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Abstract 

 

Satellite-Based Daily Ground Ozone Estimates in California, Using Machine Learning 

Methods  

 

By Wenhao Wang 

 

 

Exposure to the ground-level ozone can trigger a variety of health problems as well as 

ecological impacts. To estimate ground-level ozone concentration, seldom satellite-based 

machine learning models were used in the prediction for large spatial and temporal 

coverage due to the lack of adequate satellite products. Troposphere Monitoring 

Instrument (TROPOMI) on board of the Sentinel 5 Precursor can provide high quality 

and relatively high-resolution gas pollutants data for the model of prediction the ozone. 

We aim to develop a high-performance TROPOMI satellite-driving machine learning 

model to estimate the daily maximum 8-hour average ground-level ozone concentration 

at a spatial resolution of square 10 kilometers in the state of California from May 2018 to 

April 2019 combined with predictors including meteorological fields, land-use variables. 

All predictors data and ground measurement of ozone are re-gridded to the 10  10 

kilometers grid we create to build a random forest model setting the daily ground 

concentration in each pixel of the grid as the outcome. Our model achieved overall 10-

fold cross-validation (CV) R2 of 0.83 with random mean square error (RMSE) of 5.91 

ppb, indicating a good fit between model prediction and observation. Our model achieved 

a good prediction on the ground-level ozone concentration in California, supporting the 

feasibility and advantage of application TROPOMI satellite product and machine 

learning method in the prediction of ground-level ozone concentration. The result of our 

model can be applied in future epidemiological studies as well as the strategies studies in 

the control of ground-level ozone pollution. 
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1. Introduction 

The ground-level ozone (O3) pollution is an emerging public health over the past decades 

to future that quantities of epidemiological studies have proved that the exposure to 

ozone is associated with adverse health outcomes (Nuvolone, Petri, & Voller, 2017; 

Zhao, Markevych, Romanos, Nowak, & Heinrich, 2018). As evidences showed the ozone 

is getting higher over the past decades, the ground level ozone pollution is predicted to 

increase company with the global warming (Orru, Ebi, & Forsberg, 2017). Previous 

ground-level ozone related epidemiology studies applied ground monitor stations to 

represent the ambient ozone concentration for the are each ground stations located, 

meaning the lack of the assigning accurate ozone exposure to individuals at different 

location with distinguish ozone exposure pattern (Vicedo-Cabrera, et al., 2020). A 

precision ozone exposure model with large spatial coverage and fine spatial resolution is 

needed for the future ozone-related epidemiology study in the addressing potential 

adverse health outcome of long-term exposure to ozone among common population. 

The understanding of the ozone reaction mechanism can be very important in the control 

of the ozone pollution as well as a modeling of the ozone exposure data. Ground-level 

ozone is a secondary air pollutant created by the chemical reaction between the nitrogen 

oxides (NOx) and violative organic compounds (VOCs) induced by the sunshine which is 

highly related to the human activities as well as the natural emission (Fenger, 2009; Levy, 

et al., 1997). As the formation of the ozone, human activities including industrial and 

vehicles emission act as the major source of the anthropogenic NOx and VOCs which are 

the precursors for the formation reaction of the ground-level ozone (Stowell, et al., 2017).  

Similarly, natural source of VOCs from biogenic emissions and abiotic emission take 
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important part of the reaction in the formation of ozone (Derwent, Eggleton, Williams, & 

Bell, 1978). However, the dose of NOx is not always positive relative to the ozone is 

involved in the reversible reaction cycle with NO2 which means that higher dose in NO2 

may lead to decomposition of ozone (Sillman, Logan, & Wofsy, 1990). With the highly 

reactive and the oxidative of the ground level ozone, the ozone-related chemistry 

reactions can be highly active and complicated that many factors and chemicals are 

involved in reactions. The ozone reaction is also sensitive to the meteorological factors 

including solar radiation, wind speed, temperature and pressure (Austin, et al., 2014). 

Thus, the understanding of the relationship between the precursors of ozone can be 

difficult and extremely complicated. 

Some of modeling approaches to estimate the concentration of ozone in order to better 

estimate the ozone exposure in the health issues was developed. Those attempts included: 

chemical transported models (Sun, Fu et al. 2015),  statistical interpolation models 

(Jerrett et al. 2013), simple regression satellite model (Liang, et al. 2019), and machine 

learning models in short period (Di et al. 2017). For each kinds of these models, there are 

some degree of the misclassification in the estimate ground-level ozone concentration. 

Also, there is seldom ozone exposure models considering enough predictors with long 

study period, covering large study domain. Recent year, mount of studies applied satellite 

derived machine learning models in the prediction of air pollution, showing high 

effieciency and great spatial and temporal coverage (Ma, Hu, Huang, Bi, & Liu, 2014; 

Di, et al., 2019; Vu, et al., 2018). The advangtage of the satellite derived machine 

learning model is the combined of greate spatial coverage of the data as well as the 

advantage of machine learning model in the ability of model non-linear bariables (Hu, et 
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al., 2017). With the complex ozone related chemical reactions pattern which is hard to be 

quantified and highly correlation to several meteorological and land use factors, machine 

learning model can be a good fit in the prediction of ozone concentration to address those 

complicted factors related to the ozone. Previous study in a small study domain of the 

comparision of variety types of ground ozone models proved the advantage of machine 

learning models in the prediciton of ground ozone concentration compared to the 

chemical transportation models (Feng, et al., 2019). 

For the previous studies in the developing model with satellite measured ozone value, the 

OMI satellite data was used seldom studies in the prediction of the tropospheric ozone 

concentration (Kajino, et al., 2019). The the lack of satellite derived ground-level ozone 

concentration can be concluded in two major reasons. First, the spatical resolution of the 

ozone measurement satellite instrument is too coarse to achevie modeling in reflecting 

spatial variartion of ozone. Second, the ground-level ozone is hard to measure by the 

satellite instrument since most of ozone in the atomsphere are in the stratosphere (Tang, 

Wilson, Solomon, Shao, & Madronich, 2011). The TROPOMI instrument is onboard the 

sentinel-5p satellite launched on 13 October 2017 at 11:27 CEST/09:27 UTC focusing on 

the atmosphere gas pollutant measurement operated by the Royal Netherland 

Meteorological Institute (RNMI). Compared to other ozone measurement instrument like 

OMI with resolution of 13 km  24 km, the TROPOMI support significantly finer 

resolution of 3.5 km  7 km in the measurement of ozone and tropospheric nitrogen 

dioxide column. Previous studies applying the TROPOMI in the prediction of nitrogen 

dioxide showed great result in the prediction of ground nitrogen dioxide concentration 
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which is one of the most important precursors of ozone (Lorente, et al., 2019; Sandhiya, 

Kolandaivel, & Senthilkumar, 2014).   

In this study, we would like to develop a random forest model with TROPOMI satellite 

data, metrological data, and multiple land use variables to estimate daily maximum 8-

hour average ground-level concentration in California following one year from the 

release date of TROPOMI satellite data started on May 2018 to April 2019.  

 

2. Data and Method 

California was choosing as our study domain due to the relative high ozone concentration 

and great coverage of ground air pollution monitors. Our study domain was defined as 

the California as the state of the United States at the Pacific Coast hosting near 40 million 

residence. The study area of square meter covers the land area of the California and 

several small island near the coast to the Pacific Ocean. The study period is from May 

2018 to April 2019, covering entire calendar year starting from the release date of the 

TROPOMI satellite product. In figure 1, the range of the study domain and all EPA 

ozone monitoring stations are marked in the map.  

We developed a grid with 4206 pixels with size of ~ 10 kilometer by the fishnet tool in 

the ArcGIS Pro to cover the study area as the primary spatial unit for the ozone modeling 

as been shown in figure 2. Previous studies prove the strong link between several factors 

to the ozone chemical reaction, we selected some of parameters with high correlation to 

the ozone concentration in the modeling (Di, Rowland, Koutrakis, & Schwartz, 2016). 
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2.1 Ground-Level Ozone measurements. 

The daily maximum 8-hour average ozone concentration for the study domain of the year 

of 2018 and 2019 was obtained from the 176 ground monitoring stations under the United 

States Environmental Protection Agency reference method. The raw pre-generated data 

was download from the Air Data platform of the EPA website 

(https://www.epa.gov/outdoor-air-quality-data). We assign our ground monitoring ozone 

data to the grid we created. In pixels with one ground monitoring station, the value from 

the stations represent the grid in pixels with more than one ground monitors, average data 

was obtained from all of ground monitoring stations within pixels.  

 

2.2 TROPOMI satellite data 

We applied satellite measured ozone total column which reflect the ozone concentration 

and the tropospheric nitrogen dioxide column which measure the nitrogen dioxide as an 

important precursor in the ozone formation. We obtained the level 2 TROPOMI data with 

the original spatial resolution of 3.5 km  7 km from the GES DISC platform of NASA. 

A resampling of the TROPOMI satellite data need to be done for the modelling since the 

location of the measurement pixel will change in location and angle for every overpass 

orbit of the Sentinel-5p satellite which the TROPOMI onboard. For each day with valid 

TROPOMI observation, we average the value of ozone and nitrogen dioxide 

measurement from each TROPOMI pixel whose central point locate in each pixel we 

created as the modeling unit. 

 

 

https://www.epa.gov/outdoor-air-quality-data
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2.3 Meteorological Field 

We used the meteorological data from the High-Resolution Rapid Refresh (HRRR) 

dataset from the Earth System Research Laboratory of the National Oceanic & 

Atmospheric Administration (NOAA) affiliated the United State Department of 

Commerce. The HRRR is a real-time 3-km resolution, hourly updated, cloud-resoling, 

convection-allowing atmospheric models by the radar simulation. We filter 19 HRRR 

meteorological parameters may highly related to the modeling of the daily ozone 

concentration including: wind speed (gust),  U-component (eat-west) and V-component 

of wind (north-south) at 10 meter and 250 mb 

(ugrd_10m,vgrd_10m,vgrd_250,ugrd_250), temperature (tmp), pressure(pres),  surface 

geopotential height (hgt), Moisture Availability (mstav), specific humidity (spfh), relative 

humidity (rh),  surface roughness (sfcr), ground heat flux (gflux), vegetation type (vgtvp), 

convective available potential energy (cape), convective inhibition (cin), medium cloud 

cover (mcdc), visible diffuse downward solar flux (vddsf), and planetary boundary layer 

height (hpbl).  Considering the reaction time of the production of ozone, the 

meteorological measurements for the period of study is from 10 a.m. to 4 p.m. local 

standard time were averaged to generate daytime meteorological measurements. The 

averaged meteorological fields also represent the average weather condition at the 

Sentinel-5p satellite overpass time which is 13:30 Mean Local Solar time 

(https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/orbit) and lower the 

influence created by the extreme meteorological conditions during the measuring time on 

the association between the ozone concentration and other prediction variables.  

 

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p/orbit
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2.4 Land-Use Variables 

The elevation data in the model is downloaded from the Nation Elevation Dataset (NED) 

(http://ned.usgs.gov) with a spatial resolution of square 30 m which was average to the 

square 10 km pixels in the grid we created as the elevation in each pixel. We obtained the 

land cover data at the spatial resolution of square 30 m from the 2011 Landsat-derived 

land cover map downloaded from the National Land Cover Database (NLCD) 

(http://www.mrlc.gov). The land cover data was calculated by the 10 km grid showing 

the area percentage for each type of land cover including: water, developed, barren and 

forest. The population data is processed from the Gridded Population of the World 

(GPW) v4 from the Socioeconomic Data and Application Center (SEDAC) 

(https://sedac.ciesin.columbia.edu/data/collection/gpw-v4). Population count data v4.11 

with spatial resolution of ~1 km at years of 2015 and 2020 were obtained to create a 

simple linear model in the calculation of the population at the study period which was 

then re-gridded to the grid we created.  

 

2.5 Data Process 

All the data were processed under the projection coordination system of USA Contiguous 

Albers Equal Area Conic system. For the training set of the model, we used all the 10 km 

gridded prediction data into the pixels including the ground monitoring stations. For the 

prediction data set, we used all the ~ 10 km pixels in the California with all the prediction 

variables. For the entire dataset, we standardize the value of each variable before the 

stage of modeling.  

 

http://ned.usgs.gov/
http://www.mrlc.gov/
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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2.6 Random Forest Model 

A random forest machine learning model is a set of decision trees. The model average 

decision tree sets to get the best predictions based on subset of predictors. There are two 

parameters of the model: mtry as the number of predictors sampled for splitting at each 

node, ntree as the number of trees grows. We will train the model by each subset of the 

combination of the mtry and ntree to get the model with best prediction accuracy (Breiman, 

2001). There are 27 variables used in the random forest model, including 2 TROPOMI 

satellite measurements, 19 meteorological variables in the format of daytime average, and 

6 land-use variables. 

To validate the prediction result, we applied a 10-fold cross-validation (CV) technique. 

We randomly split the full tanning set into 10 subsets which contain about 10 percent 

amount of all training data. For each validation process, we used 9 subsets of the training 

set to do the model training which set the rest 1 subset as the testing for the model result 

from the model of 9 subsets. We repeat the validation process by 10 times with 10 

different choice of the validation training set. We conducted a spatial CV and temporal 

CV, based on partitioning the training data set by ground stations and day of year. We get 

the statistical indicators of R-square, root mean squared error (RMSE) of the 10-fold CV 

prediction and ground measurement to assess the prediction accuracy.  

We calculated the importance value for each variable to assess which variables are 

having more impacts on the prediction results. The measure is estimated using out-of-bag 

samples as a result of each predictor variable being permuted which is the increase of 

mean square errors (IncMSE%) of predictions. Higher number means higher importance 

in the prediction (Breiman, 2001).  
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All the modeling process and data analysis were done in R software, version 3.6.0. The 

projection process and the fishnet gridding process were done in ArcGIS Pro. 

 

3. Result 

3.1 Descriptive Statistics 

Daily prediction of maximum 8-hour average ozone concentration started from 1 May 

2018 to 30 April 2019. There are 50,648 observations in total applied to in the data 

training. And, 1,493,153 daily concentrations were estimated by the random forest. The 

annually mean daily maximum 8-hour average ozone concentration is 45.00 ppb for the 

entire California in the study period while the concentration of the ground monitoring 

ozone is 43.65 ppb. The maximum value of the estimate ozone concentration is 108.93 

ppb while the minimum value is 5.16 ppb with. Over the entire study period and the study 

domain, estimate from 6510 observation-days are above the standard of USPEA in  the   

As the definition of the ozone season, the mean value for the ozone season from May 

2018 to October 2018 is 50.72 ppb, 39.18 ppb for the non-ozone season of November 

2018 to April 2019. Figure 3 shows the comparison in daily ozone concentration among 

the entire California between ground monitors and modeling estimate. The modeling data 

and the ground monitors achieved a correlation of 0.93 (p < 0.01) over the time series of 

the study period in the mean daily ozone concentration over the entire state.  

 

3.2 Result of Model Validation 

The random, spatial, and temporal cross validation results, including R2, RMSE as well 

as the linear slope between the predicted value and the ground monitors observed value 
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for the entire study area and period are showed in the table 1 and Figure 4. The overall 

random 10-fold cross validation R2 result reached high value of 0.83. The overall RMSE 

is 5.91 ppb compared to the mean observation value of 43.57 ppb. The result show that 

there is a good agreement on the CV estimate ozone value and the observation ozone 

value in the California over the study domain.  

 

3.3 Importance of Variables 

Figure 5 shows the importance rank of the predictors in our random forest model. The 

importance rank of the random forest model indicates the most importance of the 

TROPOMI total ozone column, TROPOMI tropospheric nitrogen dioxide column, Forest 

land cover percentage, surface temperature and wind speed at 10 meter high. 

 

3.4 Model Estimate of Ozone Concentration 

The Figure 6 shows the spatial pattern of the ozone concentration at different time 

estimated by the random forest model. Clear spatial patterns can be observed over 

different period of estimate. The results showed that the ozone concentration is generally 

higher in the Southern California compared to Northern California. Compared to the 

coastal area, land area has higher concentration of ozone at both ozone and non-ozone 

season. The ozone concentration is much higher in the ozone season compared to the 

none ozone season. The highest zone of ozone concentration is suburb area east to the 

city of Los Angeles. In the ozone season, there are clustering of ozone pollution in the 

Napa Valley and east of it.  
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4. Discussion 

4.1 Model Analysis 

Following the launch of the TROPOMI satellite product, our model is the first 

TROPOMI satellite data derived machine learning model in the estimating ground level 

ozone concentration.  

Although our study covers a large area of the state of California, our model shows great 

accuracy in the prediction of the ozone concentration. Our model has great temporal R2 

of 0.80, even though the study covered the entire calendar year with different seasons 

expressing distinct climate feature and characteristics. In the correlation test between the 

monitor data and the modeling data of the figure 3, a correlation of 0.93 was observed 

which is acceptable as we compare the mean from the monitoring stations to the estimate 

ozone from the modeling of the entire state. As for the yearly average we calculated for 

the ground monitors and the grids with ground monitors, a correlation of 0.94 was 

achieved, meaning a good efficiency of the model in the prediction of long-term average 

dose. For the strength of the random forest in this study, the included prediction 

parameters are in fairish amount of 27 without plenty of parameters at low importance, 

reducing the complexity of the model and degree of overfitting. Compared to previous 

studies in the application of OMI satellite data in the prediction of ground ozone 

concentration without machine learning model, our data is accurate and well validated 

(Liang, et al, 2019). Compared to ozone composition analysis of GEOS-CF from 

NASA’s Goddard Earth Observing System (GEOS) in spatial resolution of ~ 25 km2, we 

have better spatial resolution of ~ 10 km2 (Knowland, et al., 2018). The previous country 

level CMAQ model (Liu, et al., 2010) provide an estimate of ground ozone at a spatial 
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resolution of square 36 km which is much coarser than ours. The previous chemical 

related models are also lack of adequate statistically validation. But we prove the 

efficiency of our model in 10-fold cross-validation. With the join of the TROPOMI 

satellite data, we extend the application of ozone concentration estimate from wildfire 

event to entire year (Watson, Telesca, Reid, Pfister, & Jerrett, 2019). Their model gave an 

R2 of 0.66, which is much lower than ours (0.83). Compared to the previous satellite-

based ground ozone concentration estimation model in the continuous United State (Di, 

et al., 2017), our model has better cross-validated R2 (0.83 better than 0.76) and lower 

RMSE (5.91 lower than 7.36). Also, the Di’s result applied complicated machine learning 

method with huge amount of predication. Compared to their model, we didn’t include 

chemical transportation model result, ozone profile, CO, methane, VOCs, and 

convolutional layers. The random forest model we applied are much easier than the neuro 

network they did. It means that we achieve better modelling estimate with simpler model. 

Without the adding of the convolutional layer which will rely on the ground monitoring 

data as prediction to the modeling estimate, our model can be applied to areas without 

enough ground monitoring stations. Also, we didn’t include the chemical transported 

model, meaning that the random forest model proves the advantage of applying machine 

learning method in the prediction of ozone concentration since it can achieve good fit of 

estimation to the ground monitors. The reason for the advantage is probably from the 

cumbersome chemical mechanism the ozone and its precursors involved which may 

difficult to quantify by the chemical transform model in the ambient air (Sillman, Logan, 

& Wofsy, 1990). And, the machine learning takes the advantage of the flexibility in the 
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non-linear relationship come with complicate interaction among prediction parameters 

(Bishop, 2016). 

4.2 Importance Rank Analysis 

In terms of the importance rank, the two TROPOMI measurement ranked at first which is 

reasonable since they are direct measuring of the ozone and nitrogen dioxide as an 

important precursor of the ozone. Admittedly, we applied the total ozone column data 

product from the TROPOMI in the prediction, containing the stratospheric ozone 

concentration in the measurement. Since 90 percent of ozone in the atmosphere is in the 

stratosphere, the 90 percent of the total ozone column measurement is contributed to 

stratosphere ozone instead of tropospheric ozone which is the ozone may relate to the 

ground-level ozone (Wilson, Madronich, Longstreth, & Solomon, 2019). The possible 

assumption could be the stratospheric ozone may be static in certain conditions of 

meteorological factors. So that, the variation of the total ozone column at the moment 

may be from the differences in ground-level ozone the other predictors share similar 

value or patterns.  The TROPOMI tropospheric nitrogen dioxide column ranks second in 

the importance ranking that the nitrogen dioxide is an important precursor of the ozone 

related chemistry mechanism. So, it is rational that the tropospheric nitrogen dioxide 

column ranks high among predictors. Forest coverage for each pixel ranked third in the 

importance of predictors. The possible explanation may be the forest will release VOCs 

as the precursor of the ozone formation (Hu, et al., 2018). Since there is complicated 

relationship between the NOx and ozone in the rural and urban area that the relationship 

between the NOx and the ozone formation may bias as the increasing of NO2 

(Domínguez-López, et al., 2014). As been discussed in many previous studies, the main 
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source of NO2 is from human activities, meaning the NO2 emission will be low in the 

forest area (Bosson, Mudway, & Sandström, 2019). So, forest area may have related low 

concentration of ozone due to the lack of NO2 source. Secondly, the ozone concentration 

in the forest area may highly positive related to the NO2 concentration measured by the 

tropospheric NO2 column since the local dose of NO2 is low and saturated.  

4.3 Prediction Analysis 

From the figure 6, we can clearly identify the spatial distribution of the ozone 

concentration in California that the Southern California has higher concentration than the 

north. The Southern California is with higher population and more developed land 

meaning more industrial and transported related emission of the precursors of the 

nitrogen dioxide. Consequently, the ozone concentration in the urban area of the Southern 

California is higher. In another hand, Southern California is under stronger heat and more 

drought weather which is proved to be related to the high concentration of the ozone 

(Niu, et al., 2018). We can also observe the ozone concentration is lower in the coastal 

area. With high rank of the u-component wind speed as well as water land use type in the 

importance rank, we can postpone that the low concentration in coastal areas may be 

related to the climate characteristics brought by wind and seawater. As the u-component 

wind which is east-west direction is vertical to the coastline, the possible low 

concentration in coastal area may be from the accelerated diffusion of ozone brought by 

the sea breeze. 

4.4 Limitation and Future Plan 

Although we achieved great efficiency in the ground ozone estimate in California, Using 

TROPOMI satellite product and machine learning methods, there still are some limitation 
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of this study. First, the spatial resolution of the model is still high. The difficulties of the 

improvement are from the coarse resolution of TROPOMI product. To improve the 

spatial resolution, we may apply multiple statistical and machine learning methods to do 

the interpolation or resampling. Second, the current study domain is high in ozone 

concentration. This means the model efficiency is not proved in areas with low ground 

ozone concentration. In future of our studies, we may extend our study domain to 

national level to validate the model in various kind of ground ozone pollution scenario.  

Third, the feasibility of the application of TROPOMI in high attitude area is not clear. 

The TROPOMI satellite measurement ozone have great efficiency and data quality in the 

lower attitude areas as we got from the data while we haven’t developed the model in 

high attitude areas. We may continue to expand our study domain and study period to 

generalize our model application. Last, our current TROPOMI data in the modeling is 

still the ozone column data for the entire atmosphere. This means the ozone measurement 

will be bias by the stratospheric ozone. We are looking forward the coming ozone profile 

product of TROPOMI which will be released in 2020. 

 

5. Conclusion 

In general, our model achieved great accuracy with overall R2 of 0.83 under large spatial 

coverage and long time period in acceptable spatial resolution. The result of our method 

showed strong efficiency of the model in the prediction of ozone concentration in 

California. We also validated the great feasibility of the application of the TROPOMI 

satellite product in the prediction of ground ozone pollution. Following the going 

development of the TROPOMI products, we will keep trying the new product and 
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improve our model to achieve more accurate ozone estimate covering large area with 

finer spatial resolution. 
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6. Tables and Figures 

 

Figure 1. Study area and the ground monitors with data availability. 
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Figure 2. Grid in spatial resolution of 10 km  10 km.  

 

Figure 3. Comparison between ground monitors and modelling estimate of daily average 

ozone concentration of California over study period from May 2018 to April 2019. 
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Table 1. Cross-Validation results for the study area and study period. 

CV R2 RMSE (ppb) slope 

random 0.83 5.91 1.07 

spatial 0.70 8.02 1.08 

temporal 0.80 6.43 1.06 

 

Figure 4. Scatter plots of the cross-validation. 
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Figure 5. Importance rank for the predictors applied in the model, the importance is 

expressed as the percent increase mean square prediction error for each predictors in the 

model. 

 

Figure 6. Mean ozone concentration prediction over the state of California in different 

period. The November to April is defined as non-ozone season while the May to October 

was define as the ozone season.  
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