest that most of the individual trees are wide (the average number

of leaf nodes is 391.93) but not deep (average depth is 6.43). The MeSH hierarchy

structure also contains the poly-hierarchical structure where one node has multiple

parents from two different trees. For example, there are two roots, Body Regions

and Sense Organs. Both trees contains Eye as a child node such as BodyRegions→

Head→ Face→ Eye, and SenseOrgans→ Eye. As shown in the table, the average



77

hyperbolicity of each tree is 3.53 which suggests that MeSH terms might benefit from

explicitly modeling this hierarchical structure.

6.2.3 Baseline Models

In this section, we discuss the baseline model that we use to evaluate our model.

We also analyze each component that we propose. As HypMix is an unsupervised

model, we also compare it with a conventional network embedding model that uses

the Euclidean space. We use a softmax layer to learn the classifier. For LINE, we use

the dimension size d = {50, 100, 256} which means that for d = 50, we use 25 for each

first- and second-proximity, and for d = 100, we use 50 for each proximity. For other

hyperbolic embedding models, we use d = {2, 10, 20, 30, 50} for the dimension size.

For all the baselines, we used a single g4dn AWS instance with NVIDIA T4 GPU.

• LINE [107]: LINE is a conventional network embedding model that uses first-

and second-proximity using the joint probability between two nodes. LINE is

an unsupervised network embedding model which learns the representation in

the Euclidean space.

• Poincaré Embedding [86]: Poincaré Embedding model learns the representation

in the hyperbolic space. This is the model that does not use any regularization

or hyperbolic entailment cones for learning the representations.

• HypMixroot: On top of Poincaré embedding model, this setting only applies the

root regularization technique.

• HypMixchild: On top of Poincaré embedding model, this setting only applies the

child regularization technique.

• HypMixcone: In addition to all the regularization techniques (root and child

regularization), this setting uses the hyperbolic entailment cone to embed the
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hierarchical structure but does not use it for non-hierarchical structures.

• HypMix: This setting uses all the techniques we proposed.

6.3 Empirical Results

The AUC score on the three splits is reported in Table 6.2 for each SR. The results

are on average of the AUC score of three trials, and the reported results use using

dimension size of 50 for all the baseline models. The best results are bolded and the

second-best results are underlined. The results show that HypMix outperforms the

other baseline models (LINE and Poincaré). This demonstrates that not only citation

information but also MeSH hierarchy information helps to improve the performance

of the SR task.

From the table, we observe that HypMix outperforms all other baselines from

0.005 to 0.024 by comparing with the second-best AUC score. This indicates the im-

portance of effectively modeling both the hierarchical and non-hierarchical structures.

Moreover, it demonstrates the effectiveness of HypMix in the SR task. Between the

original Poincaré embedding model and HypMix, the results show that HypMix sig-

nificantly outperforms the former and highlights the effectiveness of the components

that we propose. It also shows that the original Poincaré embedding model cannot

handle multiple trees and mixed node types. By comparing the results with LINE

which uses Euclidean space, HypMix outperforms LINE which illustrates the the im-

portance of using hyperbolic space for hierarchical relations. Although LINE uses a

dimension size of 256, HypMix outperforms LINE by only using the dimension size

50. In addition, in some cases, HypMixcone outperforms LINE.

Although each of the regularization techniques can improve performance, it is

not consistent across all the 21 SR reviews. For the root regularization, HypMixroot,

there are slightly more mixed results as the improvement ranges between -0.005 to
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Table 6.2: Performance results (AUC score) for the SR task. The best score for each
SR is bolded and the second highest is underlined.

Dataset LINE Poincaré HypMixroot HypMixchild HypMixcone HypMix

Cohen-ACEInhibitors 0.572 0.524 0.534 0.532 0.556 0.589
Cohen-ADHD 0.538 0.522 0.523 0.533 0.539 0.552
Cohen-Antihistamines 0.552 0.518 0.514 0.534 0.547 0.567
Cohen-AtypicalAntipsychotics 0.556 0.522 0.523 0.534 0.552 0.561
Cohen-BetaBlockers 0.581 0.554 0.551 0.555 0.579 0.59
Cohen-CalciumChannelBlockers 0.588 0.549 0.555 0.559 0.581 0.599
Cohen-Estrogens 0.542 0.53 0.529 0.534 0.539 0.548
Cohen-NSAIDS 0.564 0.536 0.535 0.54 0.568 0.588
Cohen-Opioids 0.592 0.544 0.539 0.546 0.583 0.606
Cohen-OralHypoglycemics 0.511 0.502 0.502 0.504 0.51 0.535
Cohen-ProtonPumpInhibitors 0.592 0.523 0.527 0.533 0.585 0.61
Cohen-SkeletalMuscleRelaxants 0.594 0.534 0.532 0.542 0.581 0.612
Cohen-Statins 0.556 0.534 0.543 0.542 0.558 0.577
Cohen-Triptans 0.573 0.53 0.534 0.544 0.565 0.596
Cohen-UrinaryIncontinence 0.597 0.537 0.542 0.543 0.569 0.609

SWIFT-Transgenerational 0.628 0.566 0.579 0.577 0.632 0.645
SWIFT-PFOS-PFOA 0.629 0.572 0.581 0.573 0.622 0.641
SWIFT-BPA 0.558 0.518 0.524 0.523 0.552 0.57

CLEF-Prognosis-CD012661 0.573 0.532 0.54 0.538 0.576 0.598
CLEF-DTA-CD008803 0.582 0.544 0.554 0.552 0.579 0.604
CLEF-Intervention-CD005139 0.603 0.556 0.566 0.561 0.596 0.627

0.013. For the child regularization, HypMixchild, the improvement of the score is 0.001

to 0.016. This indicates that the root regularization itself does not always help to

learn the better representation as there are more nodes that are not root. Once we

apply the hyperbolic entailment cone, the performance significantly improves. By

comparing with the Poincaré embedding model, HypMixcone outperforms from 0.008

to 0.066. This shows that the hyperbolic entailment cone plays an important role in

learning a representation of hierarchical relations.

Poincaré embedding, HypMixroot, and HypMixchild have similar results. The dif-

ference between Poincaré embedding and the other two settings is relatively small

from -0.002 to 0.001. This shows that the original Poincaré embedding works with a

small hierarchical structure. Once the hyperbolic entailment cone is applied, the per-

formance significantly increases which is similar to the SR task. For both datasets,

HypMixcone even outperforms LINE by 0.026 for DBLP, and 0.028 for the YELP

dataset. The table shows that HypMix significantly outperforms all the baseline mod-
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(a) Poincaré Embedding (b) After root regularization

Figure 6.3: Examples of a Poincaré Embedding with the dimension size of two using
the MeSH hierarchy. The red dot denotes the root nodes and the blue dots denote
other nodes.

els. HypMix outperforms LINE with 0.051 and 0.041 in the AUC score for DBLP

and YELP, respectively. Also HypMix outperforms HypMixcone with 0.025 for DBLP

and 0.013 for YELP. This means that the hyperbolic entailment cone regularization

is important to learn a better representation of hierarchical structure and also it

well-supports to embed non-hierarchical structures.

6.4 Case Study

One limitation of Poincaré embedding is the difficulty of handling multiple trees. To

better understand this, we perform a case study on the MeSH hierarchy. Figure 6.3

depicts an example of the original Poincaré Embedding using the MeSH hierarchy

where the red dots are the root nodes and all other nodes are blue dots. As can

be seen, the roots are distributed throughout the hyperbolic space. This limits the

space to learn the representation of the hierarchical structure. For example, if the

root resides closer to the surface of the ball then there will be not enough space to

embed the children of the root. Once we apply our root regularization, the roots will

be located close to the origin of the space, as shown in Figure 6.3(b). This shows
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(a) Partial Mesh Hierarchy
(b) Poincaré
Embedding

(c) After child
regularization

Figure 6.4: Examples of a Poincaré Embedding with the dimension size of two using
the MeSH hierarchy. (a) shows the partial MeSH hierarchy that is used to illustrate
the embedding results in (b) and (c).

that root regularization helps to reserve enough space to capture the subtrees.

Another limitation of Poincaré embedding is that it implicitly learns the hierarchi-

cal structure. As a result, the child nodes can reside closer to the origin compared to

the parent node as shown in Figure 6.4. Figure 6.4(a) shows the partial MeSH tree for

the highlighted points in Figures 6.4(b) and (c). Note that only child regularization

is applied in Figure 6.4(c). As shown in the figure, Islets of Langerhands is a child

node of Pancreas. However, in Figure 6.4(b) for the Poincaré embedding, Islets of

Langerhands is located closer to the origin than Pancreas. Once we apply child regu-

larization, as shown in 6.4(c), Pancreas is embedded closer to the origin than Islets of

Langerhands. However, still Pancreas is located closer to the origin compared to its

parent node Digestive System and suggests not only child regularization is important,

but also root regularization is necessary to reserve enough space for the descendent

nodes.

6.5 Impact of Dimension Size

We also compare the model performance with different dimension sizes for hyperbolic

and Euclidean space. For LINE which uses the Euclidean space for graph repre-

sentation learning, we use the dimension size d = {50, 100, 256}. For the hyperbolic
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(a) Cohen-Opioids
(Hyperbolic)

(b) SWIFT-Transgenerational
(Hyperbolic)

(c) CLEF-DTA-CD008803
(Hyperbolic)

(d) Cohen-Opioids
(Euclidean)

(e) SWIFT-Transgenerational
(Euclidean)

(f) CLEF-DTA-CD008803
(Euclidean)

Figure 6.5: Comparison of the performance with different dimension sizes on Hyper-
bolic and Euclidean space.

embeddings, we use d = {2, 10, 20, 30, 50} for the dimension size. Figure 6.5 shows the

results from three SR tasks, Cohen-Opioids, SWIFT-Transgenerational, and CLEF-

DTA-CD00803. The hyperbolic results show a similar trend where Poincaré embed-

ding, HypMixroot, and HypMixchild have similar results as the dimension size increases.

The performance of HypMixcone and HypMix increases as the dimension size increases.

These results show that to learn the representation of a complex hierarchical struc-

ture, the model requires a higher dimension size. For the Euclidean space, we see a

similar trend as HypMixcone and HypMix, however, it is important that the dimen-

sion size of the hyperbolic space is still smaller than the Euclidean space and offers a

better performance.



83

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we propose several models for automating the abstract screening

process for SR using network embedding models.

We first proposed a model which uses the Multi-modal Missing Data aware Stacked

Autoencoder (MMiDaS-AE) — inspired by [15] — for biomedical citation screening.

We showed that this multi-modal approach, which treats title/abstract texts, citation

networks, and topics as separate modalities and explicitly models these, outperforms

prior models in inter-topic settings. Further, in the topic-specific (intra-topic) setting,

our fine-tuned MMiDaS-AE outperforms alternative approaches.

Second, we illustrate the rich metadata fields found in biomedical literature. Al-

though there exist many studies that use HIN embedding for various tasks such as

node classification, link prediction, and SR, no existing data fully captures all the

available information found in PubMed. We construct PGB, a biomedical literature

bibliographic dataset, that contains 11 fields of metadata. The strength of PGB is

not only that it contains multiple types of nodes and edges, but also captures a

hierarchical structure on one of its nodes.
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Third, we propose SR-CoMbEr to learn citation network representations for SRs

using the rich metadata in PGB. To avoid defining the meta-path, we formulate the

problem using multi-view learning to automatically capture the semantics of HIN.

To encode the structural heterogeneity and neighborhood information, we use com-

munity detection and multiple community-based views of the network and fuse the

representations to obtain the final representation. We also introduce the use of HOOI

to compute the optimal number of filters in concert with community detection. The

experiments on 15 SR topics show that SR-CoMbEr outperforms several state-of-the-

art HIN embedding models.

Finally, we propose HypMix, an unsupervised hyperbolic representation learning

for graphs with mixed hierarchical and non-hierarchical structures, to better capture

the hierarchical structure of the MeSH terms. We address the limitations of the

Poincaré embedding model for handling multiple roots and poly-hierarchical struc-

tures. We propose root regularization to learn the representations of the root nodes

to locate closer to the origin of the hyperbolic space. We propose child regulariza-

tions so that the parent node will reside closer to the origin than its child nodes,

and the child will reside in the region of the parent. Also to learn the representation

of the non-hierarchical structure, we adopt a hyperbolic entailment cone by defining

the region for the hierarchical structures so that we can also define the region of the

non-hierarchical nodes. The extensive experiments on 21 real-world SR tasks show

that HypMix outperforms existing unsupervised graph representation learning mod-

els. The case study shows the importance of each component and also shows that

hyperbolic space performs better than Euclidean space with a smaller dimension size.

7.2 Future Work

This dissertation can be extended from the following aspects.
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• Add supervision to HypMix: The model we proposed for the hierarchical embed-

ding is an unsupervised method. A supervised model for hierarchical embedding

has not been extensively studied, however, supervision should play an impor-

tant role in our task. Some work [104, 133] were proposed to use supervision in

hierarchical embedding, but are not exactly related to our task as they do not

tackle the mixed structure.

• Combination of HIN embedding and hierarchical embedding: We showed the ef-

fectiveness of incorporating the metadata available in biomedical literature. We

provided PGB, a new PubMed benchmark, which can help to extract metadata

information easily. We proposed MMiDaS-AE to illustrate the importance of ci-

tation network, SR-CoMbEr to demonstrate how incorporating non-hierarchical

metadata improves the result by using HIN embedding, and HypMix to display

the effectiveness of incorporating hierarchical information. The next step can

entail combining HIN embedding and hierarchical embedding, however, the dif-

ficulty is combining Euclidean space (HIN embedding) and hyperbolic space

(hierarchical embedding).

• Adding text information: Most of the existing works [46, 91, 117, 119] are

simple text-based methods such as bag-of-words or TF-IDF. This shows that

the text information (title and abstract) is easy to access and also important in

SR tasks. Thus, on top of HIN embedding including the hierarchical structures,

using language models should play an important role that can significantly

improve the performance of SR.

• Exploration on Large Language Model: Recent studies proposed powerful large

language models such as LLaMA [109] and generative AI models such as Chat-

GPT [90]. However, there are only a few works [126] that use a large language

model on SR, and none of them compare the performance with the network em-
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bedding model using the metadata. It is important to understand the impact of

the large language model, and it is necessary to compare the performance with

the network embedding using the metadata. Also, we can serialize the metadata

with the textual data into a large language model to improve the performance

of SR.
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curvature representations in product spaces. In International conference on

learning representations, 2018.

[42] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan

Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Ra-

poso, Adam Santoro, et al. Hyperbolic attention networks. arXiv preprint

arXiv:1805.09786, 2018.

[43] Neal R Haddaway and Martin J Westgate. Predicting the time needed for

environmental systematic reviews and systematic maps. Conservation Biology,

6:136, October 2018.

[44] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs. arXiv preprint arXiv:1706.02216, 2017.



93

[45] Richard A Harshman et al. Foundations of the parafac procedure: Models and

conditions for an” explanatory” multimodal factor analysis. 1970.

[46] Kazuma Hashimoto, Georgios Kontonatsios, Makoto Miwa, and Sophia Ana-

niadou. Topic detection using paragraph vectors to support active learning in

systematic reviews. Journal of biomedical informatics, 62:59–65, 2016.

[47] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on

graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

[48] Brian E Howard, Jason Phillips, Kyle Miller, Arpit Tandon, Deepak Mav, Mi-

hir R Shah, Stephanie Holmgren, Katherine E Pelch, Vickie Walker, Andrew A

Rooney, Malcolm Macleod, Ruchir R Shah, and Kristina Thayer. Swift-review:

A text-mining workbench for systematic review. Systematic Reviews, 5(1):87,

May 2016.

[49] Brian E Howard, Jason Phillips, Kyle Miller, Arpit Tandon, Deepak Mav, Mi-

hir R Shah, Stephanie Holmgren, Katherine E Pelch, Vickie Walker, Andrew A

Rooney, et al. Swift-review: a text-mining workbench for systematic review.

Systematic reviews, 5:1–16, 2016.

[50] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets

for machine learning on graphs. In Advances in Neural Information Process-

ing Systems 33: Annual Conference on Neural Information Processing Systems

2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[51] Sarthak Jain, Edward Banner, Jan-Willem van de Meent, Iain J. Marshall,

and Byron C. Wallace. Learning disentangled representations of texts with

application to biomedical abstracts. In Proc. of EMNLP, 2018.



94

[52] Hyunchul Jang, Jaesoo Lim, Joon-Ho Lim, Soo-Jun Park, Kyu-Chul Lee, and

Seon-Hee Park. Finding the evidence for protein-protein interactions from

PubMed abstracts. ArXiv preprint, 2022.

[53] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A sys-

tematic study. Intelligent data analysis, 6(5):429–449, 2002.

[54] Minhao Jiang, Xiangchen Song, Jieyu Zhang, and Jiawei Han. Taxoenrich:

Self-supervised taxonomy completion via structure-semantic representations. In

Proceedings of the ACM Web Conference 2022, pages 925–934, 2022.

[55] Evangelos Kanoulas, Dan Li, Leif Azzopardi, and Rene Spijker. Clef 2019

technology assisted reviews in empirical medicine overview. In CEUR workshop

proceedings, volume 2380, 2019.

[56] Tom Kenter, Alexey Borisov, and Maarten De Rijke. Siamese cbow: Op-

timizing word embeddings for sentence representations. arXiv preprint

arXiv:1606.04640, 2016.

[57] Madian Khabsa, Ahmed Elmagarmid, Ihab Ilyas, Hossam Hammady, and

Mourad Ouzzani. Learning to identify relevant studies for systematic reviews

using random forest and external information. Machine Learning, 102:465–482,

2016.

[58] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[59] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In Proc. of ICLR, 2017.

[60] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.

SIAM review, 51(3):455–500, 2009.



95

[61] Georgios Kontonatsios, Austin J Brockmeier, Piotr Przyby la, John McNaught,

Tingting Mu, John Y Goulermas, and Sophia Ananiadou. A semi-supervised

approach using label propagation to support citation screening. Journal of

biomedical informatics, 72:67–76, 2017.

[62] Ioannis Koulouridis, Mansour Alfayez, Thomas A Trikalinos, Ethan M Balk,

and Bertrand L Jaber. Dose of erythropoiesis-stimulating agents and adverse

outcomes in ckd: a metaregression analysis. American Journal of Kidney Dis-

eases, 61(1):44–56, 2013.

[63] Martin Krallinger, Florian Leitner, and Alfonso Valencia. Analysis of biological

processes and diseases using text mining approaches. Methods in molecular

biology, 2010.

[64] Quoc Le and Tomas Mikolov. Distributed representations of sentences and

documents. In International conference on machine learning, pages 1188–1196,

2014.

[65] Eric W Lee and Joyce C Ho. Pgb: A pubmed graph benchmark for heteroge-

neous network representation learning. arXiv preprint arXiv:2305.02691, 2023.

[66] Eric W Lee and Joyce C Ho. Sr-comber: Heterogeneous network embedding us-

ing community multi-view enhanced graph convolutional network for automat-

ing systematic reviews. In European Conference on Information Retrieval, pages

553–568. Springer, 2023.

[67] Eric W Lee, Byron C Wallace, Karla I Galaviz, and Joyce C Ho. Mmidas-ae:

multi-modal missing data aware stacked autoencoder for biomedical abstract

screening. In Proceedings of the ACM Conference on Health, Inference, and

Learning, 2020.



96

[68] Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural

architectures from sequence and graph kernels. In International Conference on

Machine Learning, pages 2024–2033. PMLR, 2017.

[69] Ivan Lerner, Perrine Créquit, Philippe Ravaud, and Ignacio Atal. Automatic

screening using word embeddings achieved high sensitivity and workload reduc-

tion for updating living network meta-analyses. Journal of clinical epidemiology,

108:86–94, 2019.

[70] Xiaohe Li, Lijie Wen, Chen Qian, and Jianmin Wang. Gahne: Graph-

aggregated heterogeneous network embedding. In 2020 IEEE 32nd Interna-

tional Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2020.

[71] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated

graph sequence neural networks. In Proc. of ICLR, 2016.

[72] Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel Weld.

S2ORC: The semantic scholar open research corpus. In Proc. of ACL, 2020.

[73] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming

He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. Are we really

making much progress? revisiting, benchmarking and refining heterogeneous

graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining, 2021.

[74] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo

Sprechmann, and Yann LeCun. Disentangling factors of variation in deep rep-

resentation using adversarial training. In Advances in Neural Information Pro-

cessing Systems, pages 5040–5048, 2016.

[75] Stan Matwin, Alexandre Kouznetsov, Diana Inkpen, Oana Frunza, and Peter

O’Blenis. A new algorithm for reducing the workload of experts in performing



97

systematic reviews. Journal of the American Medical Informatics Association,

17(4):446–453, 2010.

[76] Manuele Michelessi, Ersilia Lucenteforte, Francesco Oddone, Miriam Brazzelli,

Mariacristina Parravano, Sara Franchi, Sueko M Ng, and Gianni Virgili. Optic

nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database

of Systematic Reviews, (11), 2015.

[77] Makoto Miwa, James Thomas, Alison O’Mara-Eves, and Sophia Ananiadou.

Reducing systematic review workload through certainty-based screening. Jour-

nal of biomedical informatics, 51:242–253, 2014.

[78] David Moher, Alessandro Liberati, Jennifer Tetzlaff, Douglas G Altman, and

The PRISMA Group. Preferred Reporting Items for Systematic Reviews and

Meta-Analyses: The PRISMA Statement. PLOS Medicine, 6(7):e1000097, July

2009.

[79] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo-

boda, and Michael M Bronstein. Geometric deep learning on graphs and man-

ifolds using mixture model cnns. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5115–5124, 2017.
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