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Abstract

Incorporating Social Relationships from Call Detail

Records into Infectious Disease Spread Simulators
By Ilya Shats

Traditionally, mathematical models and surveying have been central to studying the
spread of infectious diseases. In this work, we used an anonymized call-detail-record
(CDR) dataset, which contains metadata about phone calls, text messages, and data
transmissions, as the foundation for predicting spread of influenza-like-illness (ILI)
during the 2009 Flu Pandemic in Iceland. The CDR provides population’s mobility
patterns and in addition to a basic contact tracing, this data can be used to infer
people’s social networks. Here we show that social strength has an impact on disease
spread, supporting the perhaps intuitive idea that an infected individual is likely to
transmit the disease to people socially closest to him or her. To simulate ILI spread
throughout populations, we built several discrete event simulators (written in the
Python programming language) that are described in the second part of the thesis.
Though there is still work to be done in improving the models’ accuracy in predicting the
spread, it is a step forward in the novel area of using cell phone metadata to model
infectious disease dynamics.
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Section 1. Introduction

In just the United States, over 200,000 people are hospitalized every year due to
complications brought about by influenza [1]. With the recent 2009 flu pandemic,
reliable methods of surveillance are becoming more and more important to intercepting

influenza early on.

Conventional methods of tracking and predicting the spread of infectious diseases
throughout populations rely on surveying the infected individuals and their families to
track their inter- and intra-community movement as well as on mathematical and
computational models utilizing a variety of data, such as demographics, immigration and
emigration patterns, vaccination data, etc. [2] Surveying, however, is a tedious process,

and its efficacy is heavily limited by the quality and quantity of data on user interactions.

1.1 Motivation

With the rapid expansion of the Internet and mobile technology, new possibilities of

building models that utilize new types of data appear.

For example, Google Flu Trends, introduced by Google in 2008 provided a novel way of
tracking flu by studying search queries. While the idea was promising, since around 1.2
billion people worldwide use Google [3], it ultimately failed when it drastically missed
the peak of 2013 flu [4]. One of the possible reasons is that the intent behind Google
gueries is not known. People may query “flu” for a variety of reasons: curiosity, research

project, etc.



In contrast to Google data, metadata of mobile phone calls and text messages does not
contain subjective data. Every time a call is made or a text message is sent, a service
provider saves the call or text message’s metadata into a Call-Detail-Record (CDR). CDR
contains the origin and destination addresses, the time the call was initiated, the
duration of the call, the unique ID of a cell tower used, and many more attributes.
Though currently it is challenging to acquire, CDR has been used in various studies to
predict carbon footprint, caller’'s gender [5], and personality [6] and study urban
dynamics [7]. Mobile data, CDR included, has been used to study human mobility
patterns [8-13]. CDR also has utility in epidemiological studies relying on mobility
patterns [14-18] and has been used to study the effect of government intervention on

inhibiting the spread of HIN1 in Mexico [2,19].

There are about 6.8 billion mobile phone subscriptions worldwide [20]. Simply put,
more people are calling and texting than are submitting Google queries. With the ability
to capture the individuality of human mobility, leveraging mobile phone data can prove

to be invaluable in tracking the spread of infectious diseases [21,22].

In this work, we used an anonymized CDR dataset as the foundation for simulating the

spread of influenza-like-illness (ILI) during the 2009 Flu Pandemic in Iceland.

Influenza A virus (H1IN1) infected millions of people worldwide during the 2009 flu
pandemic. In Iceland there were 8,650 confirmed cases, which roughly translates to 28

confirmed cases per 1,000 inhabitants [23].



With the massive amounts of data that CDR provides about user interactions and
mobility patterns, we can build a novel surveillance method that will allow for

premature threat analysis and intervention.

1.2 Contribution

In this project, we investigated the impact of social connections on disease propagation
and built a framework that attempts to model disease spread using a contact tracing

approach integrated with disease and social network information (e.g. social strength).

The first part of the thesis provides descriptive work that investigates the impact of
social networks on disease onset dates. Do closely connected people infect each other
more often than those they are not connected with, and more specifically, can we use

the data to extract variables that act as a reliable metric for measure social strength?

The second part of the thesis describes several Discrete Event Simulators that were built

to model the spread of HIN1 in Iceland during the 2009 Flu Pandemic.

Our hypothesis was that social strength has an impact on disease propagation, and the
social network information extracted from the CDR dataset can be used to improve the

accuracy of disease simulators that lack that information.



Section 2. Understanding the impact of social strength on disease spread

Before building discrete event simulators that use social network information to predict
infection, we first investigated whether social relationships have a connection with
disease offset. Specifically, does a pair with a strong social connection increase the
likelihood that the pair of users get infected close to each other? Of course, we do not
know when the users were infected, but we use the diagnosis information as a proxy for

infection.

2.1 Description of data

This work makes use of two datasets.

The first dataset, the CDR dataset, contains metadata about user’s cellphone records.
Specifically, it contains metadata about calls and texts for roughly half of the population
between February 2009 and June 2012 - about 41 months. This includes data such as
the unique user ids (UID) of parties participated in a phone call, the duration of the
phone call, and the cellphone tower the user connected to. There are a little over 970

million records in the CDR dataset.



Table 1. A fragment of the CDR dataset. The direction IN means that UID 1 called UID2. OUT
means that UID2 called UID1.

10884794 8106006 2009-02-01 00:00:00 IN 274010019BCD 10
10557308 4992194  2009-03-05 05:11:31 OUT 27401100CD6E 512
52090496 11334959 2009-03-04 11:02:59 OUT 27401012D0BD 31

The cell phone tower coordinates serve as an approximation of the location of the user
who initiated the call. Depending on the density of the cell phone towers in the area,

this may be accurate within a couple hundred meters or a couple kilometers.

The second dataset, which we will call the ILI-onset dataset, lists individuals and dates

they were diagnosed with ILI during the 2009 flu pandemic. It contains 4,346 records
and covers diagnoses from March 2009 to November 2010. It is linked by UID with the
CDR-dataset, meaning that we can match a user diagnosed with ILI with records in the

CDR data.

Table 2. A fragment of the ILI-onset dataset.

4205788 2009-10-13
4227181 2009-08-17

4227464 2009-10-26



Table 3. CDR dataset statistics.

Total Records 972,800,043
Number of unique UIDs 2,170,454

Spanning Period 41 months

Table 4. ILI-Onset dataset statistics.

Total Records 4,294
Maximum number of people diagnosed on one day 194

Date of highest number of diagnoses 10/20/2009
Mean/Variance of number of diagnoses per day 16 /909.857

Spanning Period 20 months
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Figure 1. Daily disease onset curve
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Figure 2. Distribution of disease onset offsets among all infected pairs

2.2. Data Limitations

In Iceland, there were over 8,650 confirmed cases of ILI during the 2009 flu pandemic
[23]. The ILI-onset dataset contains 4,346 records, which is roughly half of confirmed ILI
cases. In addition, we can assume that many people who contracted H1IN1 did not go to
the doctor, and thus were not recorded in the ILI-onset dataset. In fact, the estimated
proportion of the population that was infected ranges from 10% to 22% [24], though it
appears to be 3% if we look at just the confirmed cases. These infected people provided
a vector of transmission that the models cannot capture. This relates to the second
limitation that the CDR-dataset does not have data on every person in Iceland, so those
missing data points could act as indirect vectors of transmission. There is a similar
problem with the ILI-onset dataset, namely, not all infected individuals are represented.

Infected individuals may neglect to go to the doctor and thus are never accounted for.



That being said, infectious individuals who did not see the doctor, because they are
asymptomatic are not as important to disease spread as are symptomatic individuals

[25].

The coordinates in the CDR dataset represent the location of the cell-phone towers, so
we do not know the exact location where the users were making calls or sending text
messages from. The accuracy of the approximation depends on the density of cellphone

towers in the region.

The CDR dataset has no information on who a user texted. Considering the popularity of
texting especially among teenagers, we lose out on the ability to use text messaging

frequency and patterns to infer social strength among users.

Cell phone tower switches are not captured in the data. If a user initiates a call and then
during the call connects to another cell phone tower, the data does not show those
towers. This may be more prevalent when people are driving, but since it is unlikely that
people transmit the disease to other people on the road, the missing data points are not

hindrances.

Considering that the population of Iceland in 2010 was around 320,000 [26], and there
are over one million unique UIDs in the CDR dataset, many of these UIDs may represent
not individuals but businesses. Also, phone ownership in Iceland in 2010 was at 107%
[27] and some users own multiple phones. Currently, we have no reliable way of

cleaning the CDR dataset.



The data we have only represents the adult population (at least 18 years of age).
Knowing the role schools played in HIN1 spread [24], access to data on schoolers would

significantly improve our model.

The last limitation worth briefly discussing is sparsity. Given that coming into contact
with infected individuals is a requirement for disease transmission in H1IN1 and
influenza-like illnesses, we need to know when users cross each other’s paths. In the
CDR data, intersections are not as common. This is because people are not using their

phones all the time.

2.3. Data preprocessing

We wrote several Python scripts to clean and filter the data. This involved removing
records where the tower_id or coordinates were missing, which brought down 1,702
towers to 1,502, condensing the data to remove redundant fields, and filtering by
requiring a minimum number of contacts, minimum number of records, minimum
number of active days, etc. In addition, data files were transformed into hashmaps to
turn the linear-time operation of scanning files line by line, into a constant-time lookup
operation. For instance, the ILI-onset dataset was transformed into a hashmap where
the key was the UID and the value was the date of disease onset. The towers file was
turned into a hashmap where the key was the towerlID and the value was a tuple of the

coordinates.
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The three variables that were extracted from the CDR-dataset are call duration, call
frequency, and co-occurrence. Two users co-occur if they have a record at the same
tower within 30 minutes of each other. These variables are used as a proxy for
measuring social strength between two users. Logically, we would expect that people
who call more frequently and call for a longer period of time are more closely connected
than those who do not. The logic behind using co-occurrence as an indication of social
strength is not as straight-forward. With phone calls, one reciprocated call suggests that
there exists a connection between two users. Co-occurrences on the other hand do not
necessarily suggest that. Certainly, people who make phone calls on the way to work
would co-occur with everyone making phone calls near them. However, since physical
proximity is a requirement for ILI transmission, it is interesting to investigate this
variable. Perhaps, after a certain number of co-occurrences, the likelihood of strong

connections increases.

2.3.1. Building hashmaps from datasets

The process for extracting the variables and populating the hashmap was as follows.

Call duration:

For each CDR record, we extract the two UIDs of users, who interacted with each other,
along with the duration in seconds, and added an entry to the hashmap. The first UID is
the key. The second UID is a key to the nested hashmap and the duration is the value.

The final object looks like this.
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{UID1: {UID2: 300, UID3: 500}}

In this example, UID1 called UID2 for 300 seconds and called UID3 for 500 seconds.

The reciprocated entry was added into the hashmap: if UID1 talked to UID2, then UID2

talked to UID1 for the same amount of time.

Call frequency:

The method for extracting call frequency was very similar. If an interaction occurred
between UID1 and UID2, we incremented their call frequency by 1. Only calls are
considered since the data includes only the user who sent the text, not the user who

received it.

Co-occurrence:

How does one know if two users co-occur? Is meeting up at the exact same place at the
exact same time a co-occurrence? What if records are five minutes apart, should that

still count as a co-occurrence?

We define co-occurrence as follows: Two users co-occur if they both have records at the
same tower within 30 minutes of each other. Two users who call each other multiple

times at the same place within the 30 minute range, count as having co-occurred once.

The structure of the hashmap is the same as the structure above. A UID has several

contacts each of which have a number of co-occurrences.
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Figure 5: Distribution of co-occurrence

The peak of Figure 3 amounts to about 2.5 minutes. Most pairs who exchanged calls,
called for a very short period of time. At the right tail of the distribution, the maximum
time was about 277,000 minutes which amounts to 3.75 hours per day. It is likely that

the pairs at the right tail are companies.

The peak of Figure 4 tells us that most people who called a contact, called him or her
only once. The six outliers at the right-most side exchanged a little over 100,000 calls

over the 41 month period.

From Figure 5, we see that most pairs co-occurred only once, and the maximum number

of co-occurrences was 44.

We built three weighted undirected graphs, a call duration graph, a call frequency
graph, and a co-occurrence graph, each weighted by call duration, frequency, and co-

occurrence, respectively. We display statistics about the data as well as the graphs
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below. Since the only difference between the call duration and call frequency graphs are
the weights (a pair connected in one of those graphs will be connected in the other), we

display statistics about the call duration and call frequency graphs in one table.

Table 5. Call Duration and Call Frequency statistics.

Number of users who called someone 2,153,738
Percentage of total users who called 99.230%
Average number of people a user called 40.513
Maximum number of people a user called 128,122
Minimum number of people a user called 1
Average/Variance number of calls per user 15.045
Maximum number of calls 102,315
Minimum number of calls 1
Average call duration per user (seconds) 2071.091
Maximum call duration (seconds) 1,6642,897
Minimum call duration (seconds) 1
Number of connected components 8
Average clustering coefficient 0.053
Average degree centrality 1.553e-05
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Table 6. Co-occurrence statistics.

Number of users who co-occurred with someone 36,587
Percentage of total users who co-occurred 1.686%
Average number of people a user co-occurred with 181
Maximum number of people a user co-occurred with 2720

Minimum number of people a user co-occurred with 1

Average number of co-occurrences per user 1.265
Maximum number of co-occurrences per user 44
Minimum number of co-occurrences per user 1
Number of connected components 287
Average clustering coefficient 0.374
Average degree centrality 0.008

2.3.2. Dependency between variables

Before investigating the impact of these variables on disease spread, we first study the

correlation or dependency between these variables

In the Figures below, when we say average, what we mean is that we bucket the data,

average the y-values in the bucket, and plot that.

From Figure 6, we see a clear correlation between call frequency and call duration. This
makes sense, because every call will have a positive call duration, so a higher call

frequency will increase the number of total minutes spent calling. The call duration is
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thresholded at about 33,000 minutes, which focuses in on the pairs who talked on the
phone for a realistic duration. 33,000 minutes corresponds to about an hour of talking

to one person every day for a period of 18 months.

50 Call frequency v. call duration
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Figure 6. Call Frequency vs Call Duration
Spearman Correlation Coefficient: 0.725
p-value: < 0.001
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Spearman Correlation Coefficient: 0.032
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Spearman Correlation Coefficient: 0.060

p-value: < 0.001
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Figure 7 shows virtually no correlation between co-occurrence and call duration. A high
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co-occurrence does not imply a high call frequency. After all, two people making calls on
the way to work are co-occurring, and this does not suggest anything about the strength
of their relationship. We would expect two people who call each other frequently to co-
occur more often than those who don’t, but it does not appear that they do. The low co-
occurrence could be a result of the sparsity of the data. The data captures a small
percentage of the co-occurrences that actually happened. It is important to note that in
Figure 7 and Figure 8, we filter out pairs that had a positive call duration, but did not co-

occur.

2.4. The impact of social strength

Here, we examine how call duration, call frequency, and co-occurrence correlate with
the time difference (in number of days) when two users got infected. To generate the
following graphs, we iterated through every record in the ILI-onset dataset and retrieve
their contacts, which are the users they called. We filtered out the users that never got
diagnosed with ILI and then got the diagnosis dates of his/her contacts. Subtracting the
two dates and taking their absolute value gives us the offset. We then constructed a
hashmap, where the key is the offset and the value is a list of every pairs’ call duration.
We then binned the data into 350 buckets and plotted the average call duration of each

bucket. The same technique is used for the other variables.

There is a negative correlation between call duration and the offset meaning that the

people, who call each other for a longer time, tend to get infected temporally near each
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other. Though we do not have the ground truth to verify that people with high call
duration are more closely connected, it is fair to assume that the premise is true. In the
figure, we see that if we use call duration as a measure of social strength, Social strength

is negatively correlated with the closeness of diagnosis.
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Figure 9. Call Duration vs Days Offset of Disease Onset
Spearman Correlation Coefficient: -0.531
p-value: 0.00213

Number of pairs behind each bucket

2500

Number of pairs

10 15 20 25 35
# days offset of disease onset
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Figure 11. Call Frequency vs Days Offset of Disease Onset
Spearman Correlation Coefficient: -0.538
p-value: 0.00180
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Figure 12. Number of pairs behind each bucket in Figure 11

We see a similar trend if we use call frequency as a measure of social strength. The
infected users who called their contacts more frequently had a closer date of diagnosis.

This is especially evident at offset 0.
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Figure 13. Co-occurrence vs Days Offset of Disease Onset
Spearman Correlation Coefficient: -0.198
p-value: 0.287
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Figure 14. Number of pairs behind each bucket in Figure 13
In Figure 13, while we do see an unusual spike at offset 0, the Spearman coefficient is
fairly low. There does exist a negative correlation, but it is not nearly as strong as the

correlation of call duration and call frequency vs. disease offset.

While co-occurrence does not appear to be a strong indicator of social strength, call

duration and call frequency do appear to be correlated somewhat strongly.
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Next, we study what percentage of users’ top contacts got infected within a range. The
baseline figures below are calculated by shuffling users’ relationships. So if previously a
user had five contacts that user would still have five contacts, but they would be
selected randomly. First, we attempt to answer the following question: Of the pairs that
had a higher call volume, did a higher proportion of them get infected near each other?
The idea is that high call volume suggests closer social connection, which implies more
frequent contact and closer physical proximity, which is necessary for the disease to

propagate.

% of contacts infected within 7 days v. their call duration
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Figure 15. Percentage of Contacts Infected within 7 days vs Call Duration
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Figure 16. Number of pairs in each bucket in Figure 15

We can see that there appears to be a positive correlation between the number of
minutes users spent talking to someone on the phone and the relative number of users’

contacts that got infected within a week.

What if we look at call frequency rather than duration?

100 % of contacts infected within 7 days v. their call frequency

% of contacts infected within 7 days

4000 6000 10000
Call frequency

Figure 17. Percentage of Contacts Infected within 7 days vs Call Frequency
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Figure 18. Number of pairs in each bucket in Figure 17

Again, we see a similar trend in Figure 14. A higher percentage of the pairs that talked

more frequently on the phone, were diagnosed within a week.
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Figure 19. Percentage of Contacts Infected within 7 days vs Co-occurrence



25

Number of pairs behind each bucket

3.5

3.0

25}

2.0t

15}

Number of pairs (log10)

1.0}

0.5

0.0
10 15 25

Co-occurrence

Figure 20. Number of pairs in each bucket of Figure 19

The implication is that, close friends are more likely to be infected closer to one’s onset
date and call frequency and call duration are both adequate metrics for measuring

social strength.

To continue studying social strength’s connection to closeness of diagnoses dates, we
answer the question, what percentage of a user's contacts got diagnosed close to the

user's onset date?

To answer this question, we run the following algorithm. We shuffle all infected users
and iterate through them. For each infected user u, we retrieve u’s contacts F and select
the top five infected contacts F’ (ranked by call duration). We then calculate a
corresponding set of offsets O’ by taking the absolute value of the difference between
the contact’s and u’s onset dates. Keeping track of how many contacts were infected at
each offset and how many were not, after iterating through the set of infected users, we

can calculate the percentage of contacts infected at each offset. We rerun the algorithm



26

to get a control. This is done by replacing each user’s top five contacts with five random

users. We threshold the maximum offset to 90.

% of infected contacts v. offset of disease onset
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Figure 21 (25 users). Top subplot: Percentage of Top 5 Contacts Infected vs Offset of
Disease Onset;
Bottom subplot (Control): Percentage of Random Users Infected vs
Offset of Disease Onset
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30 % of infected contacts v. offset of disease onset
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Figure 22 (100 users). Top subplot: Percentage of Top 5 Contacts Infected vs Offset of
Disease Onset;
Bottom subplot (Control): Percentage of Random Users Infected
vs Offset of Disease Onset
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We see a very peculiar trend. In the top subplot, we have a sharp peak at offset 0. In
Figure 23, we see that 34% of the users’ infected top contacts were diagnosed on the
exact same day. While we would expect close friends to be infected near each other, the
result shows that they went to the doctor on the exact same day. Notice, the
percentage drops severely at offset 1. The offset 0 bucket contains 1,202 users while the
offset 1 bucket contains 129. What could explain such a steep decline? Why are there so

many users going to the doctor on the same day?

First, we investigate how this peak changes when we consider a different number of top

contacts. If we look at the top 20 contacts, will we see the same trend?
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Figure 24. % top contacts infected at offset 0 and 1 vs. Number of top contacts

Figure 24 does show a slight decrease in the peak at offset 0, but ultimately there is a

very slight change.



29

Fortunately, we have access to a smaller dataset that can help us answer this question.
This dataset maps UIDs of infected users to family numbers. Specifically it tells us which
users belong to the same family. Since family members would be expected to be a user’s
top contacts, it is possible that there are so many people going to the doctor on the
same day, simply because they are a family and it is more convenient for them to visit

the doctor together.

Table 7. UID to Family ID relation.

5030493 15
4990153 15
10816576 246
11340924 246
10553121 246

Data in Table 7 shows that the top two users are part of the same family as are the

bottom three.

Table 8. Data describing the Family Dataset.

Number of families 754
Average/Variance of number of family members per family 2.366 /0.590
Maximum number of family members per family 10

First, we do a quick analysis of the family data to see if family members are getting
diagnosed on the same day. To do this, we simply loop through every family and check if

each family member of a given family has the same disease onset date.
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We see that for 90% of all infected families, all family members went to the doctor on
the same day. We now rerun the algorithm used for generating Figures 21-23 and check

if at offset 0, many of the users belonged to the same family.

We do this by slightly modifying the algorithm to output additional information along
the way. For a user u and his or her infected contacts C, we find how many users in C are
family members, F, of u: M = C N F. The size of the resulting set M tells us how many of
u’s top contacts are part of u’s family. We keep track of how many are in the family and
how many are not, and calculate the proportion. We find that only 0.187% are part of
the same family, contrary to the hypothesis that many of the pairs at offset 0 are part of

the same family.

Section 3. Predicting disease spread with social strength

Models are invaluable in studying spread of disease and can be helpful in prevention
and control. In this section, we introduce several spatio-temporal discrete event

simulators written in Python to attempt to model A(H1IN1) spread in Iceland.

Initially the simulators were run on the majority of the CDR traces, but the magnitude of
the data proved to be a major issue, as the simulators would not finish the simulations
and in fact, took an inordinate amount of time to perform one step. To resolve this, we
took a small subset of the data that spanned one year and binned the data into 30
minutes intervals. The modal location during each 30 minute interval was the location

that was used in the record. The size of this subset was around 6 million records.
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3.1. Seedset

The seedset is the initial set of infected patients that all models use.

Given a starting seed date, the ILI-onset dataset is queried for all people infected on that

date, and that result set becomes the seed set that is used by the models. In addition to
the UIDs, the algorithm finds and saves each infected user’s initial data point. The first
model iteration starts at the minimum date of those initial data points. A graphic is

included below to better illustrate this.

Seed user 2’s first

Seed date Seed user 1’s first CDR data point
l CDR data point l

v

time
T

Simulation starts here

Figure 25. Simulation Start

Initially, the seed date chosen the first onset date in the ILI-onset dataset. However,
because the size of the seed set was very small, we chose random seed dates to see if

larger seed sets positively impacted the models’ predictions.

3.2. Proposed Frameworks

3.2.1. Baseline

The baseline model is the fundamental model that is inherited by the rest. It uses a

contact tracing approach to simulate the spread of A(H1N1). An infected individual
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whose trajectory intersects with a susceptible individual will deterministically transmit

the disease.

This approach requires a clear definition of what it means for two users to intersect.
Two users intersect if they are spatio-temporally close to one another. Specifically, we
allow a time window (for example, 30 minutes) and a distance window (for example
0.25 kilometers). These are the two major parameters in this model along with the start
seed date. Considering cell phone tower density, a window of 0.25 km will generally

require two users to be in range of the same cell phone tower.

Indirect transmission includes infection through soil contamination and through
touching a contaminated surface. There are many challenges in integrating that
information into models [28], and so we do not explicitly define parameters to capture
that. The models do however indirectly capture this transmission in part due to the time
window. Depending on how long the virus can persist on surfaces, allowing users to
become infected even when appearing several minutes after an infected user, allows

the model to capture indirect transmission.

In the baseline model, there is only an infected set and an implied susceptible set (the
complement of the infected set). One key disadvantage is that individuals can never
transition from an infected state to a cured state. Once infected, an individual stays
infected and, in theory, the illness spreads until it has been transmitted to the entire

population.
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This model is not expected to be good at predicting spread, since it ignores all disease
information. Though this is not realistic, it should allow us to see the infected set grow
until it contains the entire population. It would be interesting if the baseline model

failed to simulate this growth, as it may imply a sparsity of intersections in the data.
Overview of Model:
0 = {¢,At,Ad} where

At is time a user can be from another to be considered intersecting, Ad is the distance a

user can be from another to be considered intersecting, and ¢ is the seed date.

if |ui.t— uj.t| < At A |ui.c— uj.c| < Ad infect
otherwise do notinfect
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Algorithm 1 "Move” Contact Tracing Model forward

1: procedure NEXT(in fectedSet)

2: for each tuple userid, time, coord in infectedSet do
3: spatioCloseUsers = Grid|coord]
1

for each userid, timestamp in spatioCloseUsers do

> if timestamp + delta_time > time then
6: break
T end if
8: if inRange(timestamp, delta_time) then
9: in fectedSet.add((userid, timestamp, coord))
10: end if
11: end for
12: nextDataPoint = getNextDataPoint(userid, time)
13: updatelU serIn fo(userid, next DataPoint, in fectedSet)
14: end for

15: Return in fectedSet
16: end procedure

Algorithm 2 Get a user’s next data point

1: procedure GETNEXTDATAPOINT(userid, time)

2: user File = openU ser File(userid)

3: for each line in userFile do

1 currentTime. currentCoord = extractTime AndCoord(line)

5: if currentTime > time then > data is sorted by timestamp
6: Return currentTime, currentCoord

7 end if

8: end for

9: Return ()

10: end procedure

Figure 26. Baseline Pseudocode

3.2.2. Disease Base Model

Mathematical models are imperative in studying the epidemics of infectious diseases. A
classical deterministic model that is widely used in the public health community is the
Susceptible-Infected-Recovered (SIR) model. In the SIR model, the population is divided
into three classes: Susceptible, Infected, and Removed. The rate of moving between the

classes is dependent on the transition rate and the recovery rate.
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This model makes improvements on the baseline contact tracing approach by
incorporating information about the disease. This model as well as future models

incorporate ideas from the popular SIR approach.

In addition to the infected and susceptible sets that were present in the baseline model,

we add a recovered set.

Figure 27. Susceptible, Infected, and Recovered set. Components of the SIR model.

Specifically, it uses a parameter B, which represents the duration of the infectious
period, meaning how long does it take for an infected individual to transmission
between the infected and recovered sets. According to literature, the estimated B of

H1N1 is 60 hours [29].

When an individual moves from susceptible to infected, they are given 60 hours until
they move to the recovered set. Once an individual has been cured of the disease, he or

she cannot contract it again.

In addition to infectious period, the model uses a parameter, a, which represents the

number of hours a user was infected for before being diagnosed. Since, the individual
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was likely infected several days before being diagnosed by the doctor [30], the model
subtracts this parameter from the infectious period to calculate how much time the

individual has left before moving to the recovered set.

As with any model, we need to make assumptions to reduce the models’ complexity.
This model makes several assumptions, which mirror assumptions made in the SIR

model. All people are born into susceptible class — no one is inherently immune.

In addition, while individual immune responses certainly vary and are important in
disease [31] dynamics, we are not taking into account individual immune response,
since it adds unnecessary complexity. Instead, we assume that everyone responds the

same to disease and everyone has the same 60 hours infectious period.

Contact with the disease moves users to the infected class, meaning that there is no
latency window or no exposed class like in the SEIR (Susceptible-Exposed-Infected-
Recovered) model. The individuals in the recovered class cannot be infected again —
they are immune for life. The host population is closed. No one is flying in or out of

Iceland.

The size of the recovered set is initially zero. The infected set is non-empty — this is the

seed set. Everyone else in the population is in the susceptible set.

3.2.3. Disease Model 2

The second disease model incorporates the transmission probability of the disease.

Rather than naively passing on a disease whenever users intersect, there is a 26%
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chance of transmitting the disease [32]. This accounts for the fact that the definition of
intersecting users may be too lenient and a user may have a higher resistance to the

disease.
Overview of Disease Models:
0 = {¢,At,Ad, a, 5, v} where y is the transmission probability.

if |ui.t — uj.t| < At A |ui.c - uj.c| < Ad infect with probability 8
otherwise do notinfect

3.2.4. Social Network Base Model

The base social network model uses two additional parameters. One, pl, is the
probability of passing the disease from user "a" to user "b" if a spatio-temporally close
user "b" is in the social network of user "a”. The other parameter, p2, is the probability
of transmitting the disease if the two users are close, but user “b” is not in the social

network of user “a”. pl1 and p2 are parameters in the model and can vary, but from

literature [21], we decide to set p1 to 0.9 and p2 to 0.1.

Overview of Social Network Model:

0 = {¢,At,Ad, a,y,p1,p2, w} where w is the minimum call duration for two users to

count as being in each other’s social networks.
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if |ui.t — uj.t| < At A |ui.c - uj.c| < Ad AN uy; € SNuj infect with probability p1

if |ul-.t — uj.t| < At A |ul-.c — uj.c| < Ad ANu; € SNuj infect with probability p2

otherwise do not infect

3.2.5. Augmented Social Network Model.

This model augments the previous social network models in an attempt to counter the
infected set’s lack of growth over the course of the simulation. The baseline contact
tracing model’s inability to infect the entire population (defined by the CDR), means that
the future models have no chance of capturing HIN1’s growth more accurately, since
the models incorporate more and more constraints. This motivates an augmented social

network model.

Rather than relying solely on the intersections given by the CDR data and hoping that
the data’s sparseness does not negatively influence the result, we can augment the
model in an effort to spike the size of the infected set and more closely match the

epidemic curve.

One of the tricks that is used to spike the growth involves randomly infecting users. One
of the consequences of the sparseness of the CDR data is that users’ intersections may
not be seen in the data. It is fair to assume that even though the data does not show
this, people are coming into contact with each other. At each step of the simulation, we

retrieve the user whose timestamp comes first in the infected set and look at their top
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five contacts (ranked by call duration). Iterating through those contacts, with some

small probability, we infect at most one of those contacts.

In addition to this, we construct social strength profiles for every pair of individuals. This
involves retrieving the number of co-occurrences, the number of calls, and the duration
of the calls between a pair P. Then we normalize the values so that they lie between 0
and 1 and weight them by the importance of the parameters, which is determined by
the correlations of the parameter vs. offset. By default, the weights are 1/3. In that case
that the pair called each other, but never co-occurred the default weights become 1/2.
Taking the sum gets us probability p that the infected user u in P will transmit to the

contactcin P.

Overview of Augmented Social Network Model:

0 ={¢,At,Ad, a,y,p1,p2,w,7r,P} where r is the probability of infecting a random
person at every step of the model, and Pis a matrix of probabilities, where P;;gives us

the probability that u;infects u; given that they intersect.



40

Algorithm 1 "Move” Augmented Social Model forward

1:
2:
3-
4

22:
23:
24:
25:
26:
27:
28:
29:
30:

procedure NEXT(in fectedSet)
userid, timestamp, coord = get First DataPoint FromlIn fectedSet()
randIn fectedUsers = choose X RandomU sersFromlIn fectedSet(X)
for each infectedUser in randIn fectedUsers do
for each susceptibleContact of infectedUser do
prob = getIndividual ProbabilityO fIn fection(in fectedU ser, susceptibleContact)
infectWithProbalility(susceptibleContact, prob)
end for
end for
for cach line in dataFile do
u,t,c = extractData(line)
if t < timestamp then
continue
end if
if userid == u or u € infectedSet or u € removedSet then
continue
end if
if intersecting(userid, u, timestamp, t, coords, c, deltaTime, deltaDist)
then
if inNetwork(userid, u) then
addToln fectedSetWith Probability((u,t,c),pl)
end if
if not inNetwork(userid, u) then
addToln fectedSetWith Probability((u,t,c),p2)
end if
end if
end for
nextDataPoint = getNextDataPoint(userid, time)
updateUserIn fo(userid, next DataPoint, in fectedSet)
updateSets()
end procedure

Figure 28. Augmented Social Model Pseudocode

Algorithm 2 Calculate probability of infection from individual profile

1:
2:
3
1
5

procedure GETINDIVIDUALPROBABILITYOFINFECTION(userid, contact)

cooccurrence = getCooc(userid, contact)

call Duration = getCall Duration(userid, contact)

call Frequency = getCall Frequency(userid, contact)

prob = normalizeW eight AndSum(cooccurrence, call Duration, call Frequency)

return prob
6: end procedure

Figure 29. GetindividualProbabilityOfinfection Pseudocode

3.3. Evaluation

To evaluate the models, we generate several graphs to visualize the models’ accuracy
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in predicting HIN1 spread.
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Figure 30. Cumulative number of people infected

The graph shows the amount of people infected throughout the disease period. Note
that due to the nature of disease dynamics, 4,500 people will not be infected by the end
of the period, some will have transitioned to the recovered set. It is a good starting
point for evaluating the efficacy of the disease. At the very least, the baseline contact

tracing model, if it works well, should fit nicely on the curve.

More sophisticated evaluation techniques will be required to better evaluate the

models.

Precision/recall
We run the simulation for d days. After d days, we compare the resulting infected set

with the ground truth from the ILI-onset-dataset by computing the precision and recall.

Precision: of those in the infected set, how many were actually infected by this time

Recall: of those infected by this time, how many were predicted to be in the infected set
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Plot of predicted onset date vs user

Next, we look at every user that was infected and the date on which they were infected.
Taking the difference of the predicted onset date and the actual onset date, we can plot
how far off the simulators were at predicting the date of onset. A point at y = 0 means
that the onset date was predicted exactly. A value of y > 0 means that the user was
predicted to have contracted the disease y days later than he or she actually did. A
negative y value means the model predicted disease onset too early.

While this is a better strategy than the previous ones, this says nothing about those
individuals that were supposed to be infected but were not. In a sense, it provides an

analogue to precision, but fails to represent recall.

3.4. Results and Future Work

The baseline contact tracing model performed poorly. The size of the infected set
increased for a few days and then plateaued. The main reason for this is that the
sparsity of the data limited the number of intersections the simulators encountered.
Though the baseline simulator was not expected to accurately capture the A(HIN1)
epidemic curve, the results of its performance are still surprising, because the size of the
infected set failed to grow. The precision and recall scores were very high for the
baseline, but that is simply because most of the users in the infected set were part of

the seed set, which was generated from the ground truth. Because most of the infected
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users were part of the seed set, the predicted onset dates were very accurate, though

this does not say much.
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Figure 31. Performance of baseline model with 8 = {Oct 14 2009, 30 min, 0.25 km}

The disease and social network base models fared poorly as well. With the addition of
the infectious period parameter, the infected set size dropped down to zero rather than

plateauing. Again, precision and recall were high for the same reasons.
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Figure 32. Performance of disease model with

6 = {Oct 20 2009, 30 min, 0.25 km, 40 hours, 26%, 168 hours}
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Figure 33. Performance of  social network base model with

6 = {Oct 20 2009, 30 min, 0.25 km, 40 hours, 168 hours,90%, 10%, 1000 minutes}

The augmented social network model failed to capture the A(H1IN1) epidemic curve. The
size of the infected set did not fall to zero immediately, like in the previous models.
Rather it increased briefly showing that the augmentation had a noticeable effect, and

then eventually fell to zero.
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Figure  34. Performance of augmented social network model  with
0 =

{Oct 20 2009, 30 min, 0.25 km, 40 hours, 168 hours,90%, 10%, 1000 minutes, 5%, P}

The major problem the discrete event simulators ran into was the lack of intersections
they encountered. Since intersections were the foundation of the simulators, the
sparsity of the data limited the robustness of the simulators. Since the simulators ran on
only a small subset of the data, running with the complete CDR dataset would likely

improve results as more intersections would be captured by the data.

It is probable that a better algorithm would need to be devised for efficiently finding
intersecting users. An offline approach involving building an intersection graph should
be explored. This should greatly reduce runtime since we would not need to scan

through the file for every step of the simulation.
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Though we are not using vaccination rate in the models currently, it may be interesting
to incorporate average nationwide vaccination rates for influenza-like-illnesses. We
could make use of census data, infer home locations of users, which has been done in
previous work, map coordinates to zip codes and say X% of these people are vaccinated.
Alternatively, we could base it on population density — more people in densely-

populated regions will get vaccinated than people in rural regions.

Section 4. Conclusion

The first part of the thesis aimed to show a connection between social strength and
temporal closeness of HIN1 diagnosis. We defined three different measures of social
strength: call duration, call frequency, and co-occurrence. Call duration and Call
frequency are correlated with disease offset. Pairs who make more calls or talk for
longer periods of time tend to get sick closer to each other than those that do not. Co-

occurrence however is not a reliable measurement of social strength.

Using this information, we built a framework for predicting the spread of infectious
diseases. We built several Discrete Event Simulators in Python that leverage CDR
coupled with information about the disease and people’s social networks in an attempt
to track the spread of HIN1 throughout Iceland. The simulators were not successful at
accurately tracking the spread of the disease, but after further data cleaning and
research effort, we are hopeful that the epidemic curves of A(HIN1) can be modeled
accurately. The simulators are a stepping stone. The framework is a step forward in the

novel area of using cell phone metadata to model infectious disease dynamics.
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